Machine Learning: Decision Trees

Chapter 19.3

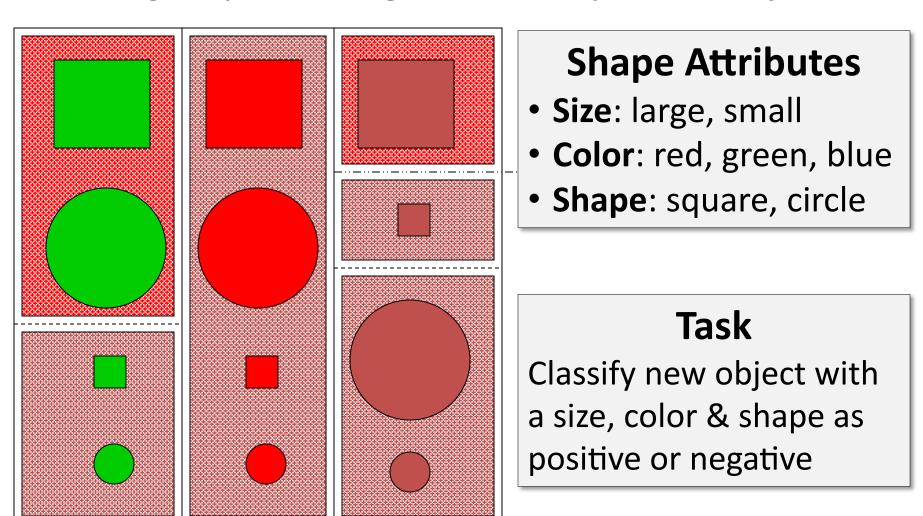
Some material adopted from notes by Chuck Dyer

Decision Trees (DTs)

- Supervised learning method used for classification and regression
- Given a set of training tuples, learn model to predict one value from the others
 - Learned value typically a class (e.g., goodRisk)
- Resulting model is simple to understand, interpret, visualize, and apply
- One of the oldest ML algorithms, but still useful for many problems

Learning a Concept

The red groups are **negative** examples, blue **positive**



Training data

Attribute to be learned

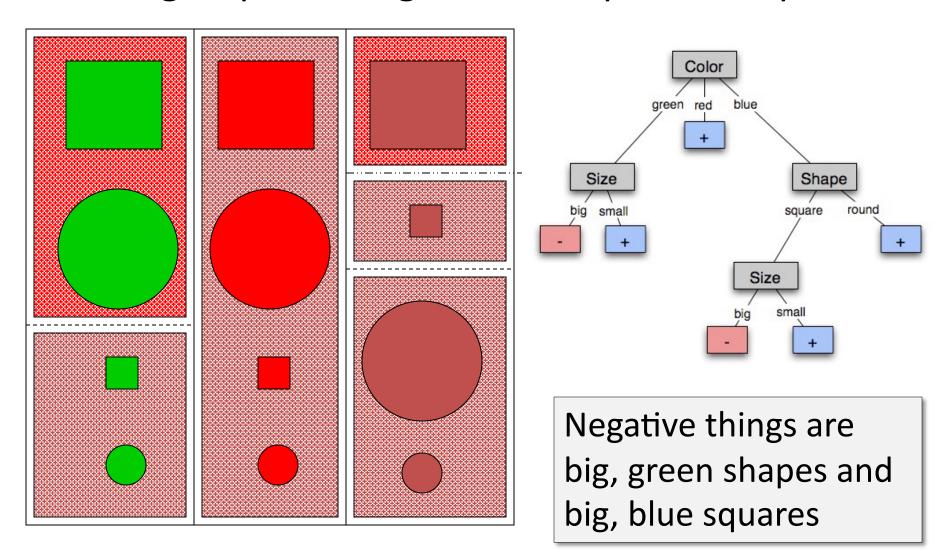
Size	Color	Shape	class	
Large	Green	Square	Negative	
Large	Green	Circle	Negative	
Small	Green	Square	Positive	
Small	Green	Circle	Positive	
Large	Red	Square	Positive	
Large	Red	Circle	Positive	
Small	Red	Square	Positive	
Small	Red	Circle	Positive	
Large	Blue	Square	Negative	
Small	Blue	Square	Positive	
Large	Blue	Circle	Positive	
Small	Blue	Circle	Positive	

