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Neural Network Timeline

Source:  Pumalin



Remember Multi-class Linear 
Regression/Perceptron?
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output:
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Linear Regression/Perceptron: 
A Per-Class View
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binary version is 
special case



Logistic Regression/Classification
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Logistic Regression/Classification
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Q: Why didn’t our maxent
formulation from last class 

have multiple weight vectors?



Logistic Regression/Classification
#
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"I

output:
i = argmax {y1, y2}

class i

Q: Why didn’t our maxent
formulation from last class 

have multiple weight vectors?

A: Implicitly it did. Our 
formulation was

" ∝ exp(Q+, #, " )



Stacking Logistic Regression
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Goal: you still want to predict y

Idea: Can making an initial round 
of separate (independent) binary

predictions h help?

GH GU GV



Stacking Logistic Regression
#
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"X = softmax(YZ+ℎ + 2I)
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Predict y from your first 
round of predictions h

Idea: data/signal compression
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ℎ8 = @(GS
+# + 2T)



Not with a perceptron L
Consider Boolean operators (and, or, xor) 
with four possible inputs: 00 01 10 11

(a) x1 and x2

1

0
0 1

x1

x2

(b) x1 or x2

0 1

1

0

x1

x2

(c) x1 xor x2

?

0 1

1

0

x1

x2

Training examples are not linearly separable 
for one case: sum=1 iff x1 xor x2 



Stacking Logistic Regression
#
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Do we need (binary) 
probabilities here?
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Stacking Logistic Regression
#
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F: (non-linear) 
activation function

Do we need  
probabilities here?

W

GJ GH GU GV



Stacking Logistic Regression
#

ℎ8 = [(GS
+# + 2T)

ℎ "

"X = softmax(YZ+ℎ + 2I)

"I

"K

F: (non-linear) 
activation function

Do we need  
probabilities here?

Classification: probably
Regression: not really

W

GJ GH GU GV



Stacking Logistic Regression
#

ℎ8 = [(GS
+# + 2T)
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"X = G(YZ+ℎ + 2I)

"I

"K

F: (non-linear) 
activation function

Classification: softmax
Regression: identity

G: (non-linear) 
activation function
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GJ GH GU GV



Multilayer Perceptron, a.k.a.
Feed-Forward Neural Network
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F: (non-linear) 
activation function

Classification: softmax
Regression: identity

G: (non-linear) 
activation function
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Feed-Forward Neural Network
#
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W: # output X # hiddenG: # hidden X # input



Why Non-Linear?
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Why called 
‘Neural’ 
Network?

Neurons have body, axon and many dendrites
•In one of two states: firing and rest
•They fire if total incoming stimulus > threshold

Synapse: thin gap between axon of one neuron 
and dendrite of another

•Signal exchange

Neuron and myelinated axon, with signal flow from inputs at 
dendrites to outputs at axon terminals





Backpropagation Explained

Click on image (or 
here) for a simple 
interactive demo in 
your browser of how 
backpropagation 
updates weights in a 
neural network to 
reduce errors when 
processing training 
data



Universal Function Approximator
Theorem [Kurt Hornik et al., 1989]: Let F be a continuous 
function on a bounded subset of D-dimensional space. 
Then there exists a two-layer network G with finite 
number of hidden units that approximates F arbitrarily 
well. For all x in the domain of F, |F(x) – G(x) |< ε

“a two-layer network can approximate any function”

Going from one to two layers dramatically improves the 
representation power of the network

Slide courtesy Hamed Pirsiavash



How Deep Can They Be?
So many choices:
Architecture
# of hidden layers
# of units per hidden layer

Slide courtesy Hamed Pirsiavash

Computational Issues:
Vanishing gradients
Gradients shrink as one moves 
away from the output layer
Convergence is slow

Opportunities:
Training deep networks is an active area of research
Layer-wise initialization (perhaps using unsupervised data)
Engineering: GPUs to train on massive labelled datasets



Some Results: Digit Classification
logistic 

regression

ESL, Ch 11

simple feed 
forward

(similar to MNIST in A2, but 
not exactly the same)



HTTP://PLAYGROUND.TENSORFLOW.ORG/

1. Select dataset 2. Choose features 3. Add layers 4. Parameters 5. Task



TensorFlow Playground
•Great javascript app demonstrating many 

basic neural network concepts (e.g., MLPs)
•Doesn’t use TensorFlow software, but a 

lightweight js library
•Runs in a Web browser
•See http://playground.tensorflow.org/
•Code also available on GitHub
•Try the playground exercises in Google’s 

machine learning crash course
26



Datasets
•Six datasets, each with 500 (x,y) 

points on a plane where x and y
between -5 and +5

•Points have labels of positive (orange) or 
negative (blue)

