Neural Networks for Machine
Learning

Neural Network Timeline

Electric Brain Neural Learning Dartmouth Perceptron ADALINE XOR Problem Backpropagation
McCulloch & Pitts Hebb Conference Rosenblatt Windrow & Hoff Minsky & Papert Werbos
Deep Belief LeNet LSTM Mululayer Perceptron Boltzmann Machine Hopﬁeld Network
Network LeCun Hochreiter & Rummelhart, Hilton & Williams Hinton & Sejnowski Hopfield
Hinton Schmfd[huber RNN, Rummelhart
™ o) (o) (o)
Boltzmann AlexNet GAN U-Net ResNet Capsulenet BERT GPT-3 Stable
Machine Krizhevsky Goodfellow Ronneberger ~ He Hinton Devin OpenAl Diffusion ChACPT
Transformer CompVis OpenAl
Google
Brain

Source: Pumalin

Remember Multi-class Linear
Regression/Perceptron?

y

y=wlx+b

output:
if y>0:class 1
else: class 2

ONONORONONCIONORO

Linear Regression/Perceptron:
A Per-Class View

y

ONONONORONCIONOCRON

y=wlx+b

output:
if y>0:class 1
else: class 2

output:

i =argmax{y;, y,}
class i

w;x+b

Logistic Regression/Classification

y

y

y = O'(WTX + b) (0.8 exp(ng + b]

y = softmax(w’x + b) output:

i =argmax{y;, v,
class i

ONONORORONCICRORON
OCOOOOO0OO OO~

Logistic Regression/Classification

Q: Why didn’t our maxent
formulation from last class

have multiple weight vectors?

y

y; x exp(w; x + b)

output:

i =argmax{y;, ¥,
classi

OO0OOOOOO OO -

Logistic Regression/Classification

Q: Why didn’t our maxent
formulation from last class
have multiple weight vectors?

A: Implicitly it did. Our
formulation was
o< exp(w’ f(x,))

y

W1
y, o exp(wi x + b)

éo,
<\\®

%
(S

N\

y, < exp(wax + b)

D

output:

i =argmax{y;, v,
class i

OO0OOOOOO OO -

Stacking Logistic Regression

X h y

Goal: you still want to predicty

Idea: Can making an initial round
of separate (independent) binary
predictions h help?

Stacking Logistic Regression

X h y
(O

O,

o

O—=5 2

,@

yj = softmax(BjTh + by)

Predict y from your first
round of predictions h

Idea: data/signal compression

Not with a perceptron ®

Consider Boolean operators (and, or, xor)
with four possible inputs: 0001 10 11

X1 A X1 A
1 O @ l @ ®
0O O— 00O o—
0 I * 0 I X2
(a) x; and x, (b) x; or x, (c) x; xor x,

Training examples are not linearly separable
for one case: sum=1 iff x1 xor x2

Stacking Logistic Regression

X h y

h; = o(W{ x + by) yj = softmax(B]-Th + by)

Do we need (binary)
probabilities here?

Stacking Logistic Regression

X h y

h; = F(W{ x + by) yj = softmaX(B]-Th + by)

F: (non-linear) Do we need
activation function probabilities here?

Stacking Logistic Regression

X h y

h; = F(W{ x + by) yj = softmaX(B]-Th + by)

F: (non-linear) Do we need
activation function probabilities here?
Classification: probably
Regression: not really

Stacking Logistic Regression

X h y

h; = F(W{ x + by) y; = G(B{ h + by)

F: (non-linear) G: (non-linear)
activation function activation function
Classification: softmax
Regression: identity

Multilayer Perceptron, a.k.a.
Feed-Forward Neural Network

y

X

h; = F(W{ x + by) y; = G(B{ h + by)

F: (non-linear) G: (non-linear)
activation function activation function
Classification: softmax
Regression: identity

Feed Forward Neural Network = YMILYICS

Input Layer Hidden Layer Output Layer

3>
Information flows in forward direction only

© machinelearningknowledge.ai

Feed-Forward Neural Network

yj = G(Bj h + by)

w: # hidden X #input [: # output X # hidden

Why Non-Linear?

Why called
‘Neural’

Network?