attributes

example instances

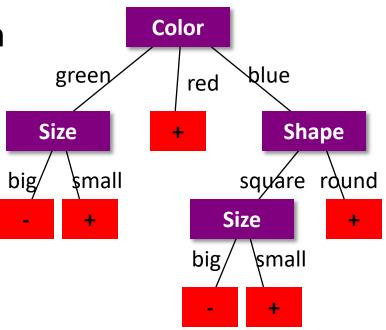
A decision tree-induced partition

The red groups are negative examples, blue positive



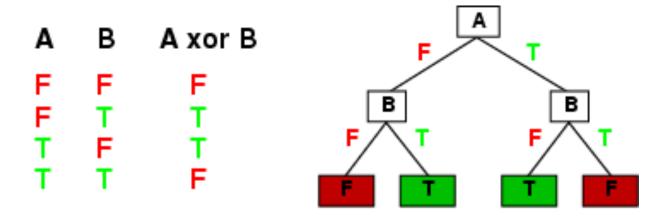
Learning decision trees

- Goal: Build decision tree to classify examples as positive or negative instances of concept using supervised learning from training data
- A decision tree is a tree in which
 - non-leaf nodes have an attribute (feature)
 - leaf nodes have a classification (+ or -)
 - arcs have a possible value of its attribute
- Generalization: allow for >2 classes
 - -e.g., classify stocks as {sell, hold, buy}



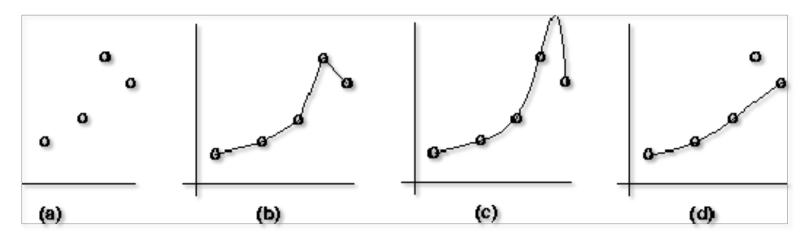
Expressiveness of Decision Trees

 Can express any function of input attributes, e.g., for Boolean functions, truth table row → path to leaf:



- There's a consistent decision tree for any training set with one path to leaf for each example, but it probably won't generalize to new examples
- Prefer more compact decision trees

Inductive learning and bias



- Suppose that we want to learn a function f(x) = y and we're given sample (x,y) pairs, as in figure (a)
- Can make several hypotheses about f, e.g.: (b), (c) & (d)
- Preference reveals learning technique bias, e.g.:
 - prefer <u>piece-wise linear functions</u> (b)
 - prefer a smooth function (c)
 - prefer a simpler function and treat outliers as noise (d)

Preference bias: Occam's Razor

- William of Ockham (1285-1347)
 - -non sunt multiplicanda entia praeter necessitatem
 - -entities are not to be multiplied beyond necessity
- Simplest consistent explanation is the best
- Smaller decision trees correctly classifying training examples preferred over larger ones
- Finding the smallest decision tree is NP-hard, so we use algorithms that find reasonably small ones

Issues

- It's like 20 questions
- We can generate many decision trees depending on what attributes we ask about and in what order
- How do we decide?
- What makes one decision tree better than another: number of nodes? number of leaves? maximum depth?

<u>ID3</u> / <u>C4.5</u> / J48 Algorithm

- Greedy algorithm for decision tree construction developed by Ross Quinlan 1987-1993
- Top-down construction of tree by recursively selecting best attribute to use at current node
 - Once attribute selected for current node, generate child nodes, one for each possible attribute value
 - Partition examples using values of attribute, & assign these subsets of examples to the child nodes
 - Repeat for each child node until examples associated with a node are all positive or negative

