Neural Networks for Machine
Learning
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Remember Multi-class Linear
Regression/Perceptron?

y

y=wlx+b

output:
if y>0:class 1
else: class 2
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Linear Regression/Perceptron:
A Per-Class View

y
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y=wlx+b

output:
if y>0:class 1
else: class 2

output:

i =argmax{y;, y,}
class i

w;x+b



Logistic Regression/Classification

y

y

y = O'(WTX + b) (0.8 exp(ng + b]

y = softmax(w’x + b) output:

i =argmax{y;, v,
class i
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Logistic Regression/Classification

Q: Why didn’t our maxent
formulation from last class

have multiple weight vectors?

y

y; x exp(w; x + b)

output:

i =argmax{y;, ¥,
classi
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Logistic Regression/Classification

Q: Why didn’t our maxent
formulation from last class
have multiple weight vectors?

A: Implicitly it did. Our
formulation was
o< exp(w’ f(x, ))
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y, o exp(wi x + b)
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output:

i =argmax{y;, v,
class i
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Stacking Logistic Regression

X h y

Goal: you still want to predicty

Idea: Can making an initial round
of separate (independent) binary
predictions h help?




Stacking Logistic Regression

X h y
(O

O,
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yj = softmax(BjTh + by)

Predict y from your first
round of predictions h

Idea: data/signal compression




Not with a perceptron ®

Consider Boolean operators (and, or, xor)
with four possible inputs: 0001 10 11

X1 A X1 A
1 O @ l @ ®
0O O— 00O o—
0 I * 0 I X2
(a) x; and x, (b) x; or x, (c) x; xor x,

Training examples are not linearly separable
for one case: sum=1 iff x1 xor x2



Stacking Logistic Regression

X h y

h; = o(W{ x + by) yj = softmax(B]-Th + by)

Do we need (binary)
probabilities here?



Stacking Logistic Regression

X h y

h; = F(W{ x + by) yj = softmaX(B]-Th + by)

F: (non-linear) Do we need
activation function probabilities here?



Stacking Logistic Regression

X h y

h; = F(W{ x + by) yj = softmaX(B]-Th + by)

F: (non-linear) Do we need
activation function probabilities here?
Classification: probably
Regression: not really



Stacking Logistic Regression

X h y

h; = F(W{ x + by) y; = G(B{ h + by)

F: (non-linear) G: (non-linear)
activation function activation function
Classification: softmax
Regression: identity



Multilayer Perceptron, a.k.a.
Feed-Forward Neural Network

y

X

h; = F(W{ x + by) y; = G(B{ h + by)

F: (non-linear) G: (non-linear)
activation function activation function
Classification: softmax
Regression: identity



Feed Forward Neural Network = YMILYICS

Input Layer Hidden Layer Output Layer

3>
Information flows in forward direction only

© machinelearningknowledge.ai




Feed-Forward Neural Network

yj = G(Bj h + by)

w: # hidden X #input  [: # output X # hidden



Why Non-Linear?




Why called
‘Neural’

Network?

Outputs

Myelin sheat

Myelinated axon

-

r o

I n-p.u ts

Neuron and myelinated axon, with signal flow from inputs at
dendrites to outputs at axon terminals

Neurons have body, axon and many dendrites

e|n one of two states: firing and rest

eThey fire if total incoming stimulus > threshold
Synapse: thin gap between axon of one neuron
and dendrite of another

eSignal exchange



Neural Network — Backpropagation é%

Input Layer Hidden Layer Output Layer

© machinelearningknowledge.ai



Backpropagation Explained

Click on image (or
here) for a simple
interactive demo in
your browser of how
backpropagation
updates weights in a
neural network to
reduce errors when
processing training
data

Simple neural network

On the right, you see a neural network with one input, one
output node and two hidden layers of two nodes each.

Nodes in neighboring layers are connected with weights
w;j, which are the network parameters.




Universal Function Approximator

Theorem [Kurt Hornik et al., 1989]: Let F be a continuous
function on a bounded subset of D-dimensional space.
Then there exists a two-layer network G with finite
number of hidden units that approximates F arbitrarily
well. For all x in the domain of F, |F(x) — G(x) |< €

“a two-layer network can approximate any function”

Going from one to two layers dramatically improves the
representation power of the network



How Deep Can They Be?

