
CMSC 471: 
Reasoning with Bayesian Belief Network

Chapters 12 & 13
KMA Solaiman – ksolaima@umbc.edu 

Some slides courtesy Tim Finin and Frank Ferraro 1

mailto:ksolaima@umbc.edu


Bayesian Networks:
Directed Acyclic Graphs
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Bayesian Networks:
Directed Acyclic Graphs
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exact inference in general DAGs is NP-hard

inference in trees can be exact
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Markov Blanket

xi

Markov blanket of a node x 
is its parents, children, and 

children's parents

The Markov Blanket of a node xi
the set of nodes needed to form 
the complete conditional for a 

variable xi

(in this example, shading does not show 
observed/latent)
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p(        |                                       )
Given its Markov blanket, 
a node is conditionally 
independent of all other 
nodes in the BN



Variable Elimination

• Inference: Compute posterior probability of a 
node given some other nodes

!(#|%!, … , %")
• Variable elimination: An algorithm for exact 

inference
– Uses dynamic programming
– Not necessarily polynomial time!
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Variable Elimination (High-level)

Goal: !(#|%!, … , %")
(The word “factor” is used for each CPT.)
1.Pick one of the non-conditioned, MB variables
2.Eliminate this variable by marginalizing 

(summing) it out from all factors (CPTs) that 
contain it

3.Go back to 1 until no (MB) variables remain
4.Multiply the remaining factors and normalize.
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Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

Task: Normalize in order to 
compute p(Tampering)

We’ll have a single factor f8(Tampering):

1 + = 5:; = %'(+ = 5:;)
%' + = 5:; + %'(+ = 7<)



Variable Elimination: Example

• The posterior distribution 
over Tampering is given by

) *+,!-./01 = 3 	5#(*+,!-./01 = 3)
∑$ ) *+,!-./01 = 7 	5#(*+,!-./01 = 7)
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Fundamental Inference Question
• Compute posterior probability of a node given 

some other nodes
!(#|%!, … , %")

• Some techniques
– MLE (maximum likelihood estimation)/MAP 

(maximum a posteriori) [covered 2nd]
– Variable Elimination [covered 1st]
– (Loopy) Belief Propagation ((Loopy) BP)
– Monte Carlo
– Variational methods
– …

25

Advanced 
topics



Parameter estimation
• Assume known structure
• Goal: estimate BN parameters q
– entries in local probability models, P(X | Parents(X))

• A parameterization q is good if it is likely to 
generate the observed data:

• Maximum Likelihood Estimation (MLE) Principle: 
Choose q*  so as to maximize L

Õ==
m
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i.i.d. samples
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Parameter estimation II
• The likelihood decomposes according to the structure 

of the network
→ we get a separate estimation task for each parameter

• The MLE (maximum likelihood estimate) solution for 
discrete data & RV values:
– for each value x of a node X
– and each instantiation u of Parents(X)

– Just need to collect the counts for every combination of 
parents and children observed in the data

– MLE is equivalent to an assumption of a uniform prior over 
parameter values

)(
),(*

| uN
uxN

ux =q sufficient statistics
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Machine Learning: 
Decision Trees

Chapter 19.3

Some material adopted from notes by Chuck Dyer



Choosing best attribute
• Key problem: choose attribute to split given set 

of examples
• Possibilities for choosing attribute:
–Random: Select one at random 
–Least-values: one with smallest # of possible values 
–Most-values: one with largest # of possible values 
–Max-gain: one with largest expected information gain
–Gini impurity: one with smallest gini impurity value
• The last two measure the homogeneity of the 

target variable within the subsets
• The ID3 and C4.5 algorithms uses max-gain

https://en.wikipedia.org/wiki/Information_gain_in_decision_trees
https://en.wikipedia.org/wiki/Decision_tree_learning


A Simple Example
For this data, is it better to start the tree by 
asking about the restaurant type or its 
current number of patrons?



Information gain in knowing an attribute

• Gain(X,T) = Info(T) - Info(X,T) is difference of
– Info(T): info needed to identify T’s class 
– Info(X,T): info needed to identify T’s class after 

attribute X’s value known
• This is gain in information due to knowing 

value of attribute X
• Used to rank attributes and build DT where 

each node uses attribute with greatest gain 
of those not yet considered in path from root

• goal: create small DTs to minimize questions



Information Gain

30

Info(T)  = Entropy (T)
= −∑!#$! 	 log"#$! 	