Choosing best attribute

- Key problem: choose attribute to split given set of examples
- Possibilities for choosing attribute:
 - -Random: Select one at random
 - **Least-values:** one with smallest # of possible values
 - -Most-values: one with largest # of possible values
 - -Max-gain: one with largest expected information gain
 - -Gini impurity: one with smallest gini impurity value
- The last two measure the homogeneity of the target variable within the subsets
- The ID3 and C4.5 algorithms uses max-gain

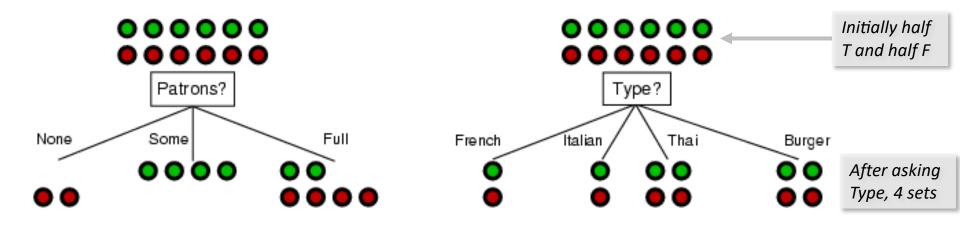
A Simple Example

For this data, is it better to start the tree by asking about the restaurant **type** or its current **number of patrons**?

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Choosing an attribute

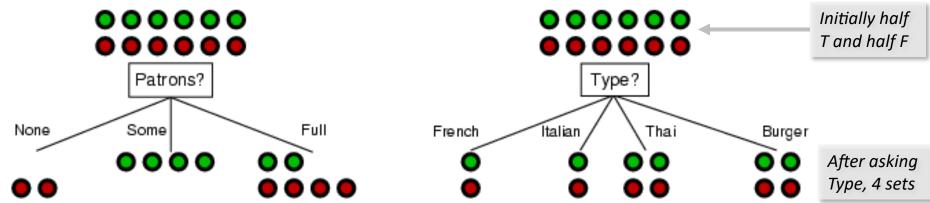
Idea: good attribute choice splits examples into subsets that are as close to *all of one type* as possible, e.g., for binary attributes, all T or all F



Which is better: asking about *Patrons* or *Type?*

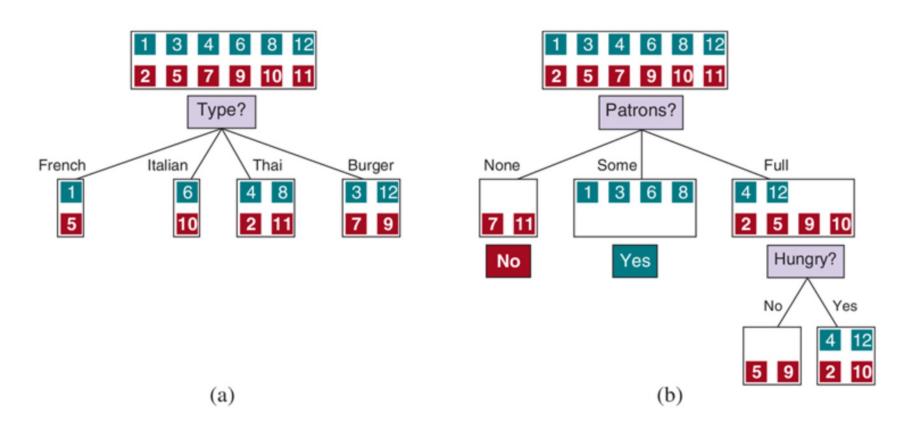
Choosing an attribute

Idea: good attribute choice splits examples into subsets that are as close to *all of one type* as possible, e.g., for binary attributes, all T or all F