Outputs

Myelin sheat

Myelinated axon

-

r o

I n-p.u ts

Neuron and myelinated axon, with signal flow from inputs at
dendrites to outputs at axon terminals

Neurons have body, axon and many dendrites

e|n one of two states: firing and rest

eThey fire if total incoming stimulus > threshold
Synapse: thin gap between axon of one neuron
and dendrite of another

eSignal exchange

Neural Network — Backpropagation é%

Input Layer Hidden Layer Output Layer

© machinelearningknowledge.ai

Backpropagation Explained

Click on image (or
here) for a simple
interactive demo in
your browser of how
backpropagation
updates weights in a
neural network to
reduce errors when
processing training
data

Simple neural network

On the right, you see a neural network with one input, one
output node and two hidden layers of two nodes each.

Nodes in neighboring layers are connected with weights
w;j, which are the network parameters.

Universal Function Approximator

Theorem [Kurt Hornik et al., 1989]: Let F be a continuous
function on a bounded subset of D-dimensional space.
Then there exists a two-layer network G with finite
number of hidden units that approximates F arbitrarily
well. For all x in the domain of F, |F(x) — G(x) |< €

“a two-layer network can approximate any function”

Going from one to two layers dramatically improves the
representation power of the network

How Deep Can They Be?

So many choices: Computational Issues:
Architecture Vanishing gradients

Gradients shrink as one moves
away from the output layer
Convergence is slow

of hidden layers
of units per hidden layer

Opportunities:

Training deep networks is an active area of research
Layer-wise initialization (perhaps using unsupervised data)
Engineering: GPUs to train on massive labelled datasets

Some Results: Digit Classification

simple feed

logistic
10
regression forward
10
4x4
. Z
12 YE q 8x8
16x16 16x16 b 16x16
Net-1 Net-2 Net-3
Local Connectivity
10 10
- o lEl 4x4x4
@ 8x8x2 @ 8x8x2
\H 16x16 W 16x16

Net-4 Shared Weights

Net-5

FIGURE 11.10. Architecture of the five networks

used in the ZIP code example.

% Correct on Test Data

1004
Net-5
Net-4
90 Net-3
Net-2
80
Net-1
II
70 |
."
J
II|
60 i
T T T T T T T
0 5 10 15 20 25 30

Training Epochs

FIGURE 11.11. Test performance curves, as a func-
tion of the number of training epochs, for the five net-
works of Table 11.1 applied to the ZIP code dala.

(similar to MNIST in A2, but
not exactly the same)

O A Neural Network Playgroun +

> C 88 @ | playground.tensorflow.org/#activation=relu&batchSize=10&dataset=gauss®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0 Q)

Tinker With a Neural Network Right Here in Your Browser.

Dont Worry, You Can't Break It. We Promise.

Epoch Learning rate Activation Regularization Regularization rate Problem type

O ’ g OO0,000 0.03 v RelLU v None v 0 v Classification v

DATA FEATURES + —/ 2 HIDDEN LAYERS OUTPUT
Whichldataset do Which properties Test loss 0.435
ou wiant to use? do you want to 4
y f y . LY — LV = Training loss 0.432
eed in
4 neurons 2 neurons
X, p 4 4
F
- L]
X, p 4 4
Ratio of training to ,
test data: 50% 0
—e . 4 Th
weiéhrs,
Noise: 0 by the thickness
Y » 4 of the lines
«f
Batch size: 10
—
0
REGENERATE
Colors shows
|

data, neuronand ! !
' 1 0 1
weight values.

HTTP://PLAYGROUND.TENSORFLOW.ORG/

[J Showtestdata [[] Discretize output

TensorFlow Playground

e Great javascript app demonstrating many
nasic neural network concepts (e.g., MLPs)

e Doesn’t use TensorFlow software, but a
ightweight js library

e Runs in a Web browser
eSee http://playground.tensorflow.org/
e Code also available on GitHub

e Try the playground exercises in Google’s
machine learning crash course

e Six datasets, each with 500 (x,y)
noints on a plane where x and y
oetween -5 and +5

negative (
® TWO pPOSSi

Datasets

0

0

.....
> O)
O

e Points have labels of positive (orange) or

ue)
e machine learning tasks:

— Classification: Predict class of test points

—Regression: find function to separate classes

e fvaluation: split dataset into training and
test, e.g., 80% training, 20% test

Available Input features

X,
X,
X,?
X,2
X1X,

Point’s X va
Point’s y va
Point’s x va
Point’s y va

Product of point’s x & y values

ue
ue
ue S¢

ue S¢

uarec

uarec

sin(X,) Sine of point’s x value

sin(X,) Sine of point’s y value

FEATURES

Which
properties do

you want to
feed in?