Info(X, T)
= expected reducCon in 
entropy due to sorCng on X
= ∑# |%!||%| Info()#)



InformaJon Gain
stay
leave

I = -(.5*log2(.5) + .5*log2(.5)) = 0.5+0.5 => 1.0

I=0; P=1/6
I=0; P=1/3

I=-(1/3*log2(1/3)+2/3*log2(2/3)), 
P=6/12=1/2 => 0.91/2  = 0.46

I=1;P=1/6 I=1; P=1/6 I=1; P=2/6 I=1; P=2/6

Information gain = 1 - 1 => 0.0  

• Informa+on gain for asking Patrons = 0.54, for asking Type = 0
• Note: If only one of the N categories has any instances, the informa4on entropy is 

always 0

Information gain = 1 - 0.46 =>  0.54         

I = 6/6*1 => 1.0

I = Info(T) 
= −∑!#$! 	 log"#$! 	

Info(X, T)
= ∑# |%!||%| Info()#)



Avoiding Overfitting
• Remove obviously irrelevant features
– E.g., remove ‘year observed’, ‘month 

observed’, ‘day observed’, ‘observer 
name’from the a`ributes used

• Get more training data
• Pruning lower nodes in a decision tree
– E.g., if info. gain of best a`ribute at a node is 

below a threshold, stop and make this node a 
leaf rather than generaang children nodes



Pruning decision trees
• Pruning a decision tree is done by replacing a whole 

subtree by a leaf node
• Replacement takes place if the expected error rate in 

the subtree is greater than in the single leaf, e.g.,
– Training data: 1 training red success and 2 training blue 

failures
– Valida-on data: 3 red failures and one blue success
– Consider replacing subtree by a single node indica8ng failure 

• Aeer replacement, only 2 errors instead of 4

Color

1 success
0 failure

0 success
2 failures

red blue

Color

1 success
3 failure

1 success
1 failure

red blue 2 success
4 failure

FAILURETraining Valid. Pruned



Some material adapted from slides by Andrew Moore, CMU

14.6

Unsupervised 
Learning: Clustering

Introduction and 
Simple K-means



K-Means Clustering

K-Means (k, data )
• Randomly choose k cluster 

center locations (centroids)
• Loop until convergence

• Assign each point to the 
cluster of closest centroid

• Re-estimate cluster centroids 
based on data assigned to 
each

• Convergence: no point is 
assigned to a different 
cluster



Problems with K-Means
•Only works for numeric data (typically reals)
•Very sensitive to the initial points

– fix: Do many runs, each with different initial centroids
– fix: Seed centroids with non-random method, e.g., 

farthest-first sampling
•Sensitive to outliers

– fix: identify and remove outliers
•Must manually choose k

– E.g.: find three 
– Learn optimal k using some performance measure



CMSC 471: 
Machine Learning

KMA Solaiman – ksolaima@umbc.edu

1Some slides courtesy Tim Finin and Frank Ferraro 



Linear Models: Core Idea

Model the relaJonship between the 
input data X and corresponding 
labels Y via a linear relaJonship 
(non-zero intercepts ! are okay)

" = $!% + !

Items to learn: $, !

61
Image courtesy Hamed Pirsiavash

For regression: the 
output of this 

equation is the 
predicted value

For classification: one 
class is on one side of 
this line, the other 
class is on the other



A Graphical View of Linear Models

"

#

$

$ = "!# + '

Since < is a vector of weights 
(parameters), each arc from = to 

6 is a different parameter



How do we evaluate these linear classification 
methods? Change the eval function.