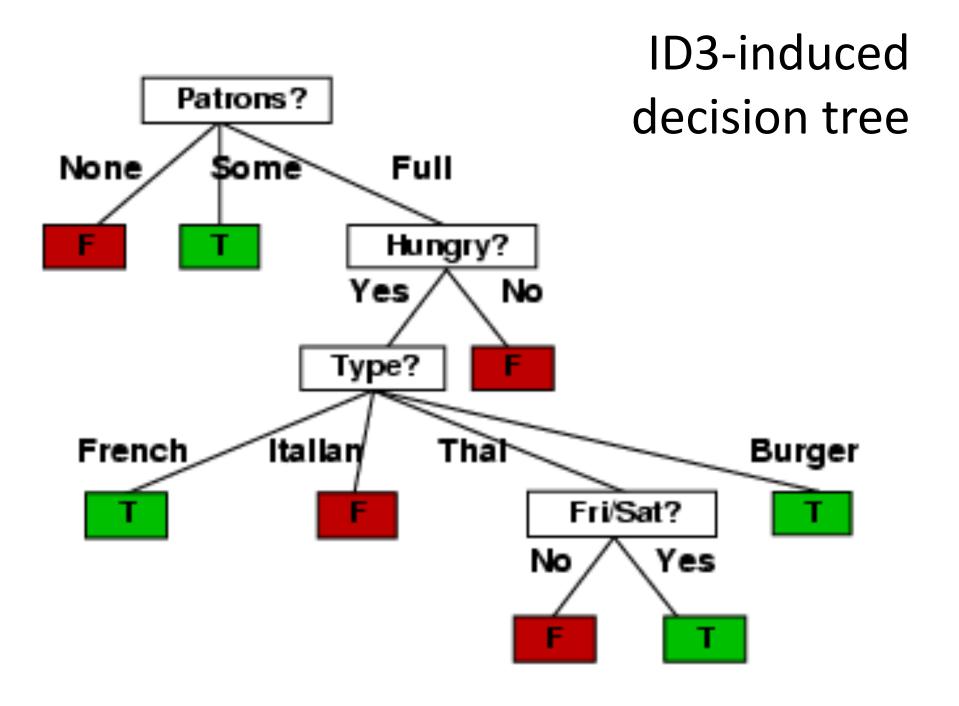


- Patrons: for six examples we know the answer and for six we can predict with probability 0.67
- **Type:** our prediction is no better than chance (0.50)

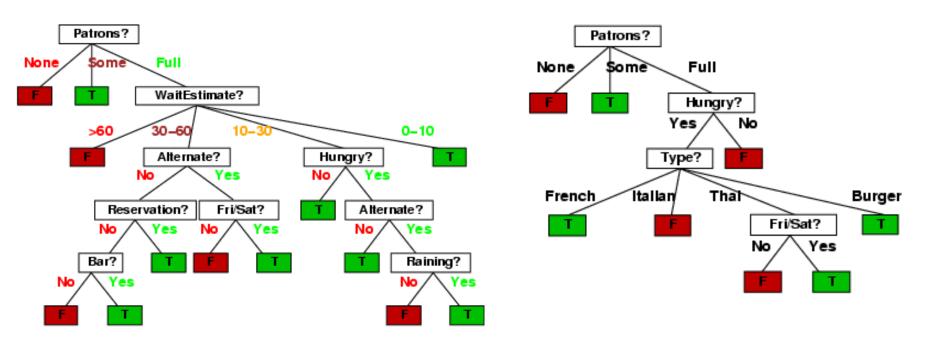
Choosing Patrons yields more information



The ID3 algorithm used this to decide what attribute to ask about next when building a decision tree



Compare the two Decision Trees



Human-generated decision tree

ID3-generated decision tree

- Intuitively, ID3 tree looks better: it's shallower and has fewer nodes
- ID3 uses information theory to decide which question is best to ask next

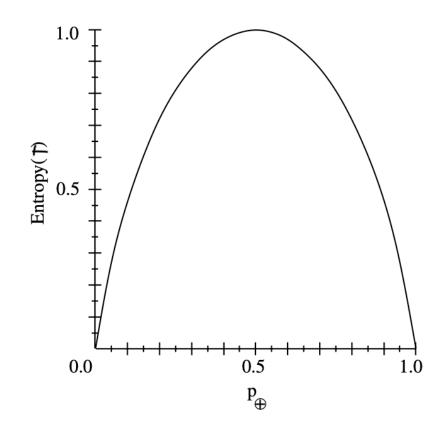
Information gain in knowing an attribute

- Gain(X,T) = Info(T) Info(X,T) is difference of
 - Info(T): info needed to identify T's class
 - Info(X,T): info needed to identify T's class after attribute X's value known
- This is gain in information due to knowing value of attribute X
- Used to rank attributes and build DT where each node uses attribute with greatest gain of those not yet considered in path from root
- goal: create small DTs to minimize questions