•Two possible machine learning tasks:
– Classification: Predict class of test points
– Regression: find function to separate classes

•Evaluation: split dataset into training and 
test, e.g., 80% training, 20% test

28



Available Input features

X1 Point’s x value
X2 Point’s y value
X1

2 Point’s x value squared
X2

2 Point’s y value squared
X1X2 Product of point’s x & y values
sin(X1) Sine of point’s x value
sin(X2) Sine of point’s y value

29



Designing a neural network
•Simple feed forward NNs have a few choices

– What input features to use
– How many hidden layers and their details:

• How many neurons are in each layer
• How each layer is connected to ones before & after 

•Complex NNs have more choices
– E.g., CNNs, RNNs, etc.

•High-level interfaces (e.g., Keras) try to make 
this easier

30



Training a Neural Network
•Neural networks are used for supervised 

machine learning and need to be trained
•The training process is broken done in a 

series of epochs
– In each epoch, all training data run through the 

system to adjust the NN parameters
•Process ends after a fixed # of epochs or 

when error rate flattens or starts increasing

32



Typical
Training

Flow

•Divide training data into batches of
instances (e.g., batch size = 10)

•For each epoch:
–For each batch:

• Instances run through network, noting difference 
between predicted and actual value

• Backpropagation used to adjust connection weights
– Stop when training loss flatten out

•If test loss is too high, then try
– Adding additional hidden layers
– Adding more features to inputs
– Adjusting hyperparameters (e.g., learning rate)
– Get more training data 33



Hyperparameters
•Parameters whose values are set

before the learning process begins
•Basic neural network hyperparameters

–Learning rate  (e.g., 0.03)
–Activation function (e.g., ReLU)
–Regularization (e.g., L2)
–Regularization rate (e.g., 0.1)

34



Learning rate

•Gradient descent used in
backpropagation to adjust
weights to minimize the loss function

•Learning rate determines how quickly weights are 
adjusted each time

•If too high, we may miss some or most minima
– Result: erratic performance or never achieving a low loss

•If too low, learning will take longer than
necessary

35



Gradient Descent
•Iterative process used in ML to find local 

minimum in our loss function measuring errors
•Moves in direction of

steepest descent
•Step size decreases as

steepness lessens to
avoid missing minima

•Custom variants for
NNs include adam
optimization

36



Activation Function
•Determines a node’s output given 

weighted sum of its inputs
•The ReLu (rectified linear unit) is 

simple and a good choice for most 
networks

•Returns zero for negative
values and its input for
positive ones
–f(x) = max(0,x)

37



Common Activation Functions

• Choice of activation function depends on problem and available computational 
power

• Comprehensive list of activation functions
• In practice

• Define the output of a node given an input
• Very simple functions!



Regularization

•Parameter to control overfitting, 
i.e. when the model does well on training data 
but poorly on new, unseen data

•L2 regularization is the most common
•Using dropout is another common way of 

reducing overfitting in neural networks
–At each training stage, some nodes in hidden 

layer temporarily removed (dropped out)

39



Dropout: Regularization in Neural Networks
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randomly ignore 
“neurons” (hi) during 

training

Instance 1



Dropout: Regularization in Neural Networks
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Dropout: Regularization in Neural Networks
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randomly ignore 
“neurons” (hi) during 

training

Instance 3



Dropout: Regularization in Neural Networks
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“neurons” (hi) during 

training

Instance 1



Hyperparameter optimization

•How do we find the best settings for these 
hyperparameters? 

•Experimentation 
– Experiment with a range of different settings 

(e.g., for learning rate) via multiple runs
– Use a grid search tool, e.g., scikit learn’s

•Experience
– Similar problems with similar data will probably 

benefit from similar settings
44



HTTP://PLAYGROUND.TENSORFLOW.ORG/



Deep Learning Frameworks (1)
•Popular open-source deep learning frame-

works use Python at top-level; C++ in backend
– TensorFlow (via Google)
– Keras (Open Source, now TensorFlow’s I/F) 
– PyTorch (via Facebook)
– MxNet (Apache)
– Caffe (Berkeley) 

•TensorFlow and PyTorch now dominate; both 
make it easy to specify a complicated network