81

instance 1

instance 2

instance 3

instance 4

* = +%, + -

Inductive Bias

Test 
Evaluator: 

Scoring 
function

score

instances are 
typically 

examined 
independently

Gold/correct 
labels

give feedback 
to the predictor

Accuracy, 
F1, 

precision, 
…



Core Aspects to Maxent Classifier 
p(y|x)

• features ! ", $ 	between x and y that are 
meaningful;

• weights & (one per feature) to say how 
important each feature is; and

• a way to form probabilities from ! and w

! "	 $) = exp(w(,($, "))
∑)* exp(w(,($, "′))



Machine Learning Framework: 
Learning

instance 1

instance 2

instance 3

instance 4

Inductive Bias

Evaluator score

instances are 
typically 

examined 
independently

Gold/correct 
labels

give feedback 
to the predictor

104

! " #
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A Graphical View of Logistic Regression/Classification 
(4 classes)

Features of # $
"( "& "* "+

$' ∝ exp("(
!# + '')

$, ∝ exp("+
!# + ',)

output:
4$ = argmax {y1, y2,, y3 , y4}

$) ∝ exp("&
!# + '))

$- ∝ exp("*
!# + '-)



Support Vector 
Machines

Some slides borrowed from Andrew Moore’s slides on SVMs.

http://www.cs.cmu.edu/~awm/tutorials


Copyright © 2001, 2003, Andrew W. Moore

Specifying a line and margin

• Plus-plane   =    { x : w . x + b = +1 }
• Minus-plane =   { x : w . x + b = -1 }

Plus-Plane

Minus-Plane
Classifier Boundary

“Predict Class = +1” z
one

“Predict Class = -1”
 zone

Classify as.. +1 if w . x + b >= 1
-1 if w . x + b <= -1
Universe 
explodes

if -1 < w . x + b < 1

wx+
b=1

wx+
b=0

wx+
b=-1



Soft margin classification
•What if data from two classes not

linearly separable?
• Allow a fat decision margin to make a few 

mistakes
•Some points, outliers or noisy examples, are 

inside or on wrong side of the margin
•Each outlier incurs a cost based on distance 

to hyperplane



Kernel Trick example
Can’t separate the blue & red points with a line

19Figure from S. Bhattacharyya

https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d


Use a different kernel

20

• Applying a kernel can transform data to make it 
more nearly  linearly separable

• E.g., use polar coordinates or map to three 
dimensions



Binary vs. multi classification
•SVMs only do binary classification L

– E.g.: can’t classify an iris into one of three species
•A common constraint for many ML classifiers
•Two approaches to multiclass classification: OVA

and OVO
•Consider Zoo dataset, which classifies animals 

into one of 7 classes based on 17 attributes
– Classes: mammal, bird, reptile, fish, amphibian, insect, 

invertebrate
– Attributes: hair, feathers, eggs, milk, aquatic, toothed, fins, …

23

https://en.wikipedia.org/wiki/Multiclass_classification


OVA or one-vs-all classification
•OVA or one-vs-all: turn n-way classification 

into n binary classification tasks
– Also know as one-vs-rest

•For zoo problem with 7 categories, train and 
run 7 binary classifiers:
– mammal vs. not-mammal
– fish vs. not-fish
– bird vs. not-bird, …

•Pick the one that gives the highest score
– For an SVM this could be measured the one with the 

widest margin 24

https://en.wikipedia.org/wiki/Multiclass_classification


SVMs in scikit-learn
• Scikit-learn has three 

SVM classifiers: SVC, 
NuSVC, and LinearSVC

• Data can be either in 
dense numpy arrays or 
sparse scipy arrays

• All directly support 
multi-way classifica-
tion, SVC and NuSCV
using OvO and 
LinearSVC using OvA

26

This colab jupyter notebook gets 
an accuracy of 97% using OvO 
with scikit.svm.SVC

https://scikit-learn.org/stable/modules/svm.html
https://colab.research.google.com/drive/1kU4UgeVqQs2ZrgeBhIMkd0Ivjd19Zu3R
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.htm


Neural Networks for Machine 
Learning



Multilayer Perceptron, a.k.a.
Feed-Forward Neural Network

#

ℎ8 = [(GS
+# + 2T)

ℎ "

"I

"K

F: (non-linear) 
activation function

Classification: softmax
Regression: identity

G: (non-linear) 
activation function

"X = G(YZ+ℎ + 2I)

W

GJ GH GU GV



Feed-Forward Neural Network
#

ℎ8 = [(GS
+# + 2T)

ℎ "

"I

"K

"X = G(YZ+ℎ + 2I)

W

GJ GH GU GV

W: # output X # hiddenG: # hidden X # input





Universal Function Approximator
Theorem [Kurt Hornik et al., 1989]: Let F be a continuous 
function on a bounded subset of D-dimensional space. 
Then there exists a two-layer network G with finite 
number of hidden units that approximates F arbitrarily 
well. For all x in the domain of F, |F(x) – G(x) |< ε

“a two-layer network can approximate any function”

Going from one to two layers dramatically improves the 
representation power of the network

Slide courtesy Hamed Pirsiavash



Common Activation Functions

• Choice of activation function depends on problem and available computational 
power

• Comprehensive list of activation functions
• In practice

• Define the output of a node given an input
• Very simple functions!



