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Possible Approaches

The science of making machines that:

Think like people

Act like people

Think rationally

Act rationally
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Properties of an Intelligent Agent
• Intelligent/Rational agents

select actions that maximizes 
its (expected) utility
•General properties an 

intelligent agent should have
– Reactive to the environment 
– Pro-active or goal-directed
– Learns/recognizes patterns
– Interacts with other

agents through
communication or
via the environment
– Autonomous

Courtesy Tim Finin



(0) Table-driven agents 
Use percept sequence/action table to find next
action.  Implemented by a lookup table

(1) Simple reflex agents 
Based on condition-action rules, stateless devices 
with no memory of past world states

(2) Agents with memory 
have represent states and keep track of past world states

(3) Agents with goals 
Have a state and goal information describing desirable situations; can take 
future events into consideration

(4) Utility-based agents 
base decisions on utility theory in order to act rationally

(5) Learning agents
base decisions on models learned and updated through experience

simple

complex
Courtesy Tim Finin



Characteristics of environments
Fully 

observable? Deterministic? Episodic? Static? Discrete? Single 
agent?

Solitaire No Yes Yes Yes Yes Yes

Backgammon Yes No No Yes Yes No

Taxi driving No No No No No No

Internet 
shopping No No No No Yes No

Medical 
diagnosis No No No No No Yes

→ Lots of real-world domains fall into the hardest case!

A Yes in a cell means that aspect is simpler; a No more complex
Courtesy Tim Finin



A General Searching Algorithm
Core ideas:
1. Maintain a list of 

frontier (fringe) nodes
1. Nodes coming 

into the frontier 
have been 
explored

2. Nodes going out 
of the frontier 
have not been 
explored

2. Iteratively select 
nodes from the 
frontier and explore 
unexplored nodes 
from the frontier

3. Stop when you reach 
your goal

Figure 3.3



State Space Graphs vs. Search Trees
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We construct the 
tree on demand – 

and we construct as 
little as possible.

Each NODE in in 
the search tree is 
an entire PATH in 
the state space 

graph.

Search TreeState Space Graph



Informed vs. uninformed search

Uninformed search strategies (blind search)
–Use no information about likely direction of a goal
–Methods: breadth-first, depth-first, depth-limited, 

uniform-cost, depth-first iterative deepening, 
bidirectional

Informed search strategies (heuristic search)
–Use information about domain to (try to) (usually) 

head in the general direction of goal node(s)
–Methods: hill climbing, best-first, greedy search, 

beam search, algorithm A, algorithm A*



Evaluating search strategies
• Completeness
– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)
– Usually measured by number of nodes expanded

• Space complexity
– Usually measured by maximum size of graph/tree 

during the search
• Optimality/Admissibility
– If a solution is found, is it guaranteed to be an 

optimal one, i.e., one with minimum cost



Uniform-Cost Search 
 Expanded node  Nodes list

    { S0 }
   S0 { B1 A3 C8 }
   B1 { A3 C8 G21 }
   A3 { D6 C8 E10 G18 G21 } 
   D6 { C8 E10 G18 G21 }
   C8 { E10 G13 G18 G21 }       
   E10 { G13 G18 G21 }
   G13 { G18 G21 }                             
    Solution path found is S C G, cost 13
    Number of nodes expanded (including goal node) = 7

priority queue



Depth-First Iterative Deepening (DFID)
• Do DFS to depth 0, then (if no solution) DFS to 

depth 1, etc.
• Usually used with a tree search
• Complete 
• Optimal/Admissible if all operators have unit 

cost, else finds shortest solution (like BFS)
• Time complexity a bit worse than BFS or DFS

Nodes near top of search tree generated many times, 
but since almost all nodes are near tree bottom, 
worst case time complexity still exponential, O(bd) 



How they perform
• Depth-First Search: 

– 4 Expanded nodes: S A D E G 
– Solution found: S A G (cost 18)

• Breadth-First Search: 
– 7 Expanded nodes: S A B C D E G 
– Solution found: S A G (cost 18)

• Uniform-Cost Search: 
– 7 Expanded nodes: S A D B C E G 
– Solution found: S C G (cost 13)
Only uninformed search that worries about costs

• Iterative-Deepening Search: 
– 10 nodes expanded: S S A B C S A D E G 
– Solution found: S A G (cost 18)



Comparing Search Strategies 



A* Search
Use an evaluation function

f(n) = g(n) + h(n)

minimal-cost path from 
the start state to state n

cost estimate from state n 
to the goal

estimated total cost from 
start to goal via state n



GREEDY VS A*
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Greedy search

f(n) = h(n) 
node expanded    nodes list
               { S(8) }

what’s next???

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85



Greedy search

f(n) = h(n) 
node expanded    nodes list
               { S(8) }
     S         { C(3) B(4) A(8) }
     C         { G(0) B(4) A(8) }
     G         { B(4) A(8) }

• Solution path found is S C G, 3 nodes expanded. 
• See how fast the search is!! But it is NOT optimal. 