So many choices: Computational Issues:
Architecture Vanishing gradients

Gradients shrink as one moves
away from the output layer
Convergence is slow

# of hidden layers
# of units per hidden layer

Opportunities:

Training deep networks is an active area of research
Layer-wise initialization (perhaps using unsupervised data)
Engineering: GPUs to train on massive labelled datasets



Some Results: Digit Classification

simple feed

logistic
10
regression forward
10
4x4
. Z
12 YE q 8x8
16x16 16x16 b 16x16
Net-1 Net-2 Net-3
Local Connectivity
10 10
- o lEl 4x4x4
@ 8x8x2 @ 8x8x2
\H 16x16 W 16x16

Net-4 Shared Weights

Net-5

FIGURE 11.10. Architecture of the five networks

used in the ZIP code example.
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FIGURE 11.11. Test performance curves, as a func-
tion of the number of training epochs, for the five net-
works of Table 11.1 applied to the ZIP code dala.

(similar to MNIST in A2, but
not exactly the same)




O A Neural Network Playgroun +

> C 88 @ | playground.tensorflow.org/#activation=relu&batchSize=10&dataset=gauss&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0 Q)

Tinker With a Neural Network Right Here in Your Browser.

Dont Worry, You Can't Break It. We Promise.

Epoch Learning rate Activation Regularization Regularization rate Problem type
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TensorFlow Playground

e Great javascript app demonstrating many
nasic neural network concepts (e.g., MLPs)

e Doesn’t use TensorFlow software, but a
ightweight js library

e Runs in a Web browser
eSee http://playground.tensorflow.org/
e Code also available on GitHub

e Try the playground exercises in Google’s
machine learning crash course




e Six datasets, each with 500 (x,y)
noints on a plane where x and y
oetween -5 and +5

negative (
® TWO pPOSSi

Datasets

0

0

.....
> O )
O

e Points have labels of positive (orange) or

ue)
e machine learning tasks:

— Classification: Predict class of test points

—Regression: find function to separate classes

e fvaluation: split dataset into training and
test, e.g., 80% training, 20% test




Available Input features

X,
X,
X,?
X,2
X1X,

Point’s X va
Point’s y va
Point’s x va
Point’s y va

Product of point’s x & y values
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uarec

sin(X,) Sine of point’s x value

sin(X,) Sine of point’s y value

FEATURES

Which
properties do

you want to
feed in?
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sin(X,)
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Designing a neural network

eSimple feed forward NNs have a few choices
—What input features to use

—How many hidden layers and their details:
e How many neurons are in each layer
e How each layer is connected to ones before & after

e Complex NNs have more choices
—E.g., CNNs, RNNs, etc.

e High-level interfaces (e.g., Keras) try to make
this easier




Training a Neural Network

e Neural networks are used for supervised
machine learning and need to be trained

e The training process is broken done in a
series of epochs

—In each epoch, all training data run through the
system to adjust the NN parameters

e Process ends after a fixed # of epochs or
when error rate flattens or starts increasing



* Divide training data into batches of Typical

instances (e.g., batch size = 10) . o
Training
eFor each epoch:

—For each batch: FIOW

e Instances run through network, noting difference
between predicted and actual value

e Backpropagation used to adjust connection weights

—Stop when training loss flatten out

o|f test loss is too high, then try
—Adding additional hidden layers
—Adding more features to inputs

—Adjusting hyperparameters (e.g., learning rate)
—Get more training data



Hyperparameters

e Parameters whose values are set
before the learning process begins

e Basic neural network hyperparameters
—Learning rate (e.g., 0.03)
—Activation function (e.g., ReLU)

—Regularization (e.g., L2)

—Regularization rate (e.g., 0.1)



Learning rate N

low learning rate

high learning rate

e Gradient descent used in
backpropagation to adjust e ~

weights to minimize the loss function

e earning rate determines how quickly weights are
adjusted each time

e |f too high, we may miss some or most minima

—Result: erratic performance or never achieving a low loss

e |f too low, learning will take longer than
necessary



Gradient Descent

e [terative process used in ML to find local
minimum in our loss function measuring errors

e Moves in direction of Cost at step 12 = 0.451
steepest descent N

e Step size decreases as
steepness lessens to
avoid missing minima

e Custom variants for
NNs include adam o B R 8 SOYH O P
optimization o paameerp |




Activation Function

e Determines a node’s output given
weighted sum of its inputs

eThe RelLu (rectified linear unit) is
simple and a good choice for most
networks

T

e Returns zero for negative
values and its input for
positive ones

—f(x) = max(0,x)

..........




Common Activation Functions

* Define the output of a node given an input
* Very simple functions!