Regularization

•Parameter to control overfitting, 
i.e. when the model does well on training data 
but poorly on new, unseen data

•L2 regularization is the most common
•Using dropout is another common way of 

reducing overfitting in neural networks
–At each training stage, some nodes in hidden 

layer temporarily removed (dropped out)

39



Dropout: Regularization in Neural Networks
# ℎ "

"I

"K

W

GJ GH GU GV

randomly ignore 
“neurons” (hi) during 

training

Instance 1



Convolution as feature extraction

Input Feature Map

.

.

.

Filters/Kernels

Slide credit: Svetlana Lazebnik



decoding

encoding

xixi-1

hi-1 hi

yiyi-1

A Simple Recurrent Neural Network Cell

W W

U U

S S

ℎ# = tanh(cℎ#d/ + e!#) .# = softmax(fℎ#)
Weights are shared over time unrolling/unfolding: copy the RNN cell 

across time (inputs)



Good at Transfer Learning
•For images,  the initial stages of a model  learn high-

level visual features (lines, edges) from pixels
•Final stages predict task-specific labels

source:http://ruder.io/transfer-learning/



Fine Tuning a NN Model
•Special kind of transfer learning

– Start with a pre-trained model
– Replace last output layer(s) with a new one(s)
– One option: Fix all but last layer by marking as 

trainable:false

•Retraining on new task and data very fast
– Only the weights for the last layer(s) are adjusted

•Example
– Start: NN to classify animal pix with 100s of categories
– Finetune on new task: classify pix of 10 common pets



Evaluation Metrics

Classification

Regression

Clustering
the task: what kind 
of problem are you 

solving?

• Precision, 
Recall, F1

• Accuracy
• Log-loss
• ROC-AUC
• …

• (Root) Mean Square Error
• Mean Absolute Error
• …

• Mutual Information
• V-score
• …

This does 
not have to 
be the same 
thing as the 

loss 
function 

you 
optimize

32
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Learning curve
• When evaluating ML algorithms, steeper 

learning curves are better
• They represents faster learning with less data

Here the system 
with the red curve 
is better since it 
requires less data 
to achieve desired 
accuracy

Training set size 50



A combined measure: F

Weighted (harmonic) average of Precision & Recall

Balanced F1 measure: β=1

! = 1 + +! 	 ∗ %	 ∗ *
(+! ∗ %) + *

!" =
2	 ∗ %	 ∗ *
% + *

82



P/R/F in a Multi-class Setting:
Micro- vs. Macro-Averaging

If we have more than one class, how do we combine 
mulBple performance measures into one quanBty?

Macroaveraging: Compute performance for each class, 
then average.

Microaveraging: Collect decisions for all classes, 
compute conUngency table, evaluate.

Sec. 15.2.4

83



Micro- vs. Macro-Averaging: Example

Truth
: yes

Truth
: no

Classifier: 
yes

10 10

Classifier: 
no

10 970

Truth
: yes

Truth
: no

Classifier: 
yes

90 10

Classifier: 
no

10 890

Truth
: yes

Truth
: no

Classifier: 
yes

100 
(90+10)

20
(10+10)

Classifier: 
no

20 1860

Class 1 Class 2 Micro Ave. Table

Sec. 15.2.4

Macroaveraged precision: (10/10+10) + (90/90+10)/2 = (0.5 + 0.9)/2 = 0.7
Microaveraged precision: 100/100+20 = .83
Microaveraged score is dominated by score on frequent classes

86



Confusion Matrix: Generalizing the 2-by-2 
contingency table

Correct Value

Guessed 
Value

# # #

# # #

# # #

88



Planning
Chapter 11.1-11.3

Some material adopted from notes by
Andreas Geyer-Schulz and Chuck Dyer

11.1



Blocks world
Typical representation uses a logic
notation to represent the state of the world:

ontable(a)     ontable(c)
clear(a)          clear(c)
handempty  

And possible actions/ operators with their 
preconditions and effects:
Pickup      Putdown
Stack        Unstack

