
CMSC 471:
Reasoning with Bayesian Belief Network

Chapters 12 & 13
KMA Solaiman – ksolaima@umbc.edu

Some slides courtesy Tim Finin and Frank Ferraro 1

mailto:ksolaima@umbc.edu

Bayesian Networks:
Directed Acyclic Graphs

!!

!"!# !$

!%

! "!, "", "#, "$, "% =
! "! ! "# ! "" "!, "# ! "$ "", "# !("%|"", "$)

2

Bayesian Networks:
Directed Acyclic Graphs

!!

!"!# !$

!%

! "!, "", "#, … , "$ =&
%
! "% 	 (("%))

exact inference in general DAGs is NP-hard

inference in trees can be exact
3

Markov Blanket

xi

Markov blanket of a node x
is its parents, children, and

children's parents

The Markov Blanket of a node xi
the set of nodes needed to form
the complete conditional for a

variable xi

(in this example, shading does not show
observed/latent)

4

p(|)

=

p(|)
Given its Markov blanket,
a node is conditionally
independent of all other
nodes in the BN

Variable Elimination

• Inference: Compute posterior probability of a
node given some other nodes

!(#|%!, … , %")
• Variable elimination: An algorithm for exact

inference
– Uses dynamic programming
– Not necessarily polynomial time!

6

Variable Elimination (High-level)

Goal: !(#|%!, … , %")
(The word “factor” is used for each CPT.)
1.Pick one of the non-conditioned, MB variables
2.Eliminate this variable by marginalizing

(summing) it out from all factors (CPTs) that
contain it

3.Go back to 1 until no (MB) variables remain
4.Multiply the remaining factors and normalize.

7

Variable Elimination: Example

(The word “factor” is used
for each CPT.)
1. Pick one of the non-

conditioned, MB
variables

2. Eliminate this variable
by marginalizing
(summing) it out from
all factors (CPTs) that
contain it

3. Go back to 1 until no
(MB) variables remain

4. Multiply the remaining
factors and normalize.

17

Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

Task: Normalize in order to
compute p(Tampering)

We’ll have a single factor f8(Tampering):

1 + = 5:; = %'(+ = 5:;)
%' + = 5:; + %'(+ = 7<)

Variable Elimination: Example

• The posterior distribution
over Tampering is given by

) *+,!-./01 = 3 	5#(*+,!-./01 = 3)
∑$) *+,!-./01 = 7 	5#(*+,!-./01 = 7)

18

Fundamental Inference Question
• Compute posterior probability of a node given

some other nodes
!(#|%!, … , %")

• Some techniques
– MLE (maximum likelihood estimation)/MAP

(maximum a posteriori) [covered 2nd]
– Variable Elimination [covered 1st]
– (Loopy) Belief Propagation ((Loopy) BP)
– Monte Carlo
– Variational methods
– …

25

Advanced
topics

Parameter estimation
• Assume known structure
• Goal: estimate BN parameters q
– entries in local probability models, P(X | Parents(X))

• A parameterization q is good if it is likely to
generate the observed data:

• Maximum Likelihood Estimation (MLE) Principle:
Choose q* so as to maximize L

Õ==
m

mxPDPDL)|][()|():(qqq

i.i.d. samples

26

Parameter estimation II
• The likelihood decomposes according to the structure

of the network
→ we get a separate estimation task for each parameter

• The MLE (maximum likelihood estimate) solution for
discrete data & RV values:
– for each value x of a node X
– and each instantiation u of Parents(X)

– Just need to collect the counts for every combination of
parents and children observed in the data

– MLE is equivalent to an assumption of a uniform prior over
parameter values

)(
),(*

| uN
uxN

ux =q sufficient statistics

27

Machine Learning:
Decision Trees

Chapter 19.3

Some material adopted from notes by Chuck Dyer

Choosing best attribute
• Key problem: choose attribute to split given set

of examples
• Possibilities for choosing attribute:
–Random: Select one at random
–Least-values: one with smallest # of possible values
–Most-values: one with largest # of possible values
–Max-gain: one with largest expected information gain
–Gini impurity: one with smallest gini impurity value
• The last two measure the homogeneity of the

target variable within the subsets
• The ID3 and C4.5 algorithms uses max-gain

https://en.wikipedia.org/wiki/Information_gain_in_decision_trees
https://en.wikipedia.org/wiki/Decision_tree_learning

A Simple Example
For this data, is it better to start the tree by
asking about the restaurant type or its
current number of patrons?

