
Neural Networks for Machine
Learning

Neural Network Timeline

Source: Pumalin

Remember Multi-class Linear
Regression/Perceptron?

G

#

"

" = G+# + 2

output:
if y > 0: class 1

else: class 2

Linear Regression/Perceptron:
A Per-Class View

G

#

"

" = G+# + 2
GH

"

"I = GJ
+# + 2

GJ

"K
"K = GH

+# + 2

"I

output:
if y > 0: class 1

else: class 2

output:
i = argmax {y1, y2}

class i

binary version is
special case

Logistic Regression/Classification

G

#

"

" = @(G+# + 2)

#

" = softmax(G+# + 2) GH

"

"I ∝ exp(GJ
+# + 2)

GJ

"K

"K ∝ exp(GH
+# + 2)

"I

output:
i = argmax {y1, y2}

class i

Logistic Regression/Classification
#

GH

"

"I ∝ exp(GJ
+# + 2)

GJ

"K

"K ∝ exp(GH
+# + 2)

"I

output:
i = argmax {y1, y2}

class i

Q: Why didn’t our maxent
formulation from last class

have multiple weight vectors?

Logistic Regression/Classification
#

GH

"

"I ∝ exp(GJ
+# + 2)

GJ

"K

"K ∝ exp(GH
+# + 2)

"I

output:
i = argmax {y1, y2}

class i

Q: Why didn’t our maxent
formulation from last class

have multiple weight vectors?

A: Implicitly it did. Our
formulation was

" ∝ exp(Q+, #, ")

Stacking Logistic Regression

GJ

#

ℎ8 = @(GS
+# + 2T)

ℎ "

Goal: you still want to predict y

Idea: Can making an initial round
of separate (independent) binary

predictions h help?

GH GU GV

Stacking Logistic Regression
#

W

ℎ "

"X = softmax(YZ+ℎ + 2I)

"I

"K

Predict y from your first
round of predictions h

Idea: data/signal compression

GJ GH GU GV

ℎ8 = @(GS
+# + 2T)

Not with a perceptron L
Consider Boolean operators (and, or, xor)
with four possible inputs: 00 01 10 11

(a) x1 and x2

1

0
0 1

x1

x2

(b) x1 or x2

0 1

1

0

x1

x2

(c) x1 xor x2

?

0 1

1

0

x1

x2

Training examples are not linearly separable
for one case: sum=1 iff x1 xor x2

Stacking Logistic Regression
#

ℎ8 = @(GS
+# + 2T)

ℎ "

"X = softmax(YZ+ℎ + 2I)

"I

"K

Do we need (binary)
probabilities here?

W

GJ GH GU GV

Stacking Logistic Regression
#

ℎ8 = [(GS
+# + 2T)

ℎ "

"X = softmax(YZ+ℎ + 2I)

"I

"K

F: (non-linear)
activation function

Do we need
probabilities here?

W

GJ GH GU GV

Stacking Logistic Regression
#

ℎ8 = [(GS
+# + 2T)

ℎ "

"X = softmax(YZ+ℎ + 2I)

"I

"K

F: (non-linear)
activation function

Do we need
probabilities here?

Classification: probably
Regression: not really

W

GJ GH GU GV

Stacking Logistic Regression
#

ℎ8 = [(GS
+# + 2T)

ℎ "

"X = G(YZ+ℎ + 2I)

"I

"K

F: (non-linear)
activation function

Classification: softmax
Regression: identity

G: (non-linear)
activation function

W

GJ GH GU GV

Multilayer Perceptron, a.k.a.
Feed-Forward Neural Network

#

ℎ8 = [(GS
+# + 2T)

ℎ "

"I

"K

F: (non-linear)
activation function

Classification: softmax
Regression: identity

G: (non-linear)
activation function

"X = G(YZ+ℎ + 2I)

W

GJ GH GU GV

Feed-Forward Neural Network
#

ℎ8 = [(GS
+# + 2T)

ℎ "

"I

"K

"X = G(YZ+ℎ + 2I)

W

GJ GH GU GV

W: # output X # hiddenG: # hidden X # input

Why Non-Linear?
ℎ "

"X = G YX+ℎ + 2I

"X =] X̂
+ [Q8+# + 2T 8

"I

"K

W

GJ GH GU GV

Why called
‘Neural’
Network?

Neurons have body, axon and many dendrites
•In one of two states: firing and rest
•They fire if total incoming stimulus > threshold

Synapse: thin gap between axon of one neuron
and dendrite of another

•Signal exchange

Neuron and myelinated axon, with signal flow from inputs at
dendrites to outputs at axon terminals

Backpropagation Explained

Click on image (or
here) for a simple
interactive demo in
your browser of how
backpropagation
updates weights in a
neural network to
reduce errors when
processing training
data

Universal Function Approximator
Theorem [Kurt Hornik et al., 1989]: Let F be a continuous
function on a bounded subset of D-dimensional space.
Then there exists a two-layer network G with finite
number of hidden units that approximates F arbitrarily
well. For all x in the domain of F, |F(x) – G(x) |< ε

“a two-layer network can approximate any function”