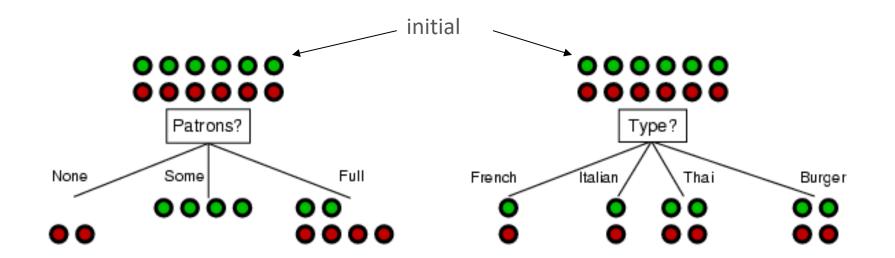
Information Gain

Info(T) = Entropy (T)
=
$$-\sum_{c} \widehat{p_c} \log_2 \widehat{p_c}$$

Info(X, T) = expected reduction in entropy due to sorting on X = $\sum_{i} \frac{|T_i|}{|T|} \text{Info}(T_i)$



Information Gain



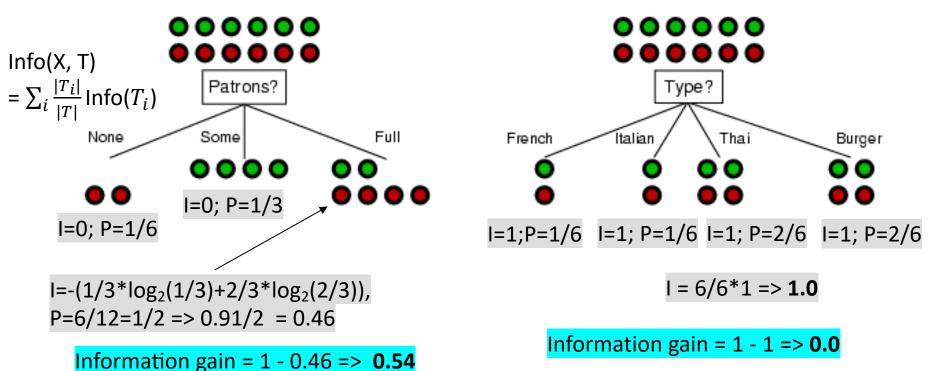
- Initially half of examples are stay and half leave
- After knowing Type?, still half are stay and half leave
 We are no wiser for knowing Type
- After knowing Patrons?, we know the class for six and know a likely class for the other six We've learned something, but need more info if Patrons=Full ©

Information Gain

$$I = Info(T)$$

$$= -\sum_{c} \widehat{p_c} \log_2 \widehat{p_c}$$

$$I = -(.5*log_2(.5) + .5*log_2(.5)) = 0.5+0.5 => 1.0$$



- Information gain for asking Patrons = 0.54, for asking Type = 0
- Note: If only one of the N categories has any instances, the information entropy is always 0

Extensions of ID3

- Using other selection metric gain ratios, e.g., gini impurity metric
- Handle real-valued data
- Noisy data and overfitting
- Generation of rules
- Setting parameters
- Cross-validation for experimental validation of performance
- **C4.5**: extension of ID3 accounting for unavailable values, continuous attribute value ranges, pruning of decision trees, rule derivation, etc.

Real-valued data?