KMA Solaiman

KMA Solaiman



Planning vs. problem solving
• Problem solving methods solve similar problems
• Planning is more powerful and efficient because of 

the representations and methods used
• States, goals, and actions are decomposed into sets 

of sentences (usually in first-order logic)
• Search often proceeds through plan space rather 

than state space (though there are also state-space 
planners)

• Sub-goals can be planned independently, reducing 
the complexity of the planning problem

KMA Solaiman

KMA Solaiman



Blocks World Operators

•Classic basic operations for the Blocks World
– stack(X,Y): put block X on block Y
– unstack(X,Y): remove block X from block Y
– pickup(X): pickup block X
– putdown(X): put block X on the table

•Each represented by 
– list of preconditions
– list of new facts to be added (add-effects)
– list of facts to be removed (delete-effects)
– optionally, set of (simple) variable constraints



Blocks World Stack Action

stack(X,Y): 
• preconditions(stack(X,Y), [holding(X), clear(Y)])

• adds(stack(X,Y), [handempty, on(X,Y), clear(X)])

• deletes(stack(X,Y), [holding(X), clear(Y)]).

• constraints(stack(X,Y), [X¹Y, Y¹table, X¹table])



STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.
– Goal Stack - push down stack of goals to be solved, with 

current goal on top
• If current goal not satisfied by present state, find 

action that adds it and push action and its 
preconditions (subgoals) on stack

• When a current goal is satisfied, POP from stack
• When an action is on top stack, record its 

application on plan sequence and use its add and 
delete lists to update  current state

49



Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
 pickup(a)

       stack(a,b)
       unstack(a,b)
       putdown(a)
       pickup(b)
       stack(b,c)
       pickup(a)
       stack(a,b)

"



Goal interaction
• Simple planning algorithms assume independent sub-goals

– Solve each separately and concatenate the solutions
• Sussman Anomaly: an example of goal interaction problem: 

– Solving on(A,B) first (via unstack(C,A),stack(A,B)) is undone 
when solving 2nd goal on(B,C) (via unstack(A,B), stack(B,C))

– Solving on(B,C) first will be undone when solving on(A,B)
• Classic STRIPS couldn’t handle this, although minor 

modifications can get it to do simple cases

A B
C

Initial state

A
B
C

Goal state

https://en.wikipedia.org/wiki/Sussman_Anomaly


State-Space Planning
• STRIPS searches thru a space of situations (where 

you are, what you have, etc.)
• Find plan by searching situations to reach goal
• Progression planner: searches forward 

– From initial state to goal state
– Prone to exploring irrelevant actions

• Regression planner: searches backward from goal
– Works iff operators have enough information to go both ways
– Ideally leads to reduced branching: planner is only considering things that 

are relevant to the goal
– but it’s harder to define good heuristics – so most current systems favor 

forward search

55



CMSC 471
Propositional and First-Order Logic

KMA Solaiman
ksolaima@umbc.edu 

Some slides courtesy Tim Finin
1



Knowledge base: example

M(Rain) M(Rain ! Wet)

0 1

0

1

Wet

R
ai
n

0 1

0

1

Wet

R
ai
n

Intersection:

M({Rain,Rain ! Wet})

0 1

0

1

Wet

R
ai
n

CS221 / Autumn 2019 / Liang & Sadigh 51



• As a concrete example, consider the two formulas Rain and Rain ! Wet. If you know both of these facts,
then the set of models is constrained to those where it is raining and wet.



Models for a KB
• KB: [P∨Q, P®R, Q®R]
• What are the formulas?

f1: P∨Q
f2: P®R
f3: Q®R

• What are the propositional variables? 
P, Q, R

• What are the candidate models? 
1) Consider all eight possible 

assignments of T|F to P, Q, R
2) Check if each sentence is consistent 

with the model

P Q R s1 s2 s3
F F F x ✓ ✓
F F T x ✓ ✓
F T F ✓ ✓ x
F T T ✓ ✓ ✓
T F F ✓ x ✓
T F T ✓ ✓ ✓
T T F ✓ x x
T T T ✓ ✓ ✓

Here x means the model 
makes the sentence False 
and ✓means it doesn’t 
make it False

73



Models for a KB
• KB: [P∨Q, P®R, Q®R]
• What are the formulas?