Going from one to two layers dramatically improves the
representation power of the network

Slide courtesy Hamed Pirsiavash

How Deep Can They Be?
So many choices:
Architecture
of hidden layers
of units per hidden layer

Slide courtesy Hamed Pirsiavash

Computational Issues:
Vanishing gradients
Gradients shrink as one moves
away from the output layer
Convergence is slow

Opportunities:
Training deep networks is an active area of research
Layer-wise initialization (perhaps using unsupervised data)
Engineering: GPUs to train on massive labelled datasets

Some Results: Digit Classification
logistic

regression

ESL, Ch 11

simple feed
forward

(similar to MNIST in A2, but
not exactly the same)

HTTP://PLAYGROUND.TENSORFLOW.ORG/

1. Select dataset 2. Choose features 3. Add layers 4. Parameters 5. Task

TensorFlow Playground
•Great javascript app demonstrating many

basic neural network concepts (e.g., MLPs)
•Doesn’t use TensorFlow software, but a

lightweight js library
•Runs in a Web browser
•See http://playground.tensorflow.org/
•Code also available on GitHub
•Try the playground exercises in Google’s

machine learning crash course
26

Datasets
•Six datasets, each with 500 (x,y)

points on a plane where x and y
between -5 and +5

•Points have labels of positive (orange) or
negative (blue)

•Two possible machine learning tasks:
– Classification: Predict class of test points
– Regression: find function to separate classes

•Evaluation: split dataset into training and
test, e.g., 80% training, 20% test

28

Available Input features

X1 Point’s x value
X2 Point’s y value
X1

2 Point’s x value squared
X2

2 Point’s y value squared
X1X2 Product of point’s x & y values
sin(X1) Sine of point’s x value
sin(X2) Sine of point’s y value

29

Designing a neural network
•Simple feed forward NNs have a few choices

– What input features to use
– How many hidden layers and their details:

• How many neurons are in each layer
• How each layer is connected to ones before & after

•Complex NNs have more choices
– E.g., CNNs, RNNs, etc.

•High-level interfaces (e.g., Keras) try to make
this easier

30

Training a Neural Network
•Neural networks are used for supervised

machine learning and need to be trained
•The training process is broken done in a

series of epochs
– In each epoch, all training data run through the

system to adjust the NN parameters
•Process ends after a fixed # of epochs or

when error rate flattens or starts increasing

32

Typical
Training

Flow

•Divide training data into batches of
instances (e.g., batch size = 10)

•For each epoch:
–For each batch:

• Instances run through network, noting difference
between predicted and actual value

• Backpropagation used to adjust connection weights
– Stop when training loss flatten out

•If test loss is too high, then try
– Adding additional hidden layers
– Adding more features to inputs
– Adjusting hyperparameters (e.g., learning rate)
– Get more training data 33

Hyperparameters
•Parameters whose values are set

before the learning process begins
•Basic neural network hyperparameters

–Learning rate (e.g., 0.03)
–Activation function (e.g., ReLU)
–Regularization (e.g., L2)
–Regularization rate (e.g., 0.1)

34

Learning rate

•Gradient descent used in
backpropagation to adjust
weights to minimize the loss function

•Learning rate determines how quickly weights are
adjusted each time

•If too high, we may miss some or most minima
– Result: erratic performance or never achieving a low loss

•If too low, learning will take longer than
necessary

35

Gradient Descent
•Iterative process used in ML to find local

minimum in our loss function measuring errors
•Moves in direction of

steepest descent
•Step size decreases as

steepness lessens to
avoid missing minima

•Custom variants for
NNs include adam
optimization

36

Activation Function
•Determines a node’s output given

weighted sum of its inputs
•The ReLu (rectified linear unit) is

simple and a good choice for most
networks

•Returns zero for negative
values and its input for
positive ones
–f(x) = max(0,x)

37

Common Activation Functions

• Choice of activation function depends on problem and available computational
power

• Comprehensive list of activation functions
• In practice

• Define the output of a node given an input
• Very simple functions!

Regularization

•Parameter to control overfitting,
i.e. when the model does well on training data
but poorly on new, unseen data

•L2 regularization is the most common
•Using dropout is another common way of

reducing overfitting in neural networks
–At each training stage, some nodes in hidden

layer temporarily removed (dropped out)

39

Dropout: Regularization in Neural Networks
ℎ "

"I

"K

W

GJ GH GU GV

randomly ignore
“neurons” (hi) during

training

Instance 1

Dropout: Regularization in Neural Networks
ℎ "

"I

"K

W

GJ GH GU GV

randomly ignore
“neurons” (hi) during

training

Instance 2

Dropout: Regularization in Neural Networks
ℎ "

"I

"K

W

GJ GH GU GV

randomly ignore
“neurons” (hi) during

training

Instance 3

Dropout: Regularization in Neural Networks
ℎ "

"I

"K

W

GJ GH GU GV

randomly ignore
“neurons” (hi) during

training

Instance 1

Hyperparameter optimization

•How do we find the best settings for these
hyperparameters?