XX,

sin(X,)

J
f
o |
f
f
f
f

sin(X,)

Designing a neural network

eSimple feed forward NNs have a few choices
—What input features to use

—How many hidden layers and their details:
e How many neurons are in each layer
e How each layer is connected to ones before & after

e Complex NNs have more choices
—E.g., CNNs, RNNs, etc.

e High-level interfaces (e.g., Keras) try to make
this easier

Training a Neural Network

e Neural networks are used for supervised
machine learning and need to be trained

e The training process is broken done in a
series of epochs

—In each epoch, all training data run through the
system to adjust the NN parameters

e Process ends after a fixed # of epochs or
when error rate flattens or starts increasing

* Divide training data into batches of Typical

instances (e.g., batch size = 10) . o
Training
eFor each epoch:

—For each batch: FIOW

e Instances run through network, noting difference
between predicted and actual value

e Backpropagation used to adjust connection weights

—Stop when training loss flatten out

o|f test loss is too high, then try
—Adding additional hidden layers
—Adding more features to inputs

—Adjusting hyperparameters (e.g., learning rate)
—Get more training data

Hyperparameters

e Parameters whose values are set
before the learning process begins

e Basic neural network hyperparameters
—Learning rate (e.g., 0.03)
—Activation function (e.g., ReLU)

—Regularization (e.g., L2)

—Regularization rate (e.g., 0.1)

Learning rate N

low learning rate

high learning rate

e Gradient descent used in
backpropagation to adjust e ~

weights to minimize the loss function

e earning rate determines how quickly weights are
adjusted each time

e |f too high, we may miss some or most minima

—Result: erratic performance or never achieving a low loss

e |f too low, learning will take longer than
necessary

Gradient Descent

e [terative process used in ML to find local
minimum in our loss function measuring errors

e Moves in direction of Cost at step 12 = 0.451
steepest descent N

e Step size decreases as
steepness lessens to
avoid missing minima

e Custom variants for
NNs include adam o B R 8 SOYH O P
optimization o paameerp |

Activation Function

e Determines a node’s output given
weighted sum of its inputs

eThe RelLu (rectified linear unit) is
simple and a good choice for most
networks

T

e Returns zero for negative
values and its input for
positive ones

—f(x) = max(0,x)

..........

Common Activation Functions

* Define the output of a node given an input
* Very simple functions!

Sigmoid

* Choice of activation function depends on problem and available computational
power

Comprehensive list of activation functions

* In practice

Regularization

e Parameter to control overfitting,
i.e. when the model does well on training data

but poorly on new, unseen data

e| 2 regularization is the most common

e Using dropout is another common way of
reducing overfitting in neural networks

—At each training stage, some nodes in hidden
layer temporarily removed (dropped out)

Dropout: Regularization in Neural Networks

X h y

O/ Instance 1 randomly ignore
“neurons” (h;) during

> training

Dropout: Regularization in Neural Networks

X h y

randomly ignore
“neurons” (h;) during
training

Dropout: Regularization in Neural Networks

X h y

randomly ignore
“neurons” (h;) during
training

Instance 3

Dropout: Regularization in Neural Networks

X h y

)‘A‘%‘
4“::0/
Z ,:.\\‘

randomly ignore
“neurons” (h;) during
training

Instance 1

Hyperparameter optimization ©f e

e How do we find the best settings for these
hyperparameters?
e Experimentation

—Experiment with a range of different settings
(e.g., for learning rate) via multiple runs

—Use a grid search tool, e.g., scikit learn’s

e Experience

—Similar problems with similar data will probably
benefit from similar settings

o @ A Neural Network Playgrounc -+

> C 88 8 |pIayground.tensorflow.org/#activation:reIu&batchSize:‘lO&datasetzgauss®Dataset:reg-plane&learningRate:0.0S®uIarizationRate:O&noise:O@

oo

Tinker With a Neural Network Right Here in Your Browser.

Dont Worry, You Can't Break It. We Promise.