Information gain in knowing an attribute

• Gain(X,T) = Info(T) - Info(X,T) is difference of
– Info(T): info needed to identify T’s class
– Info(X,T): info needed to identify T’s class after

attribute X’s value known
• This is gain in information due to knowing

value of attribute X
• Used to rank attributes and build DT where

each node uses attribute with greatest gain
of those not yet considered in path from root

• goal: create small DTs to minimize questions

Information Gain

30

Info(T) = Entropy (T)
= −∑!#$! 	 log"#$! 	

Info(X, T)
= expected reducCon in
entropy due to sorCng on X
= ∑# |%!||%| Info()#)

InformaJon Gain
stay
leave

I = -(.5*log2(.5) + .5*log2(.5)) = 0.5+0.5 => 1.0

I=0; P=1/6
I=0; P=1/3

I=-(1/3*log2(1/3)+2/3*log2(2/3)),
P=6/12=1/2 => 0.91/2 = 0.46

I=1;P=1/6 I=1; P=1/6 I=1; P=2/6 I=1; P=2/6

Information gain = 1 - 1 => 0.0

• Informa+on gain for asking Patrons = 0.54, for asking Type = 0
• Note: If only one of the N categories has any instances, the informa4on entropy is

always 0

Information gain = 1 - 0.46 => 0.54

I = 6/6*1 => 1.0

I = Info(T)
= −∑!#$! 	 log"#$! 	

Info(X, T)
= ∑# |%!||%| Info()#)

Avoiding Overfitting
• Remove obviously irrelevant features
– E.g., remove ‘year observed’, ‘month

observed’, ‘day observed’, ‘observer
name’from the a`ributes used

• Get more training data
• Pruning lower nodes in a decision tree
– E.g., if info. gain of best a`ribute at a node is

below a threshold, stop and make this node a
leaf rather than generaang children nodes

Pruning decision trees
• Pruning a decision tree is done by replacing a whole

subtree by a leaf node
• Replacement takes place if the expected error rate in

the subtree is greater than in the single leaf, e.g.,
– Training data: 1 training red success and 2 training blue

failures
– Valida-on data: 3 red failures and one blue success
– Consider replacing subtree by a single node indica8ng failure

• Aeer replacement, only 2 errors instead of 4

Color

1 success
0 failure

0 success
2 failures

red blue

Color

1 success
3 failure

1 success
1 failure

red blue 2 success
4 failure

FAILURETraining Valid. Pruned

Some material adapted from slides by Andrew Moore, CMU

14.6

Unsupervised
Learning: Clustering

Introduction and
Simple K-means

K-Means Clustering

K-Means (k, data)
• Randomly choose k cluster

center locations (centroids)
• Loop until convergence

• Assign each point to the
cluster of closest centroid

• Re-estimate cluster centroids
based on data assigned to
each

• Convergence: no point is
assigned to a different
cluster

Problems with K-Means
•Only works for numeric data (typically reals)
•Very sensitive to the initial points

– fix: Do many runs, each with different initial centroids
– fix: Seed centroids with non-random method, e.g.,

farthest-first sampling
•Sensitive to outliers

– fix: identify and remove outliers
•Must manually choose k

– E.g.: find three
– Learn optimal k using some performance measure

CMSC 471:
Machine Learning

KMA Solaiman – ksolaima@umbc.edu

1Some slides courtesy Tim Finin and Frank Ferraro

Linear Models: Core Idea

Model the relaJonship between the
input data X and corresponding
labels Y via a linear relaJonship
(non-zero intercepts ! are okay)

" = $!% + !

Items to learn: $, !

61
Image courtesy Hamed Pirsiavash

For regression: the
output of this

equation is the
predicted value

For classification: one
class is on one side of
this line, the other
class is on the other

A Graphical View of Linear Models

"

#

$

$ = "!# + '

Since < is a vector of weights
(parameters), each arc from = to

6 is a different parameter

How do we evaluate these linear classification
methods? Change the eval function.

