
Neural Networks for Machine
Learning

Multilayer Perceptron, a.k.a.
Feed-Forward Neural Network

#

ℎ8 = [(GS
+# + 2T)

ℎ "

"I

"K

F: (non-linear)
activation function

Classification: softmax
Regression: identity

G: (non-linear)
activation function

"X = G(YZ+ℎ + 2I)

W

GJ GH GU GV

Feed-Forward Neural Network
#

ℎ8 = [(GS
+# + 2T)

ℎ "

"I

"K

"X = G(YZ+ℎ + 2I)

W

GJ GH GU GV

W: # output X # hiddenG: # hidden X # input

But problems remained …
•It’s often the case that solving a problem

just reveals a new one that needs solving
•For a large MLPs, backpropagation takes

forever to converge!
•Two issues:

– Not enough compute power to train the model
– Not enough labeled data to train the neural net

•SVMs may be better, since they converge to
global optimum in O(n^2)

GPUs solve compute
power problem
•GPUs (Graphical Processing

Units) became popular in
the 1990s to handle computing needed for better
computer graphics

•GPUs are SIMD (single instruction, multiple data)
processors

•Cheap, fast, and easy to program
•GPUs can do matrix multiplication and other

matrix computations very fast

Need lots of data!
•2000s introduced big

data
•Cheaper storage
•Parallel processing

(e.g., MapReduce, Hadoop, Spark, grid computing)
•Data sharing via the Web

– Lots of images, many with captions
– Lots of text, some with labels

•Crowdsourcing systems (e.g., Mechanical Turk)
provided a way to get more human annotations

New problems are surfaced
• 2010s was a decade of domain applications
• These came with new problems, e.g.,

– Images are too highly dimensioned!
– Variable-length problems cause gradient problems
– Training data is rarely labeled
– Neural nets are uninterpretable
– Training complex models required days or weeks

• This led to many new “deep learning” neural
network models

Deep Learning
•Deep learning refers to models going beyond

simple feed-forward multi-level perceptron
– Though it was used in a ML context as early as 1986

• “deep” refers to the models having many
layers (e.g., 10-20) that do different things

The VGG16 CNN model for image processing

22 layers!

Neural Network Architectures
Current focus on large networks with different
“architectures” suited for different tasks
•Feedforward Neural Network
•CNN: Convolutional Neural Network
•RNN: Recurrent Neural Network
•LSTM: Long Short Term Memory
•GAN: Generative Adversarial Network
•Transformers: generating output sequence

from input sequence

CNN: Convolutional Neural Network

• Good for 2D image processing: classification, object
recognition, automobile lane tracking, etc.

• Successive convolution layers learn higher-level features
• Classic demo: learn to recognize hand-written digits from

MNIST data with 70K examples

In-Depth

2-D Convolution

kernel

input
(“image”)

width: shape of the kernel
(often square)

2-D Convolution

input
(“image”)

stride(s): how many
spaces to move the kernel

width: shape of the kernel
(often square)

2-D Convolution

input
(“image”)

stride(s): how many
spaces to move the kernel

stride=1

width: shape of the kernel
(often square)

2-D Convolution

input
(“image”)

stride(s): how many
spaces to move the kernel

stride=1

width: shape of the kernel
(often square)

2-D Convolution

input
(“image”)

stride(s): how many
spaces to move the kernel

stride=1

width: shape of the kernel
(often square)

�-�0 �G]
� IT] 0�
G GJ GJ�

Image 1
aw+bx
+ey+fz

ew+fx
+iy+jz

iw+jx+
my+nz

GQ
GJ[J

bw+cx
+fy+gz

fw+gx
+jy+kz

jw+kx+
ny+oz

Ker nel

C w+dx
gy+hz+

g
+

w+hx
ky+lz

kw+lx+
oy+pz Feature Map

From fully connected to convolutional networks

image Fully connected layer

Slide credit: Svetlana Lazebnik

image

feature map

learned
weights

From fully connected to convolutional networks

Convolutional layer

Slide credit: Svetlana Lazebnik

image

feature map

learned
weights

From fully connected to convolutional networks

Convolutional layer

Slide credit: Svetlana Lazebnik

Convolution as feature extraction

Input Feature Map

.

.

.

Filters/Kernels

Slide credit: Svetlana Lazebnik

image
next layer

Convolutional layer

From fully connected to convolutional networks

non-linearity
and/or pooling

Slide adapted: Svetlana Lazebnik

Keras: API works with TensorFlow

Example from a simple MNIST convolutional network

from Adam Geitgey

RNN: Recurrent Neural Networks
• Good for learning over sequences of data,

e.g., a sentence of words
• LSTM: (Long Short Term Memory) a popular

architecture that remembers and uses
previous N inputs
• BI-LSTM: knows previous

and upcoming inputs
• Attention: recent idea

that learns long-range
dependencies between
inputs

KMA Solaiman
Simulation in Board

RNN Outputs: Image Captions

Show and Tell: A Neural Image Caption Generator, CVPR 15 Slide credit: Arun Mallya

https://arxiv.org/pdf/1411.4555.pdf

RNN Output:
Visual Storytelling

CNN CNN CNN CNN CNN

GRU GRU GRU GRU GRU

Encode

Decode

GRUs GRUs …

The
family got
together

for a
cookout

They had a lot
of delicious

food.

The family got together for a cookout. They had a lot of delicious food.
The dog was happy to be there. They had a great time on the beach.