D Epoch Learning rate Activation Regularization Regularization rate Problem type
>l
OOO,OOO 0.03 v ReLU v None v 0 v Classification v

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.435
ou want to use? do you want to ini
y Y . i & i & Training loss 0.432
feed in?
4 neurons 2 neurons

X, p 4 4

X, p 4 4 :
Ratio of training to .
test data: 50% o
] X 4 ® The outputs are

mixed with varying
weights, shown

Noise: 0 by the thickness
[J . ¢ of the lines.
o
(
Batch size: 10 X.X \ This is the output
—o from one neuron. |
Hover to see it 0
larger.
sin(X.)

REGENERATE
Colors shows
data, neuron and | [-
weight values.

[Showtestdata [] Discretize output

HTTP://PLAYGROUND.TENSORFLOW.ORG/

Deep Learning Frameworks (1)

e Popular open-source deep learning frame-
works use Python at top-level; C++ in backend

—TensorFlow (via Google)

—Keras (Open Source, now TensorFlow’s I/F)

—PyTorch (via Facebook)

e TensorFlow and PyTorch now dominate; both
make it easy to specify a complicated network

e Keras is now part of TensorFLow

Keras m

e “Deep learning for humans”

e A popular APl works with TensorFlow provides
good support at architecture level

eKeras (v2.4 +) only supports TensorFlow

e Supports CNNs and RNNs and common utility
layers like dropout, batch normalization and
pooling

e Coding neural networks used to be harder;
Keras made it easier and more accessible

e Documentation: https://keras.io/

Mo

But problems remained ...

e |t's often the case that solving a problem
just reveals a new one that needs solving

eFor a large MLPs, backpropagation takes
forever to converge!

e Two issues:

—Not enough compute power to train the model

—Not enough labeled data to train the neural net

e SVMs may be better, since they converge to
global optimum in O(n”2)

GPUs solve compute -

power problem

e GPUs (Graphical Processing g
Units) became popular in

the 1990s to handle computing needed for better
computer graphics

e GPUs are SIMD (single instruction, multiple data)
processors

e Cheap, fast, and easy to program

e GPUs can do matrix multiplication and other
matrix computations very fast

2007 ANALOG

Global Information Storage Capacity e A
- Paper, film, audiotape and vinyl: 6 %

in optimally compressed bytes

Need lots of data!

DIGITAL

data N
*Cheaper storage

¢ 2000s introduced big Y . | D

mobile phones, PDAs, cameras/camcorders, videogames)

1% 3% 25% 94 %

GITA
. a r a ‘ r O C ‘ S S I n Source: Hilbert 7, P. (2011) e World's T ogicalcapacit mmunicate and 280 exabytes
) 60 —65. //

oooooooooooooooo

(e.g., MapReduce, Hadoop, Spark grld computmg)
e Data sharing via the Web

— Lots of images, many with captions
— Lots of text, some with labels

e Crowdsourcing systems (e.g., Mechanical Turk)
provided a way to get more human annotations

New problems are surfaced

e 2010s was a decade of domain applications

e These came with new problems, e.g.,
- Images are too highly dimensioned!
- Variable-length problems cause gradient problems
- Training data is rarely labeled
- Neural nets are uninterpretable
- Training complex models required days or weeks

e This led to many new “deep learning” neural
network models

Deep Learning

e Deep learning refers to models going beyond
simple feed-forward multi-level perceptron

—Though it was used in a ML context as early as 1986

e “deep” refers to the models having many
layers (e.g., 10-20) that do different things

224%x224x3 224x224x64

112k112x128

56x56x256
. it e 14x14x512 7x7x512 1x1x4096 1x1x1000
- i — ' ==
22 layers! @ convolutional + RelLU
max pooling

The VGG16 CNN model for image processing L fallviesnnactad; el

softmax

Neural Network Architectures

Current focus on large networks with different
“architectures” suited for different tasks

e Feedforward Neural Network

e CNN: Convolutional Neural Network

* RNN: Recurrent Neural Network

e STM: Long Short Term Memory

e GAN: Generative Adversarial Network

e Transformers: generating output sequence
from input sequence

CNN: Convolutional Neural Network

Convolution FC*
Layer L
> Convolution Vel ke
+¥ -
w Layer = Layer
N +
‘ =3 |
= —_— S¢ 1 = +
= ~>‘f : \ f o ' 2
< | o A
cC o~ ‘ = o @)
- Al LI 3 10 | 10
: _ — | B o, ey
— | 20 100 Log Softmax
Convolution AN . fl
(5x5 kernel) < 10 filt * Max Pooling Convolution Ma)((ZP;JcZ)I)mg ey
ilters
(2x2) (5x5 kernel) *FC=Fully Connected

e Good for 2D image processing: classification, object
recognition, automobile lane tracking, etc.