•Experimentation
– Experiment with a range of different settings

(e.g., for learning rate) via multiple runs
– Use a grid search tool, e.g., scikit learn’s

•Experience
– Similar problems with similar data will probably

benefit from similar settings
44

HTTP://PLAYGROUND.TENSORFLOW.ORG/

Deep Learning Frameworks (1)
•Popular open-source deep learning frame-

works use Python at top-level; C++ in backend
– TensorFlow (via Google)
– Keras (Open Source, now TensorFlow’s I/F)
– PyTorch (via Facebook)
– MxNet (Apache)
– Caffe (Berkeley)

•TensorFlow and PyTorch now dominate; both
make it easy to specify a complicated network

•Keras is now part of TensorFLow

Keras
•“Deep learning for humans”
•A popular API works with TensorFlow provides

good support at architecture level
•Keras (v2.4 +) only supports TensorFlow
•Supports CNNs and RNNs and common utility

layers like dropout, batch normalization and
pooling

•Coding neural networks used to be harder;
Keras made it easier and more accessible

•Documentation: https://keras.io/

• Demo

But problems remained …
•It’s often the case that solving a problem

just reveals a new one that needs solving
•For a large MLPs, backpropagation takes

forever to converge!
•Two issues:

– Not enough compute power to train the model
– Not enough labeled data to train the neural net

•SVMs may be better, since they converge to
global optimum in O(n^2)

GPUs solve compute
power problem
•GPUs (Graphical Processing

Units) became popular in
the 1990s to handle computing needed for better
computer graphics

•GPUs are SIMD (single instruction, multiple data)
processors

•Cheap, fast, and easy to program
•GPUs can do matrix multiplication and other

matrix computations very fast

Need lots of data!
•2000s introduced big

data
•Cheaper storage
•Parallel processing

(e.g., MapReduce, Hadoop, Spark, grid computing)
•Data sharing via the Web

– Lots of images, many with captions
– Lots of text, some with labels

•Crowdsourcing systems (e.g., Mechanical Turk)
provided a way to get more human annotations

New problems are surfaced
• 2010s was a decade of domain applications
• These came with new problems, e.g.,

– Images are too highly dimensioned!
– Variable-length problems cause gradient problems
– Training data is rarely labeled
– Neural nets are uninterpretable
– Training complex models required days or weeks

• This led to many new “deep learning” neural
network models

Deep Learning
•Deep learning refers to models going beyond

simple feed-forward multi-level perceptron
– Though it was used in a ML context as early as 1986

• “deep” refers to the models having many
layers (e.g., 10-20) that do different things

The VGG16 CNN model for image processing

22 layers!

Neural Network Architectures
Current focus on large networks with different
“architectures” suited for different tasks
•Feedforward Neural Network
•CNN: Convolutional Neural Network
•RNN: Recurrent Neural Network
•LSTM: Long Short Term Memory
•GAN: Generative Adversarial Network
•Transformers: generating output sequence

from input sequence

CNN: Convolutional Neural Network

• Good for 2D image processing: classification, object
recognition, automobile lane tracking, etc.

• Successive convolution layers learn higher-level features
• Classic demo: learn to recognize hand-written digits from

MNIST data with 70K examples

In-Depth

Keras: API works with TensorFlow

Example from a simple MNIST convolutional network

from Adam Geitgey

RNN: Recurrent Neural Networks
• Good for learning over sequences of data,

e.g., a sentence of words
• LSTM: (Long Short Term Memory) a popular

architecture that remembers and uses
previous N inputs
• BI-LSTM: knows previous

and upcoming inputs
• Attention: recent idea

that learns long-range
dependencies between
inputs

GAN: Generative Adversarial Network

•System of two neural networks competing
against each other in a zero-sum game
framework

•Provides a kind of unsupervised learning that
improves the network

•Introduced by Ian Goodfellow et al. in 2014
•Can learn to draw samples from a model that

is similar to data that we give them

Transformer
• Introduced in 2017 & has largely replaced RNNs
• Used primarily for natural language & vision

processing tasks
• NLP applications ”transform” an

input text into an output text
– E.g., translation, summarization, question

answering
• Uses encoder-decoder architecture

with attention
• Popular pre-trainted models available,

e.g. BERT and GPT

NNs Good at Transfer Learning
• Neural networks effective for transfer learning

Using parts of a model trained on a task as an initial model to
train on a different task

• Particularly effective for image recognition and
language understanding tasks

Good at Transfer Learning
•For images, the initial stages of a model learn high-

level visual features (lines, edges) from pixels
•Final stages predict task-specific labels

source:http://ruder.io/transfer-learning/

Fine Tuning a NN Model
•Special kind of transfer learning

– Start with a pre-trained model
– Replace last output layer(s) with a new one(s)
– One option: Fix all but last layer by marking as

trainable:false

•Retraining on new task and data very fast
– Only the weights for the last layer(s) are adjusted

•Example
– Start: NN to classify animal pix with 100s of categories
– Finetune on new task: classify pix of 10 common pets

Conclusions
•Quick intro to neural networks & deep learning
•Learn more by

– Try scikit-learn’s neural network models
– Explore TensorFlow with Keras / PyTorch
– Work through examples

•and then try your own project idea