They even had a swim in the water.
Huang et al. (2016)

Human Reference

The family has gathered around the dinner table to share a meal
together. They all pitched in to help cook the seafood to perfection.

Afterwards they took the family dog to the beach to get some exercise.
The waves were cool and refreshing! The dog had so much fun in the
water. One family member decided to get a better view of the waves!

decoding

encoding

xixi-1

hi-1 hi

yiyi-1

A Simple Recurrent Neural Network Cell

W W

U U

S S

ℎ# = tanh(cℎ#d/ + e!#) .# = softmax(fℎ#)
Weights are shared over time unrolling/unfolding: copy the RNN cell

across time (inputs)

KMA Solaiman
Previous
sequence

KMA Solaiman
Current
sequence

GAN: Generative Adversarial Network

•System of two neural networks competing
against each other in a zero-sum game
framework

•Provides a kind of unsupervised learning that
improves the network

•Introduced by Ian Goodfellow et al. in 2014
•Can learn to draw samples from a model that

is similar to data that we give them

KMA Solaiman

KMA Solaiman

KMA Solaiman
Not Covered

KMA Solaiman

KMA Solaiman

KMA Solaiman

KMA Solaiman

KMA Solaiman

KMA Solaiman

KMA Solaiman

KMA Solaiman

Transformer
• Introduced in 2017 & has largely replaced RNNs
• Used primarily for natural language & vision

processing tasks
• NLP applications ”transform” an

input text into an output text
– E.g., translation, summarization, question

answering
• Uses encoder-decoder architecture

with attention
• Popular pre-trainted models available,

e.g. BERT and GPT

KMA Solaiman

KMA Solaiman

KMA Solaiman
Not Covered

KMA Solaiman

KMA Solaiman

KMA Solaiman

KMA Solaiman

NNs Good at Transfer Learning
• Neural networks effective for transfer learning

Using parts of a model trained on a task as an initial model to
train on a different task

• Particularly effective for image recognition and
language understanding tasks

KMA Solaiman

KMA Solaiman

KMA Solaiman
Not Covered

KMA Solaiman

KMA Solaiman

KMA Solaiman

KMA Solaiman

Good at Transfer Learning
•For images, the initial stages of a model learn high-

level visual features (lines, edges) from pixels
•Final stages predict task-specific labels

source:http://ruder.io/transfer-learning/

KMA Solaiman

KMA Solaiman

KMA Solaiman
Not Covered

Fine Tuning a NN Model
•Special kind of transfer learning

– Start with a pre-trained model
– Replace last output layer(s) with a new one(s)
– One option: Fix all but last layer by marking as

trainable:false

•Retraining on new task and data very fast
– Only the weights for the last layer(s) are adjusted

•Example
– Start: NN to classify animal pix with 100s of categories
– Finetune on new task: classify pix of 10 common pets

KMA Solaiman

KMA Solaiman

KMA Solaiman
Not Covered

Conclusions
•Quick intro to neural networks & deep learning
•Learn more by

– Try scikit-learn’s neural network models
– Explore TensorFlow with Keras / PyTorch
– Work through examples

•and then try your own project idea

Student Course Evaluations

• Check for email from StudentCourseEvaluations@umbc.edu
• Announcement: "The Student Evaluation of Educational Quality

(SEEQ) is a standardized course evaluation instrument used to
provide measures of an instructor's teaching effectiveness. The
results of this questionnaire will be used by promotion and tenure
committees as part of the instructor's evaluation. The Direct
Instructor Feedback Forms (DIFFs) are designed to provide
feedback to instructors and are not intended for use by promotion
and tenure committees. The responses to the SEEQ and
the DIFFs will be kept anonymous and will not be distributed until
UMBC final grades are in"

KMA Solaiman

KMA Solaiman

KMA Solaiman

KMA Solaiman

KMA Solaiman

KMA Solaiman

KMA Solaiman
Extra Slides

KMA Solaiman

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Input Feature Map

.

.

.

Key operations in a CNN

Slide credit: Svetlana Lazebnik, R. Fergus, Y. LeCun

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Key operations

Example: Rectified Linear Unit (ReLU)

Slide credit: Svetlana Lazebnik, R. Fergus, Y. LeCun

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Feature maps

Max

Key operations

Slide credit: Svetlana Lazebnik, R. Fergus, Y. LeCun

Recurrent Networks

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

observe these inputs one at a time

Recurrent Networks

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

observe these inputs one at a time

predict the corresponding label

from these hidden states

Recurrent Networks

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

observe these inputs one at a time

predict the corresponding label

from these hidden states

xi-3 xi-2 xixi-1

hi-3 hi-2 hi-1 hi

yi-3 yi-2 yiyi-1

observe these inputs one at a time

predict the corresponding label “cell”

Recurrent Networks

Outline

Convolutional Neural
Networks

What is a convolution?

Multidimensional
Convolutions

Typical Convnet Operations

Deep convnets

Recurrent Neural
Networks

Types of recurrence

A basic recurrent cell

BPTT: Backpropagation
through time

xixi-1

hi-1 hi

yiyi-1

A Simple Recurrent Neural Network Cell

W W

U U

S S

encoding

xixi-1

hi-1 hi

yiyi-1

A Simple Recurrent Neural Network Cell

W W

U U

S S

ℎ# = tanh(cℎ#d/ + e!#)

decoding

encoding

xixi-1

hi-1 hi

yiyi-1

A Simple Recurrent Neural Network Cell

W W

U U

S S

ℎ# = tanh(cℎ#d/ + e!#) .# = softmax(fℎ#)