e Successive convolution layers learn higher-level features

e Classic demo: learn to recognize hand-written digits from
MNIST data with 70K examples

Sl|\oHj\/ =

Keras: APl works with TensorFlow

keras.Sequential(

keras.Input(shape=input_shape),

layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),

layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),

layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),

layers.Dropout(0.5),

layers.Dense(num_classes, activation="softmax"),

Example from a simple MNIST convolutional network

RelLU Softmax
32 32 64 i
channets channels channels daci
5x5 Conv . 2x2 5x5 Conv .
Input +ReLU 28 Max (14| +ReLU | 14 : Maixéow 7_ flatten
image V layer pooling layer (5=2)
(stride 1) (stride 2) (stride 1) ;
14 14
28 28
Layer 1 Layer 2
Fully Fully
connected connected Output layer
layer 1 layer 2 (10 nodes)
(7x7x64 (1000
= 3164 nodes)

nodes)

RNN: Recurrent Neural Networks

* Good for learning over sequences of data,
e.g., a sentence of words

e LSTM: (Long Short Term Memory) a popular
architecture that remembers and uses
previous N inputs

* BI-LSTM: knows previous
and upcoming inputs

e Attention: recent idea
that learns long-range Q
dependencies between o o prediion
inputs Mockine

Input: Stateful Model Output:
a Word Most likely next word

—>

from Adam Geitgey

GAN: Generative Adversarial Network

e System of two neural networks competing
against each other in a zero-sum game

framework

e Provides a
iImproves t

e Introduced

kind of unsupervised learning that
ne network

by lan Goodfellow et al. in 2014

e Can learn to draw samples from a model that
is similar to data that we give them

Transformer

e Introduced in 2017 & has largely replaced RNNs

e Used primarily for natural language & vision

processing tasks
e NLP applications “transform” an
Input text into an output text

— E.g., translation, summarization, question
answering

e Uses encoder-decoder architecture
with attention

e Popular pre-trainted models available
e.g. BERT and GPT

Output

Probabilities
Linear
-
| Add & Norm '4\\
Feed
Forward
e A Add & Norm
r*—
dd & Norm Multi-Head
Feed Attention
Forward FJ Nx
!
Nix Add & Norm _Je=
f-" Add & Norm ' Masked
Multi-Head Multi-Head
Attention Attention
L t
e — Y © ——
Positional @—(F Positiona
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

’

NNs Good at Transfer Learning

e Neural networks effective for transfer learning

Using parts of a model trained on a task as an initial model to
train on a different task

e Particularly effective for image recognition and
language understanding tasks
TRAINING FROM SCRATCH

CAR v

95% TRUCK X
[i]

BICYCLE X

TRANSFER LEARNING

, \ — CAR v/
a q RRRRRRRRRRRRR N NEW TASK
| [TRUCK X

Good at Transfer Learning

e For images, the initial stages of a model learn high-
level visual features (lines, edges) from pixels

e Final stages predict task-specific labels

()[
()0,

/// N J/. /:‘/(/
+ i S 4 ; nl—;,‘ /(4/
feature extractor G¢(-:6y) %, %5,
¢ . "(‘/' (//
(')L.!
08 ¢
forwardprop backprop (and produced derivatives)

dL,
a0,

D

|:> E('l;l» label vy

J

ama Qo
labe
3L, 8
TSN
5.5]

Y v
J pre dictor & , 1= ”-‘.’]

domain classifier G4(-:0,)

E> E> 8 domain label d
OL g4 @

D0,

source:http://ruder.io/transfer-learning/

Predlcted

Fine Tuning a NN Model <=

Awesome CNN C: (Pre-trained)

awesome CNN

e Special kind of transfer learning

*
— Start with a pre-trained model g

— Replace last output layer(s) with a new one(s)

— One option: Fix all but last layer by marking as
trainable:false

e Retraining on new task and data very fast
— Only the weights for the last layer(s) are adjusted

e Example
— Start: NN to classify animal pix with 100s of categories
— Finetune on new task: classify pix of 10 common pets

Conclusions

e Quick intro to neural networks & deep learning
elearn more by

—Try scikit-learn’s neural network models

—Explore TensorFlow with Keras / PyTorch

—Work through examples

eand then try your own project idea