Sigmoid

*  Choice of activation function depends on problem and available computational
power

Comprehensive list of activation functions

* In practice




Regularization

e Parameter to control overfitting,
i.e. when the model does well on training data

but poorly on new, unseen data

e| 2 regularization is the most common

e Using dropout is another common way of
reducing overfitting in neural networks

—At each training stage, some nodes in hidden
layer temporarily removed (dropped out)



Dropout: Regularization in Neural Networks

X h y

O/ Instance 1 randomly ignore
“neurons” (h;) during

> training



Dropout: Regularization in Neural Networks

X h y

randomly ignore
“neurons” (h;) during
training



Dropout: Regularization in Neural Networks

X h y

randomly ignore
“neurons” (h;) during
training

Instance 3



Dropout: Regularization in Neural Networks

X h y

)‘A‘%‘
4“::0/
Z ,:.\\‘

randomly ignore
“neurons” (h;) during
training

Instance 1



Hyperparameter optimization ©f e

e How do we find the best settings for these
hyperparameters?
e Experimentation

—Experiment with a range of different settings
(e.g., for learning rate) via multiple runs

—Use a grid search tool, e.g., scikit learn’s

e Experience

—Similar problems with similar data will probably
benefit from similar settings
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Tinker With a Neural Network Right Here in Your Browser.

Dont Worry, You Can't Break It. We Promise.
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Deep Learning Frameworks (1)

e Popular open-source deep learning frame-
works use Python at top-level; C++ in backend

—TensorFlow (via Google)

—Keras (Open Source, now TensorFlow’s I/F)

—PyTorch (via Facebook)

e TensorFlow and PyTorch now dominate; both
make it easy to specify a complicated network

e Keras is now part of TensorFLow



Keras m

e “Deep learning for humans”

e A popular APl works with TensorFlow provides
good support at architecture level

eKeras (v2.4 +) only supports TensorFlow

e Supports CNNs and RNNs and common utility
layers like dropout, batch normalization and
pooling

e Coding neural networks used to be harder;
Keras made it easier and more accessible

e Documentation: https://keras.io/
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But problems remained ...

e |t's often the case that solving a problem
just reveals a new one that needs solving

eFor a large MLPs, backpropagation takes
forever to converge!

e Two issues:

—Not enough compute power to train the model

—Not enough labeled data to train the neural net

e SVMs may be better, since they converge to
global optimum in O(n”2)



GPUs solve compute -

power problem

e GPUs (Graphical Processing g
Units) became popular in

the 1990s to handle computing needed for better
computer graphics

e GPUs are SIMD (single instruction, multiple data)
processors

e Cheap, fast, and easy to program

e GPUs can do matrix multiplication and other
matrix computations very fast



2007 ANALOG

Global Information Storage Capacity e A
- Paper, film, audiotape and vinyl: 6 %

in optimally compressed bytes

Need lots of data!

DIGITAL

data N
*Cheaper storage

¢ 2000s introduced big Y . | D

mobile phones, PDAs, cameras/camcorders, videogames)

1% 3% 25% 94 %

GITA
. a r a ‘ r O C ‘ S S I n Source: Hilbert 7, P. (2011) e World's T ogicalcapacit mmunicate and 280 exabytes
) 60 —65. //

oooooooooooooooo

(e.g., MapReduce, Hadoop, Spark grld computmg)
e Data sharing via the Web

— Lots of images, many with captions
— Lots of text, some with labels

e Crowdsourcing systems (e.g., Mechanical Turk)
provided a way to get more human annotations




New problems are surfaced

e 2010s was a decade of domain applications

e These came with new problems, e.g.,
- Images are too highly dimensioned!
- Variable-length problems cause gradient problems
- Training data is rarely labeled
- Neural nets are uninterpretable
- Training complex models required days or weeks

e This led to many new “deep learning” neural
network models



Deep Learning

e Deep learning refers to models going beyond
simple feed-forward multi-level perceptron

—Though it was used in a ML context as early as 1986

e “deep” refers to the models having many
layers (e.g., 10-20) that do different things

224%x224x3 224x224x64

112k112x128

56x56x256
. it e 14x14x512 7x7x512 1x1x4096 1x1x1000
- i — ' ==
22 layers! @ convolutional + RelLU
max pooling

The VGG16 CNN model for image processing L fallviesnnactad; el

softmax



Neural Network Architectures

Current focus on large networks with different
“architectures” suited for different tasks

e Feedforward Neural Network

e CNN: Convolutional Neural Network

* RNN: Recurrent Neural Network

e STM: Long Short Term Memory

e GAN: Generative Adversarial Network

e Transformers: generating output sequence
from input sequence



CNN: Convolutional Neural Network

Convolution FC*
Layer L
> Convolution Vel ke
+¥ -
w Layer = Layer
N +
‘ =3 |
= —_— S¢ 1 = +
= ~>‘f : \ f o ' 2
< | o A
cC o~ ‘ = o @)
- Al LI 3 10 | 10
: _ — | B o, ey
— | 20 100 Log Softmax
Convolution AN . fl
(5x5 kernel) < 10 filt *  Max Pooling Convolution Ma)((ZP;JcZ)I)mg ey
ilters
(2x2) (5x5 kernel) *FC=Fully Connected

e Good for 2D image processing: classification, object
recognition, automobile lane tracking, etc.