81

instance 1

instance 2

instance 3

instance 4

* = +%, + -

Inductive Bias

Test
Evaluator:

Scoring
function

score

instances are
typically

examined
independently

Gold/correct
labels

give feedback
to the predictor

Accuracy,
F1,

precision,
…

Core Aspects to Maxent Classifier
p(y|x)

• features ! ", $ 	between x and y that are
meaningful;

• weights & (one per feature) to say how
important each feature is; and

• a way to form probabilities from ! and w

! "	 $) = exp(w(,($, "))
∑)* exp(w(,($, "′))

Machine Learning Framework:
Learning

instance 1

instance 2

instance 3

instance 4

Inductive Bias

Evaluator score

instances are
typically

examined
independently

Gold/correct
labels

give feedback
to the predictor

104

! " #
∝ %#!(w!((#, "))

A Graphical View of Logistic Regression/Classification
(4 classes)

Features of # $
"("& "* "+

$' ∝ exp("(
!# + '')

$, ∝ exp("+
!# + ',)

output:
4$ = argmax {y1, y2,, y3 , y4}

$) ∝ exp("&
!# + '))

$- ∝ exp("*
!# + '-)

Support Vector
Machines

Some slides borrowed from Andrew Moore’s slides on SVMs.

http://www.cs.cmu.edu/~awm/tutorials

Copyright © 2001, 2003, Andrew W. Moore

Specifying a line and margin

• Plus-plane = { x : w . x + b = +1 }
• Minus-plane = { x : w . x + b = -1 }

Plus-Plane

Minus-Plane
Classifier Boundary

“Predict Class = +1” z
one

“Predict Class = -1”
 zone

Classify as.. +1 if w . x + b >= 1
-1 if w . x + b <= -1
Universe
explodes

if -1 < w . x + b < 1

wx+
b=1

wx+
b=0

wx+
b=-1

Soft margin classification
•What if data from two classes not

linearly separable?
• Allow a fat decision margin to make a few

mistakes
•Some points, outliers or noisy examples, are

inside or on wrong side of the margin
•Each outlier incurs a cost based on distance

to hyperplane

Kernel Trick example
Can’t separate the blue & red points with a line

19Figure from S. Bhattacharyya

https://towardsdatascience.com/understanding-support-vector-machine-part-2-kernel-trick-mercers-theorem-e1e6848c6c4d

Use a different kernel

20

• Applying a kernel can transform data to make it
more nearly linearly separable

• E.g., use polar coordinates or map to three
dimensions

Binary vs. multi classification
•SVMs only do binary classification L

– E.g.: can’t classify an iris into one of three species
•A common constraint for many ML classifiers
•Two approaches to multiclass classification: OVA

and OVO
•Consider Zoo dataset, which classifies animals

into one of 7 classes based on 17 attributes
– Classes: mammal, bird, reptile, fish, amphibian, insect,

invertebrate
– Attributes: hair, feathers, eggs, milk, aquatic, toothed, fins, …

23

https://en.wikipedia.org/wiki/Multiclass_classification

OVA or one-vs-all classification
•OVA or one-vs-all: turn n-way classification

into n binary classification tasks
– Also know as one-vs-rest

•For zoo problem with 7 categories, train and
run 7 binary classifiers:
– mammal vs. not-mammal
– fish vs. not-fish
– bird vs. not-bird, …

•Pick the one that gives the highest score
– For an SVM this could be measured the one with the

widest margin 24

https://en.wikipedia.org/wiki/Multiclass_classification

SVMs in scikit-learn
• Scikit-learn has three

SVM classifiers: SVC,
NuSVC, and LinearSVC

• Data can be either in
dense numpy arrays or
sparse scipy arrays

• All directly support
multi-way classifica-
tion, SVC and NuSCV
using OvO and
LinearSVC using OvA

26

This colab jupyter notebook gets
an accuracy of 97% using OvO
with scikit.svm.SVC

https://scikit-learn.org/stable/modules/svm.html
https://colab.research.google.com/drive/1kU4UgeVqQs2ZrgeBhIMkd0Ivjd19Zu3R
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.htm

Neural Networks for Machine
Learning

Multilayer Perceptron, a.k.a.
Feed-Forward Neural Network

#

ℎ8 = [(GS
+# + 2T)

ℎ "

"I

"K

F: (non-linear)
activation function

Classification: softmax
Regression: identity

G: (non-linear)
activation function

"X = G(YZ+ℎ + 2I)

W

GJ GH GU GV

Feed-Forward Neural Network
#

ℎ8 = [(GS
+# + 2T)

ℎ "

"I

"K

"X = G(YZ+ℎ + 2I)

