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But problems remained …
•It’s often the case that solving a problem 

just reveals a new one that needs solving
•For a large MLPs, backpropagation takes 

forever to converge!
•Two issues:

– Not enough compute power to train the model
– Not enough labeled data to train the neural net

•SVMs may be better, since they converge to 
global optimum in O(n^2)



GPUs solve compute
power problem
•GPUs (Graphical Processing

Units) became popular in
the 1990s to handle computing needed for better 
computer graphics

•GPUs are SIMD (single instruction, multiple data) 
processors

•Cheap, fast, and easy to program
•GPUs can do matrix multiplication and other 

matrix computations very fast



Need lots of data!
•2000s introduced big

data
•Cheaper storage
•Parallel processing

(e.g., MapReduce, Hadoop, Spark, grid computing)
•Data sharing via the Web

– Lots of images, many with captions
– Lots of text, some with labels

•Crowdsourcing systems (e.g., Mechanical Turk) 
provided a way to get more human annotations



New problems are surfaced
• 2010s was a decade of domain applications
• These came with new problems, e.g.,

– Images are too highly dimensioned!
– Variable-length problems cause gradient problems
– Training data is rarely labeled
– Neural nets are uninterpretable
– Training complex models required days or weeks

• This led to many new “deep learning” neural 
network models



Deep Learning
•Deep learning refers to models going beyond 

simple feed-forward multi-level perceptron
– Though it was used in a ML context as early as 1986

• “deep” refers to the models having many 
layers (e.g., 10-20) that do different things

The VGG16 CNN model for image processing

22 layers!



Neural Network Architectures
Current focus on large networks with different 
“architectures” suited for different tasks
•Feedforward Neural Network
•CNN: Convolutional Neural Network
•RNN: Recurrent Neural Network
•LSTM: Long Short Term Memory
•GAN: Generative Adversarial Network
•Transformers: generating output sequence 

from input sequence



CNN: Convolutional Neural Network

• Good for 2D image processing: classification, object 
recognition, automobile lane tracking, etc.

• Successive convolution layers learn higher-level features
• Classic demo: learn to recognize hand-written digits from 

MNIST data with 70K examples

In-Depth
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From fully connected to convolutional networks

image Fully connected layer

Slide credit: Svetlana Lazebnik
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Convolution as feature extraction

Input Feature Map

.

.

.

Filters/Kernels

Slide credit: Svetlana Lazebnik



image
next layer

Convolutional layer

From fully connected to convolutional networks

non-linearity 
and/or pooling

Slide adapted: Svetlana Lazebnik



Keras: API works with TensorFlow

Example from a simple MNIST convolutional network 



from Adam Geitgey

RNN: Recurrent Neural Networks
• Good for learning over sequences of data, 

e.g., a sentence of words
• LSTM: (Long Short Term Memory) a popular 

architecture that remembers and uses 
previous N inputs
• BI-LSTM: knows previous

and upcoming inputs
• Attention: recent idea

that learns long-range
dependencies between
inputs

KMA Solaiman
Simulation in Board



RNN Outputs: Image Captions

Show and Tell: A Neural Image Caption Generator, CVPR 15 Slide credit: Arun Mallya

https://arxiv.org/pdf/1411.4555.pdf


RNN Output:
Visual Storytelling

CNN CNN CNN CNN CNN

GRU GRU GRU GRU GRU

Encode

Decode

GRUs GRUs …

The 
family got 
together 

for a 
cookout

They had a lot 
of delicious 

food.

The family got together for a cookout. They had a lot of delicious food. 
The dog was happy to be there. They had a great time on the beach. 

They even had a swim in the water.
Huang et al. (2016)

Human Reference

The family has gathered around the dinner table to share a meal 
together. They all pitched in to help cook the seafood to perfection.

Afterwards they took the family dog to the beach to get some exercise. 
The waves were cool and refreshing! The dog had so much fun in the 
water. One family member decided to get a better view of the waves!
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A Simple Recurrent Neural Network Cell
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ℎ# = tanh(cℎ#d/ + e!#) .# = softmax(fℎ#)
Weights are shared over time unrolling/unfolding: copy the RNN cell 

across time (inputs)

KMA Solaiman
Previous 
sequence

KMA Solaiman
Current
sequence



GAN: Generative Adversarial Network

•System of two neural networks competing 
against each other in a zero-sum game 
framework

•Provides a kind of unsupervised learning that 
improves the network

•Introduced by Ian Goodfellow et al. in 2014
•Can learn to draw samples from a model that 

is similar to data that we give them
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Transformer
• Introduced in 2017 & has largely replaced RNNs
• Used primarily for natural language & vision

processing tasks
• NLP applications ”transform” an

input text into an output text
– E.g., translation, summarization, question

answering
• Uses encoder-decoder architecture

with attention
• Popular pre-trainted models available,

e.g. BERT and GPT 
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NNs Good at Transfer Learning
• Neural networks effective for transfer learning

Using parts of a model trained on a task as an initial model to 
train on a different task

• Particularly effective for image recognition and 
language understanding tasks
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Good at Transfer Learning
•For images,  the initial stages of a model  learn high-

level visual features (lines, edges) from pixels
•Final stages predict task-specific labels

source:http://ruder.io/transfer-learning/
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Fine Tuning a NN Model
•Special kind of transfer learning

– Start with a pre-trained model
– Replace last output layer(s) with a new one(s)
– One option: Fix all but last layer by marking as 

trainable:false

•Retraining on new task and data very fast
– Only the weights for the last layer(s) are adjusted

•Example
– Start: NN to classify animal pix with 100s of categories
– Finetune on new task: classify pix of 10 common pets
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Conclusions
•Quick intro to neural networks & deep learning
•Learn more by 

– Try scikit-learn’s neural network models
– Explore TensorFlow with Keras / PyTorch
– Work through examples

•and then try your own project idea



Student Course Evaluations

• Check for email from StudentCourseEvaluations@umbc.edu
• Announcement: "The Student Evaluation of Educational Quality 

(SEEQ) is a standardized course evaluation instrument used to 
provide measures of an instructor's teaching effectiveness. The 
results of this questionnaire will be used by promotion and tenure 
committees as part of the instructor's evaluation. The Direct 
Instructor Feedback Forms (DIFFs) are designed to provide 
feedback to instructors and are not intended for use by promotion 
and tenure committees. The responses to the SEEQ and 
the DIFFs will be kept anonymous and will not be distributed until 
UMBC final grades are in"
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Key operations in a CNN

Slide credit: Svetlana Lazebnik, R. Fergus, Y. LeCun



Input Image

Convolution 
(Learned)

Non-linearity

Spatial pooling

Feature maps

Key operations

Example: Rectified Linear Unit (ReLU)

Slide credit: Svetlana Lazebnik, R. Fergus, Y. LeCun
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from these hidden states

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

observe these inputs one at a time

predict the corresponding label “cell”

Recurrent Networks



Outline

Convolutional Neural 
Networks

What is a convolution?

Multidimensional 
Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural 
Networks

Types of recurrence

A basic recurrent cell

BPTT: Backpropagation 
through time
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