•Keras is now part of TensorFLow



Keras
•“Deep learning for humans”
•A popular API works with TensorFlow provides 

good support at architecture level
•Keras (v2.4 +) only supports TensorFlow
•Supports CNNs and RNNs and common utility 

layers like dropout, batch normalization and 
pooling

•Coding neural networks used to be harder; 
Keras made it easier and more accessible

•Documentation: https://keras.io/



• Demo



But problems remained …
•It’s often the case that solving a problem 

just reveals a new one that needs solving
•For a large MLPs, backpropagation takes 

forever to converge!
•Two issues:

– Not enough compute power to train the model
– Not enough labeled data to train the neural net

•SVMs may be better, since they converge to 
global optimum in O(n^2)



GPUs solve compute
power problem
•GPUs (Graphical Processing

Units) became popular in
the 1990s to handle computing needed for better 
computer graphics

•GPUs are SIMD (single instruction, multiple data) 
processors

•Cheap, fast, and easy to program
•GPUs can do matrix multiplication and other 

matrix computations very fast



Need lots of data!
•2000s introduced big

data
•Cheaper storage
•Parallel processing

(e.g., MapReduce, Hadoop, Spark, grid computing)
•Data sharing via the Web

– Lots of images, many with captions
– Lots of text, some with labels

•Crowdsourcing systems (e.g., Mechanical Turk) 
provided a way to get more human annotations



New problems are surfaced
• 2010s was a decade of domain applications
• These came with new problems, e.g.,

– Images are too highly dimensioned!
– Variable-length problems cause gradient problems
– Training data is rarely labeled
– Neural nets are uninterpretable
– Training complex models required days or weeks

• This led to many new “deep learning” neural 
network models



Deep Learning
•Deep learning refers to models going beyond 

simple feed-forward multi-level perceptron
– Though it was used in a ML context as early as 1986

• “deep” refers to the models having many 
layers (e.g., 10-20) that do different things

The VGG16 CNN model for image processing

22 layers!



Neural Network Architectures
Current focus on large networks with different 
“architectures” suited for different tasks
•Feedforward Neural Network
•CNN: Convolutional Neural Network
•RNN: Recurrent Neural Network
•LSTM: Long Short Term Memory
•GAN: Generative Adversarial Network
•Transformers: generating output sequence 

from input sequence



CNN: Convolutional Neural Network

• Good for 2D image processing: classification, object 
recognition, automobile lane tracking, etc.

• Successive convolution layers learn higher-level features
• Classic demo: learn to recognize hand-written digits from 

MNIST data with 70K examples

In-Depth



Keras: API works with TensorFlow

Example from a simple MNIST convolutional network 



from Adam Geitgey

RNN: Recurrent Neural Networks
• Good for learning over sequences of data, 

e.g., a sentence of words
• LSTM: (Long Short Term Memory) a popular 

architecture that remembers and uses 
previous N inputs
• BI-LSTM: knows previous

and upcoming inputs
• Attention: recent idea

that learns long-range
dependencies between
inputs



GAN: Generative Adversarial Network

•System of two neural networks competing 
against each other in a zero-sum game 
framework

•Provides a kind of unsupervised learning that 
improves the network

•Introduced by Ian Goodfellow et al. in 2014
•Can learn to draw samples from a model that 

is similar to data that we give them



Transformer
• Introduced in 2017 & has largely replaced RNNs
• Used primarily for natural language & vision

processing tasks
• NLP applications ”transform” an

input text into an output text
– E.g., translation, summarization, question

answering
• Uses encoder-decoder architecture

with attention
• Popular pre-trainted models available,

e.g. BERT and GPT 



NNs Good at Transfer Learning
• Neural networks effective for transfer learning

Using parts of a model trained on a task as an initial model to 
train on a different task

• Particularly effective for image recognition and 
language understanding tasks



Good at Transfer Learning
•For images,  the initial stages of a model  learn high-

level visual features (lines, edges) from pixels
•Final stages predict task-specific labels

source:http://ruder.io/transfer-learning/



Fine Tuning a NN Model
•Special kind of transfer learning

– Start with a pre-trained model
– Replace last output layer(s) with a new one(s)
– One option: Fix all but last layer by marking as 

trainable:false

•Retraining on new task and data very fast
– Only the weights for the last layer(s) are adjusted

•Example
– Start: NN to classify animal pix with 100s of categories
– Finetune on new task: classify pix of 10 common pets



Conclusions
•Quick intro to neural networks & deep learning
•Learn more by 

– Try scikit-learn’s neural network models
– Explore TensorFlow with Keras / PyTorch
– Work through examples

•and then try your own project idea