W

GJ GH GU GV

W: # output X # hiddenG: # hidden X # input

Universal Function Approximator
Theorem [Kurt Hornik et al., 1989]: Let F be a continuous
function on a bounded subset of D-dimensional space.
Then there exists a two-layer network G with finite
number of hidden units that approximates F arbitrarily
well. For all x in the domain of F, |F(x) – G(x) |< ε

“a two-layer network can approximate any function”

Going from one to two layers dramatically improves the
representation power of the network

Slide courtesy Hamed Pirsiavash

Common Activation Functions

• Choice of activation function depends on problem and available computational
power

• Comprehensive list of activation functions
• In practice

• Define the output of a node given an input
• Very simple functions!

Regularization

•Parameter to control overfitting,
i.e. when the model does well on training data
but poorly on new, unseen data

•L2 regularization is the most common
•Using dropout is another common way of

reducing overfitting in neural networks
–At each training stage, some nodes in hidden

layer temporarily removed (dropped out)

39

Dropout: Regularization in Neural Networks
ℎ "

"I

"K

W

GJ GH GU GV

randomly ignore
“neurons” (hi) during

training

Instance 1

Convolution as feature extraction

Input Feature Map

.

.

.

Filters/Kernels

Slide credit: Svetlana Lazebnik

decoding

encoding

xixi-1

hi-1 hi

yiyi-1

A Simple Recurrent Neural Network Cell

W W

U U

S S

ℎ# = tanh(cℎ#d/ + e!#) .# = softmax(fℎ#)
Weights are shared over time unrolling/unfolding: copy the RNN cell

across time (inputs)

Good at Transfer Learning
•For images, the initial stages of a model learn high-

level visual features (lines, edges) from pixels
•Final stages predict task-specific labels

source:http://ruder.io/transfer-learning/

Fine Tuning a NN Model
•Special kind of transfer learning

– Start with a pre-trained model
– Replace last output layer(s) with a new one(s)
– One option: Fix all but last layer by marking as

trainable:false

•Retraining on new task and data very fast
– Only the weights for the last layer(s) are adjusted

•Example
– Start: NN to classify animal pix with 100s of categories
– Finetune on new task: classify pix of 10 common pets

Evaluation Metrics

Classification

Regression

Clustering
the task: what kind
of problem are you

solving?

• Precision,
Recall, F1

• Accuracy
• Log-loss
• ROC-AUC
• …

• (Root) Mean Square Error
• Mean Absolute Error
• …

• Mutual Information
• V-score
• …

This does
not have to
be the same
thing as the

loss
function

you
optimize

32

44

45

Learning curve
• When evaluating ML algorithms, steeper

learning curves are better
• They represents faster learning with less data

Here the system
with the red curve
is better since it
requires less data
to achieve desired
accuracy

Training set size 50

A combined measure: F

Weighted (harmonic) average of Precision & Recall

Balanced F1 measure: β=1

! = 1 + +! 	 ∗ %	 ∗ *
(+! ∗ %) + *

!" =
2	 ∗ %	 ∗ *
% + *

82

P/R/F in a Multi-class Setting:
Micro- vs. Macro-Averaging

If we have more than one class, how do we combine
mulBple performance measures into one quanBty?

Macroaveraging: Compute performance for each class,
then average.

Microaveraging: Collect decisions for all classes,
compute conUngency table, evaluate.

Sec. 15.2.4

83

Micro- vs. Macro-Averaging: Example

Truth
: yes

Truth
: no

Classifier:
yes

10 10

Classifier:
no

10 970

Truth
: yes

Truth
: no

Classifier:
yes

90 10

Classifier:
no

10 890

Truth
: yes

Truth
: no

Classifier:
yes

100
(90+10)

20
(10+10)

Classifier:
no

20 1860

Class 1 Class 2 Micro Ave. Table

Sec. 15.2.4

Macroaveraged precision: (10/10+10) + (90/90+10)/2 = (0.5 + 0.9)/2 = 0.7
Microaveraged precision: 100/100+20 = .83
Microaveraged score is dominated by score on frequent classes

86

Confusion Matrix: Generalizing the 2-by-2
contingency table

Correct Value

Guessed
Value

#

#

#

88

Planning
Chapter 11.1-11.3

Some material adopted from notes by
Andreas Geyer-Schulz and Chuck Dyer

11.1

Blocks world
Typical representation uses a logic
notation to represent the state of the world:

ontable(a) ontable(c)
clear(a) clear(c)
handempty

And possible actions/ operators with their
preconditions and effects:
Pickup Putdown
Stack Unstack