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85



A* search
f(n) = g(n) + h(n) 

node exp.     nodes list
           { S(8) }

What’s next?
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A* search
f(n) = g(n) + h(n) 

node exp.     nodes list
           { S(8) }
 S         { A(9) B(9) C(11) }

 What’s next?
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A* search
f(n) = g(n) + h(n) 

node exp.     nodes list
           { S(8) }
 S         { A(9) B(9) C(11) }
 A         { B(9) G(10) C(11) D(inf) E(inf) }

 What’s next?
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A* search
f(n) = g(n) + h(n) 

node exp.     nodes list
           { S(8) }
 S         { A(9) B(9) C(11) }
 A         { B(9) G(10) C(11) D(inf) E(inf) }
 B         { G(9) G(10) C(11) D(inf) E(inf) }     

 What’s next?
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A* search
f(n) = g(n) + h(n) 

node exp.     nodes list
           { S(8) }
 S         { A(9) B(9) C(11) }
 A         { B(9) G(10) C(11) D(inf) E(inf) }
 B         { G(9) G(10) C(11) D(inf) E(inf) }     
 G         { C(11) D(inf) E(inf) }

• Solution path found is S B G, 4 nodes expanded..  
• Still pretty fast. And optimal, too.
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When should A* terminate?

• Should we stop when we enqueue a goal?

• No: only stop when we dequeue a goal



IS A HEURISTIC ADMISSIBLE?



Example search space
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Example

n  g(n)  h(n)  f(n)       h*(n)
S  0  8  8   9

• h*(n) is (hypothetical) perfect heuristic (an oracle)
• Since h(n) <= h*(n) for all n, h is admissible (optimal)
• Optimal path = S B G with cost 9
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Example

n  g(n)  h(n)  f(n)       h*(n)
S  0  8  8   9
A  1  8  9   9
B  5  4  9   4
C  8  3  11   5
D  4  inf  inf   inf
E  8  inf  inf   inf
G  9  0  9   0

• h*(n) is (hypothetical) perfect heuristic (an oracle)
• Since h(n) <= h*(n) for all n, h is admissible (optimal)
• Optimal path = S B G with cost 9
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The table and graph show 
values for the entire space, 
but we must discover or 
compute them during the 
search





Hill-climbing search
• If there’s successor s for current state n such that
– h(s) < h(n) and  h(s) <= h(t) for all successors t

 then move from n to s; otherwise, halt at n
i.e.: Look one step ahead to decide if a successor is better than 
current state; if so, move to best successor

• Like greedy search, but doesn’t allow backtracking or 
jumping to alternative path since it has no memory
• Like beam search with a beam width of 1 (i.e., maximum 

size of the nodes list is 1)
•Not complete since search may terminate at a local 

minima, plateau or ridge 



Drawbacks of hill climbing
• Problems: local maxima, plateaus, ridges
• Possible remedies: 
– Random restart:  keep restarting search from 

random locations until a goal is found
may require an estimate – how low can we go

– Problem reformulation: reformulate search 
space to eliminate these problematic features

• Some problem spaces are great for hill 
climbing and others are terrible



SA intuitions
• Combines hill climbing (for efficiency) with random 

walk (for completeness)
• Analogy: get ping-pong ball into the deepest 

depression in bumpy surface
–Shake surface to get the ball out of local minima
–Don’t shake too hard to dislodge it from global minimum

• Simulated annealing:
–Start shaking hard (high temperature) and gradually 

reduce shaking intensity (lower temperature)
–Escape local minima by allowing some “bad” moves
–But gradually reduce their size and frequency



Simulated annealing
• “bad” move from A to B accepted with prob.

 -(f(B)-f(A)/T)
e

• The higher the temperature, the more likely 
it is that a bad move can be made

• As T tends to zero, probability tends to zero, 
and SA becomes more like hill climbing

• If T lowered slowly enough, SA is complete 
and admissible

• Finding proper rate to lower still an issue



Genetic algorithms

• Fitness function: number of non-attacking pairs of queens (min=0, 
max=(8 × 7)/2 = 28)

• Probability of mating is a function of fitness score
• Random cross-over point for a mating pair chosen
• Resulting offspring subject to a random mutation with probability



Selection
• Random, or
• Roulette wheel Selection
– Fitness Function
– Take % of fitness score
– Higher the fitness score, higher the %, higher the 

chance of getting selected
– Fitness proportionate selection
– 14% is never selected, 31% is selected twice



Genetic algorithms

• Fitness function: number of non-attacking pairs of queens (min=0, 
max=(8 × 7)/2 = 28)

• Probability of mating is a function of fitness score
• Random cross-over point for a mating pair chosen
• Resulting offspring subject to a random mutation with probability



Genetic algorithms

• Fitness function: number of non-attacking pairs of queens (min=0, 
max=(8 × 7)/2 = 28)

• Probability of mating is a function of fitness score
• Random cross-over point for a mating pair chosen
• Resulting offspring subject to a random mutation with probability



CSP Examples



Backtracking Search
§ Backtracking search is the basic uninformed algorithm for solving CSPs

§ Idea 1: One variable at a time
§ Variable assignments are commutative, so fix ordering
§ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
§ Only need to consider assignments to a single variable at each step

§ Idea 2: Check constraints as you go
§ I.e. consider only values which do not conflict previous assignments
§ Might have to do some computation to check the constraints
§ “Incremental goal test”

§ Depth-first search with these two improvements
 is called backtracking search (not the best name)

                          



Backtracking Example



Enforcing Arc Consistency in a CSP

§ Runtime: O(n2d3), can be reduced to O(n2d2)
§ … but detecting all possible future problems is NP-hard – why?



Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

§ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
§ Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

               



Cutset Conditioning

SA

SA SA SA

Instantiate the cutset 
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset



Iterative Algorithms for CSPs
§ Local search methods typically work with “complete” states, i.e., all variables assigned

§ To apply to CSPs:
§ Take an assignment with unsatisfied constraints
§ Operators reassign variable values
§ No fringe!  Live on the edge.

§ Algorithm: While not solved,
§ Variable selection: randomly select any conflicted variable
§ Value selection: min-conflicts heuristic:

§ Choose a value that violates the fewest constraints
§ I.e., hill climb with h(n) = total number of violated constraints



Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: c(n) = number of attacks



Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: c(n) = number of attacks



Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: c(n) = number of attacks



Backtracking Performance
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Local Search Performance
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Alpha-Beta Tic-Tac-Toe Example
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Alpha-Beta Tic-Tac-Toe Example
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Alpha-Beta Tic-Tac-Toe Example
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Alpha-Beta Tic-Tac-Toe Example
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Alpha-Beta Tic-Tac-Toe Example

b: 2

2
Beta value of a MIN
node is upper bound on
final backed-up value;
it can never increase44



Alpha-Beta Tic-Tac-Toe Example
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Alpha-Beta Tic-Tac-Toe Example
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Beta value of a MIN
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Alpha-Beta Tic-Tac-Toe Example

a: 1

Alpha value of MAX
node is lower bound on
final backed-up value;
it can never decrease

1

b: 1

2
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Alpha-Beta Tic-Tac-Toe Example

a: 1

1

b = 1

2 -1

b: -1 
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Alpha-Beta Tic-Tac-Toe Example

a = 1

1

b = 1

2 -1

b = -1 

Discontinue search below a MIN node whose beta 
value ≤ alpha value of one of its MAX ancestors 48



Chance outcomes in trees

10 10 9 10010 10 9 100

9 10 9 1010 100
Tictactoe, chess
Minimax

Tetris, investing
Expectimax

Backgammon, Monopoly
Expectiminimax



Expectimax Search
• Why wouldn’t we know what the result of an action will 

be?
– Explicit randomness: rolling dice
– Unpredictable opponents: the ghosts respond 

randomly
– Actions can fail: when moving a robot, wheels might 

slip

• Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes

                   
            

                               
                                                    

         
                 
                                                     

                                                    
                             

10 4 5 7

max
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10 10 9 100



Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

• Generalization of minimax:
– Terminals have utility tuples
– Node values are also utility tuples
– Each player maximizes its own component
– Can give rise to cooperation and
 competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5



Monte Carlo Tree Search

• Methods based on alpha-beta search assume 
a fixed horizon
– Pretty hopeless for Go, with b > 300

• MCTS combines two important ideas:
– Evaluation by rollouts – play multiple games to 

termination from a state s (using a simple, fast 
rollout policy) and count wins and losses

– Selective search – explore parts of the tree that 
will help improve the decision at the root, 
regardless of depth

18



Upper Confidence Bounds (UCB) heuristics

§ UCB1 formula combines “promising” and “uncertain”:
§ C is a parameter we choose to trade off between two terms

§ N(n) = number of rollouts from node n
§ U(n) = total utility of rollouts (# wins) for player of Parent(n)

§ Keep track of both N and U for each node

!"#1 % = !(%)
)(%) 	+ "×

log)(Parent % )
)(%) 	 • High for small N

• Low for large N



MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to 

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N 

counts from c back up to the root

6/8

2/6 0/1 0/1

0/12/3 2/2

N(n) = # of rollouts from node

U(n) = # of wins 
for opposite player



MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to 

choose a path down to a leaf node n
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MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to 

choose a path down to a leaf node n
§ Expansion: add a new child c to n
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MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to 

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N 
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MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to 

choose a path down to a leaf node n
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MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to 

choose a path down to a leaf node n
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MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to 

choose a path down to a leaf node n
§ Expansion: add a new child c to n
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MCTS Algorithm
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MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to 

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N 

counts from c back up to the root

§ Choose the action leading to 
the child with highest N
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MCTS Algorithm

§ Repeat until out of time:
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choose a path down to a leaf node n
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MCTS Summary

§ MCTS is currently the most common tool for solving hard search 
problems

§ Why?
§ Time complexity independent of b and m
§ No need to design evaluation functions (general-purpose & easy to use)

§ Solution quality depends on number of rollouts N
§ Theorem: as N ® ¥ UCT selects the minimax move

§ Example of using random sampling in an algorithm
§ Broadly called Monte Carlo methods

§ MCTS can be improved further with machine learning