f1: P∨Q
f2: P®R
f3: Q®R

• What are the propositional variables? 
P, Q, R

• What are the candidate models? 
1) Consider all eight possible 

assignments of T|F to P, Q, R
2) Check truth tables for consistency, 

eliminating any row that does not 
make every KB sentence true

P Q R s1 s2 s3
F F F x ✓ ✓
F F T x ✓ ✓
F T F ✓ ✓ x
F T T ✓ ✓ ✓
T F F ✓ x ✓
T F T ✓ ✓ ✓
T T F ✓ x x
T T T ✓ ✓ ✓

• Only 3 models are 
consistent with KB

• R true in all of them
• Therefore, R is true and 

can be added to the KB

74



A simple example

The KB

P
Q Ú ¬ R 

Models for the KB, !	($%)
P Q R KB
T T F T
T T T T
T F F T
T F T F
F T F F
F T T F
F F T F
F F F F

The KB has 2 
formulas.

The KB has 3 
variables. The KB has 3 models for which 

? @, A = 1.	

Another way to look at this is:
E 7  is true in first 3

E Q Ú ¬ R is true in first 3
So E	(FG) is first 3

75



Another simple example
The KB

P Ù Q
R Ù ¬ P 

Models for the KB
P Q R

The KB has 2 
formulas.

The KB has 3 
variables.

The KB has no models. There is no 
assignment of True or False to 
every variable that makes every 
sentence in the KB true

76



Desiderata for inference rules

Semantics

Interpretation defines entailed/true formulas: KB |= f :

M(f)M(KB)

Syntax:

Inference rules derive formulas: KB ` f

How does {f : KB |= f} relate to {f : KB ` f}?

CS221 / Autumn 2019 / Liang & Sadigh 87



• We can apply inference rules all day long, but now we desperately need some guidance on whether a set

of inference rules is doing anything remotely sensible.

• For this, we turn to semantics, which gives an objective notion of truth. Recall that the semantics provides

us with M, the set of satisfiable models for each formula f or knowledge base. This defines a set of

formulas {f : KB |= f} which are defined to be true.

• On the other hand, inference rules also gives us a mechanism for generating a set of formulas, just by

repeated application. This defines another set of formulas {f : KB ` f}.



Truth

{f : KB |= f}

CS221 / Autumn 2019 / Liang & Sadigh 89



• Imagine a glass that represents the set of possible formulas entailed by the KB (these are necessarily true).

• By applying inference rules, we are filling up the glass with water.



Soundness

Definition: soundness

A set of inference rules Rules is sound if:

{f : KB ` f} ✓ {f : KB |= f}

CS221 / Autumn 2019 / Liang & Sadigh 91

KMA Solaiman
An inference rule is sound if every formula f it produces from a KB logically follows from the KB
i.e., inference rule creates no contradictions




• We say that a set of inference rules is sound if using those inference rules, we never overflow the glass:
the set of derived formulas is a subset of the set of true/entailed formulas.



Completeness

Definition: completeness

A set of inference rules Rules is complete if:

{f : KB ` f} ◆ {f : KB |= f}

CS221 / Autumn 2019 / Liang & Sadigh 93

KMA Solaiman
it can produce every formula that logically follows from (is entailed by) the KB
- Similar to complete search algorithms



CMSC 471: 
Reinforcement Learning

Some slides courtesy Cynthia Matuszek and Frank Farrero, with some material from Marie desJardin, Lise 
Getoor, Jean-Claude Latombe, and Daphne Koller

1



Review: Formalizing Agents

• Given:
– A state space S
– A set of actions a1, …, ak including their results
– Reward value at the end of each trial (series of 

action) (may be positive or negative)
• Output:
– A mapping from states to actions
– Which is a policy, π
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Markov Decision Process: 
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision 
Process:

set of 
possible 

states

reward of 
(state, 

action) pairs

set of 
possible 
actions

state-action 
transition 

distribution

discount 
factor

Start in initial state !!
for t = 1 to …:
    choose action ""
    “move” to next state !" ∼ $ ⋅ !"#$, "")	
    get reward )" = 	ℛ(!", "")

'∗ = argmax
-

+ $
./0

%.&. ; '“solution”

objective: maximize 
discounted reward

max
-
$
./0

%.&.