KMA Solaiman

KMA Solaiman

Planning vs. problem solving
• Problem solving methods solve similar problems
• Planning is more powerful and efficient because of

the representations and methods used
• States, goals, and actions are decomposed into sets

of sentences (usually in first-order logic)
• Search often proceeds through plan space rather

than state space (though there are also state-space
planners)

• Sub-goals can be planned independently, reducing
the complexity of the planning problem

KMA Solaiman

KMA Solaiman

Blocks World Operators

•Classic basic operations for the Blocks World
– stack(X,Y): put block X on block Y
– unstack(X,Y): remove block X from block Y
– pickup(X): pickup block X
– putdown(X): put block X on the table

•Each represented by
– list of preconditions
– list of new facts to be added (add-effects)
– list of facts to be removed (delete-effects)
– optionally, set of (simple) variable constraints

Blocks World Stack Action

stack(X,Y):
• preconditions(stack(X,Y), [holding(X), clear(Y)])

• adds(stack(X,Y), [handempty, on(X,Y), clear(X)])

• deletes(stack(X,Y), [holding(X), clear(Y)]).

• constraints(stack(X,Y), [X¹Y, Y¹table, X¹table])

STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.
– Goal Stack - push down stack of goals to be solved, with

current goal on top
• If current goal not satisfied by present state, find

action that adds it and push action and its
preconditions (subgoals) on stack

• When a current goal is satisfied, POP from stack
• When an action is on top stack, record its

application on plan sequence and use its add and
delete lists to update current state

49

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
 pickup(a)

 stack(a,b)
 unstack(a,b)
 putdown(a)
 pickup(b)
 stack(b,c)
 pickup(a)
 stack(a,b)

"

Goal interaction
• Simple planning algorithms assume independent sub-goals

– Solve each separately and concatenate the solutions
• Sussman Anomaly: an example of goal interaction problem:

– Solving on(A,B) first (via unstack(C,A),stack(A,B)) is undone
when solving 2nd goal on(B,C) (via unstack(A,B), stack(B,C))

– Solving on(B,C) first will be undone when solving on(A,B)
• Classic STRIPS couldn’t handle this, although minor

modifications can get it to do simple cases

A B
C

Initial state

A
B
C

Goal state

https://en.wikipedia.org/wiki/Sussman_Anomaly

State-Space Planning
• STRIPS searches thru a space of situations (where

you are, what you have, etc.)
• Find plan by searching situations to reach goal
• Progression planner: searches forward

– From initial state to goal state
– Prone to exploring irrelevant actions

• Regression planner: searches backward from goal
– Works iff operators have enough information to go both ways
– Ideally leads to reduced branching: planner is only considering things that

are relevant to the goal
– but it’s harder to define good heuristics – so most current systems favor

forward search

55

CMSC 471
Propositional and First-Order Logic

KMA Solaiman
ksolaima@umbc.edu

Some slides courtesy Tim Finin
1

Knowledge base: example

M(Rain) M(Rain ! Wet)

0 1

0

1

Wet

R
ai
n

0 1

0

1

Wet

R
ai
n

Intersection:

M({Rain,Rain ! Wet})

0 1

0

1

Wet

R
ai
n

CS221 / Autumn 2019 / Liang & Sadigh 51

• As a concrete example, consider the two formulas Rain and Rain ! Wet. If you know both of these facts,
then the set of models is constrained to those where it is raining and wet.

Models for a KB
• KB: [P∨Q, P®R, Q®R]
• What are the formulas?

f1: P∨Q
f2: P®R
f3: Q®R

• What are the propositional variables?
P, Q, R

• What are the candidate models?
1) Consider all eight possible

assignments of T|F to P, Q, R
2) Check if each sentence is consistent

with the model

P Q R s1 s2 s3
F F F x ✓ ✓
F F T x ✓ ✓
F T F ✓ ✓ x
F T T ✓ ✓ ✓
T F F ✓ x ✓
T F T ✓ ✓ ✓
T T F ✓ x x
T T T ✓ ✓ ✓

Here x means the model
makes the sentence False
and ✓means it doesn’t
make it False