- Many ML systems work only on nominal data
- We often classify data into one of 4 basic types:
 - Nominal data is named, e.g., representing restaurant type as Thai, French, Italian, Burger
 - —Ordinal data has a well-defined sequence: small, medium, large
 - Discrete data is easily represented by integers
 - -Continuous data is captured by real numbers
- There are others, like intervals: age 0-3, 3-5, ...
- Handling some types may need new techniques

Real-valued => Nominal Data

For ML systems that expect nominal data:

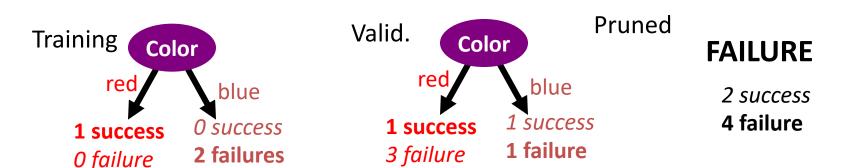
- Select thresholds defining intervals so each becomes a discrete value of attribute
- Use heuristics: e.g., always divide into quartiles
- Use domain knowledge: e.g., divide age into infant (0-2), toddler (2-5), school-aged (5-8)
- Or treat this as another learning problem
 - Try different ways to discretize continuous variable; see which yield better results w.r.t. some metric
 - E.g., try midpoint between every pair of values

Avoiding Overfitting

- Remove obviously irrelevant features
 - E.g., remove 'year observed', 'month observed', 'day observed', 'observer name' from the attributes used
- Get more training data
- Pruning lower nodes in a decision tree
 - E.g., if info. gain of best attribute at a node is below a threshold, stop and make this node a leaf rather than generating children nodes

Pruning decision trees

- Pruning a decision tree is done by replacing a whole subtree by a leaf node
- Replacement takes place if the expected error rate in the subtree is greater than in the single leaf, e.g.,
 - Training data: 1 training red success and 2 training blue failures
 - Validation data: 3 red failures and one blue success
 - Consider replacing subtree by a single node indicating failure
- After replacement, only 2 errors instead of 4



Summary: decision tree learning

- Still widely used learning methods in practice for problems with relatively few features
- Strengths
 - Fast and easy to implement
 - Simple model: translate to a set of rules
 - Useful: empirically valid in many commercial products
 - Robust: handles noisy data
 - Explainable: easy for people to understand
- Weaknesses
 - Large decision trees may be hard to understand
 - Requires fixed-length feature vectors
 - Non-incremental, adding one new feature requires rebuilding entire tree

ADDED INFORMATION

Information theory 101

- For n equally probable possible messages or data values, each has probability 1/n
- Def: Information of a message is -log₂(p) = log₂(n)
 e.g., with 16 messages, then log(16) = 4 and we need 4
 bits to identify/send each message
- What if the messages are not equally likely?
- For **probability distribution P** $(p_1, p_2...p_n)$ for n messages, its information $(H \text{ or } \underline{information } \underline{entropy})$ is:

$$I(P) = -(p_1 * log(p_1) + p_2 * log(p_2) + .. + p_n * log(p_n))$$

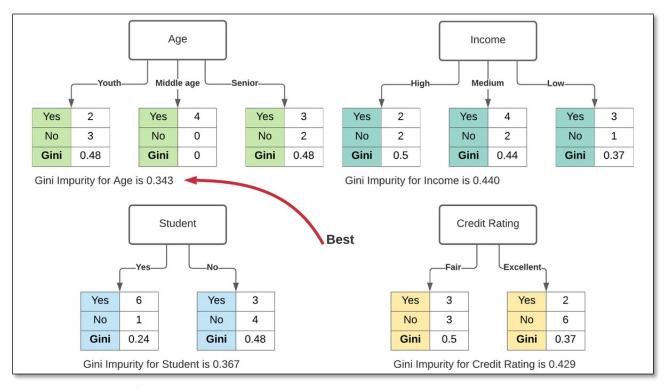
Information entropy of a distribution

$$I(P) = -(p_1 * log(p_1) + p_2 * log(p_2) + .. + p_n * log(p_n))$$

- Examples:
 - If P is (0.5, 0.5) then I(P) = -(0.5*1 + 0.5*1) = 1
 - If P is (1, 0) then I(P) = 1*0 + 0*log(0) = 0
- More uniform probability distribution, greater its information: more information is conveyed by a message telling you which event actually occurred
- Entropy is the average number of bits/message needed to represent a stream of messages

Gini Impurity Metric of a Dataset

- Number between 0-0.5, lower is better
- Indicates likelihood of new data item being misclassified if given random class label according to class distribution
- Very similar to information gain, slightly faster to compute



DT to decide if someone a good credit risk based on 4 properties