e Successive convolution layers learn higher-level features

e Classic demo: learn to recognize hand-written digits from
MNIST data with 70K examples
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Keras: APl works with TensorFlow

keras.Sequential(

keras.Input(shape=input_shape),

layers.Conv2D(32, kernel_size=(3, 3), activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),

layers.Conv2D(64, kernel_size=(3, 3), activation="relu"),

layers.MaxPooling2D(pool_size=(2, 2)),
layers.Flatten(),

layers.Dropout(0.5),

layers.Dense(num_classes, activation="softmax"),

Example from a simple MNIST convolutional network

RelLU Softmax
32 32 64 i
channets channels channels daci
5x5 Conv . 2x2 5x5 Conv .
Input +ReLU 28 Max (14| +ReLU | 14 : Maixéow 7_ flatten
image V layer pooling layer (5=2)
(stride 1) (stride 2) (stride 1) ;
14 14
28 28
Layer 1 Layer 2
Fully Fully
connected  connected Output layer
layer 1 layer 2 (10 nodes)
(7x7x64 (1000
= 3164 nodes)

nodes)



RNN: Recurrent Neural Networks

* Good for learning over sequences of data,
e.g., a sentence of words

e LSTM: (Long Short Term Memory) a popular
architecture that remembers and uses
previous N inputs

* BI-LSTM: knows previous
and upcoming inputs

e Attention: recent idea
that learns long-range Q
dependencies between o o prediion
inputs Mockine

Input: Stateful Model Output:
a Word Most likely next word

—>

from Adam Geitgey




GAN: Generative Adversarial Network

e System of two neural networks competing
against each other in a zero-sum game

framework

e Provides a
iImproves t

e Introduced

kind of unsupervised learning that
ne network

by lan Goodfellow et al. in 2014

e Can learn to draw samples from a model that
is similar to data that we give them



Transformer

e Introduced in 2017 & has largely replaced RNNs

e Used primarily for natural language & vision

processing tasks
e NLP applications “transform” an
Input text into an output text

— E.g., translation, summarization, question
answering

e Uses encoder-decoder architecture
with attention

e Popular pre-trainted models available
e.g. BERT and GPT

Output

Probabilities
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-
| Add & Norm '4\\
Feed
Forward
e A Add & Norm
r*—
dd & Norm Multi-Head
Feed Attention
Forward FJ Nx
!
Nix Add & Norm _Je=
f-" Add & Norm ' Masked
Multi-Head Multi-Head
Attention Attention
L t
e — Y © ——
Positional @—(F Positiona
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

’



NNs Good at Transfer Learning

e Neural networks effective for transfer learning

Using parts of a model trained on a task as an initial model to
train on a different task

e Particularly effective for image recognition and
language understanding tasks
TRAINING FROM SCRATCH

CAR v

95% TRUCK X
[ i ]

BICYCLE X

TRANSFER LEARNING

, \ — CAR v/
a q RRRRRRRRRRRRR N NEW TASK
| [ TRUCK X




Good at Transfer Learning

e For images, the initial stages of a model learn high-
level visual features (lines, edges) from pixels

e Final stages predict task-specific labels
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/// N J/. /:‘/(/
+ i S 4 ; nl—;,‘ /(4/
feature extractor G¢(-:6y) %, %5,
¢ . "(‘/' (//
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D0,

source:http://ruder.io/transfer-learning/




Predlcted

Fine Tuning a NN Model <=

Awesome CNN C: (Pre-trained)

awesome CNN

e Special kind of transfer learning

*
— Start with a pre-trained model g

— Replace last output layer(s) with a new one(s)

— One option: Fix all but last layer by marking as
trainable:false

e Retraining on new task and data very fast
— Only the weights for the last layer(s) are adjusted

e Example
— Start: NN to classify animal pix with 100s of categories
— Finetune on new task: classify pix of 10 common pets



Conclusions

e Quick intro to neural networks & deep learning
elearn more by

—Try scikit-learn’s neural network models

—Explore TensorFlow with Keras / PyTorch

—Work through examples

eand then try your own project idea



