
CMSC 471: 
Reinforcement Learning

Some slides courtesy Cynthia Matuszek and Frank Farrero, with some material from Marie desJardin, Lise 
Getoor, Jean-Claude Latombe, and Daphne Koller

1



There’s an entire book!

http://incompleteideas.
net/book/the-book-

2nd.html 

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
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The Big Idea

• “Planning”: Find a sequence of steps to 
accomplish a goal.
– Given start state, transition model, goal functions…

• This is a kind of sequential decision making.
– Transitions are deterministic.

• What if they are stochastic (probabilistic)?
– One time in ten, you drop your sock

• Probabilistic Planning: Make a plan that accounts 
for probability by carrying it through the plan.
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Review: Formalizing Agents

• Given:
– A state space S
– A set of actions a1, …, ak including their results
– Reward value at the end of each trial (series of 

action) (may be positive or negative)
• Output:
– A mapping from states to actions
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Review: Formalizing Agents

• Given:
– A state space S
– A set of actions a1, …, ak including their results
– Reward value at the end of each trial (series of 

action) (may be positive or negative)
• Output:
– A mapping from states to actions
– Which is a policy, π
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Reinforcement Learning
• We often have an agent which has a task to 

perform
– It takes some actions in the world
– At some later point, gets feedback on how well it did 
– The agent performs the same task repeatedly

• This problem is called reinforcement learning: 
– The agent gets positive reinforcement for tasks done 

well
– And gets negative reinforcement for tasks done poorly
– Must somehow figure out which actions to take next 

time

5



Reinforcement Learning
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Simple Robot Navigation Problem
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• In each state, the possible actions are U, D, R, and L



Probabilistic Transition Model
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• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the 
   robot is already in the top row, then it does not move)



Probabilistic Transition Model
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• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the 
   robot is already in the top row, then it does not move)
• With probability 0.1, the robot moves right one square (if the
   robot is already in the rightmost row, then it does not move)



Probabilistic Transition Model
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• In each state, the possible actions are U, D, R, and L
• The effect of U is as follows (transition model):

• With probability 0.8, the robot moves up one square (if the 
   robot is already in the top row, then it does not move)
• With probability 0.1, the robot moves right one square (if the
   robot is already in the rightmost row, then it does not move)
• With probability 0.1, the robot moves left one square (if the
   robot is already in the leftmost row, then it does not move)



Markov Property
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The transition properties depend only 
on the current state, not on the previous 
history (how that state was reached) 

Markov assumption generally: current state only ever 
depends on previous state (or finite set of previous 
states).
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Robot in a room

+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

Slide courtesy Peter Bodík

Goal: what’s the strategy to achieve the maximum reward?



Robot in a room
+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

states: current location
actions: where to go next

rewards

what is the solution? Learn a mapping from (state, action) 
pairs to new states

Slide courtesy Peter Bodík
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Example of Discounted Reward
• If the discount factor ! =
0.8 then reward

0.8!&! +
 0.8"&" + 0.8#&# +
	0.8$&$ +⋯+ 0.8%&% +	…
• Allows you to consider all 

possible rewards in the 
future but preferring 
current vs. future self

44

objective: maximize 
discounted reward
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