73

Models for a KB
• KB: [P∨Q, P®R, Q®R]
• What are the formulas?

f1: P∨Q
f2: P®R
f3: Q®R

• What are the propositional variables?
P, Q, R

• What are the candidate models?
1) Consider all eight possible

assignments of T|F to P, Q, R
2) Check truth tables for consistency,

eliminating any row that does not
make every KB sentence true

P Q R s1 s2 s3
F F F x ✓ ✓
F F T x ✓ ✓
F T F ✓ ✓ x
F T T ✓ ✓ ✓
T F F ✓ x ✓
T F T ✓ ✓ ✓
T T F ✓ x x
T T T ✓ ✓ ✓

• Only 3 models are
consistent with KB

• R true in all of them
• Therefore, R is true and

can be added to the KB

74

A simple example

The KB

P
Q Ú ¬ R

Models for the KB, !	($%)
P Q R KB
T T F T
T T T T
T F F T
T F T F
F T F F
F T T F
F F T F
F F F F

The KB has 2
formulas.

The KB has 3
variables. The KB has 3 models for which

? @, A = 1.	

Another way to look at this is:
E 7 is true in first 3

E Q Ú ¬ R is true in first 3
So E	(FG) is first 3

75

Another simple example
The KB

P Ù Q
R Ù ¬ P

Models for the KB
P Q R

The KB has 2
formulas.

The KB has 3
variables.

The KB has no models. There is no
assignment of True or False to
every variable that makes every
sentence in the KB true

76

Desiderata for inference rules

Semantics

Interpretation defines entailed/true formulas: KB |= f :

M(f)M(KB)

Syntax:

Inference rules derive formulas: KB ` f

How does {f : KB |= f} relate to {f : KB ` f}?

CS221 / Autumn 2019 / Liang & Sadigh 87

• We can apply inference rules all day long, but now we desperately need some guidance on whether a set

of inference rules is doing anything remotely sensible.

• For this, we turn to semantics, which gives an objective notion of truth. Recall that the semantics provides

us with M, the set of satisfiable models for each formula f or knowledge base. This defines a set of

formulas {f : KB |= f} which are defined to be true.

• On the other hand, inference rules also gives us a mechanism for generating a set of formulas, just by

repeated application. This defines another set of formulas {f : KB ` f}.

Truth

{f : KB |= f}

CS221 / Autumn 2019 / Liang & Sadigh 89

• Imagine a glass that represents the set of possible formulas entailed by the KB (these are necessarily true).

• By applying inference rules, we are filling up the glass with water.

Soundness

Definition: soundness

A set of inference rules Rules is sound if:

{f : KB ` f} ✓ {f : KB |= f}

CS221 / Autumn 2019 / Liang & Sadigh 91

KMA Solaiman
An inference rule is sound if every formula f it produces from a KB logically follows from the KB
i.e., inference rule creates no contradictions

• We say that a set of inference rules is sound if using those inference rules, we never overflow the glass:
the set of derived formulas is a subset of the set of true/entailed formulas.

Completeness

Definition: completeness

A set of inference rules Rules is complete if:

{f : KB ` f} ◆ {f : KB |= f}

CS221 / Autumn 2019 / Liang & Sadigh 93

KMA Solaiman
it can produce every formula that logically follows from (is entailed by) the KB
- Similar to complete search algorithms

CMSC 471:
Reinforcement Learning

Some slides courtesy Cynthia Matuszek and Frank Farrero, with some material from Marie desJardin, Lise
Getoor, Jean-Claude Latombe, and Daphne Koller

1

Review: Formalizing Agents

• Given:
– A state space S
– A set of actions a1, …, ak including their results
– Reward value at the end of each trial (series of

action) (may be positive or negative)
• Output:
– A mapping from states to actions
– Which is a policy, π

4

Markov Decision Process:
Formalizing Reinforcement Learning

(",$,ℛ, &, ')Markov Decision
Process:

set of
possible

states

reward of
(state,

action) pairs

set of
possible
actions

state-action
transition

distribution

discount
factor

Start in initial state !!
for t = 1 to …:
 choose action ""
 “move” to next state !" ∼ $ ⋅ !"#$, "")	
 get reward)" = 	ℛ(!", "")

'∗ = argmax
-

+ $
./0

%.&. ; '“solution”

objective: maximize
discounted reward

max
-
$
./0

%.&.

