CMSC 471:

 Machine LearningKMA Solaiman - ksolaima@umbc.edu

Experimenting with Machine Learning Models

All your data

Training Data

Test
Data

Rule \#1

Evaluation methodology (3)

Common variation on methodology:

1. Collect set of examples with correct classifications
2. Randomly divide it into two disjoint sets: development \& test; further divide development into devtrain \& devtest
3. Apply ML to devtrain, creating hypothesis H
4. Measure performance of H w.r.t. devtest data
5. Modify approach, repeat 3-4 as needed
6. Final test on test data

Evaluation methodology (4)

C - Only devtest data used for evalua-

1. tion during system development

- When all development has ended, test data used for final evaluation
- Ensures final system not influenced by test data

3. - If more development needed, get
4. new dataset!
devtest data
5. Modify approach, repeat 3-4 as needed
6. Final test on test data

Zoo evaluation

train_and_test(learner, data, start, end) uses data[start:end] for test and rest for train
>>> dtl = DecisionTreeLearner
>>> train_and_test(dtl(), zoo, 0, 10)
1.0
>>> train_and_test(dtl(), zoo, 90, 100)
0.80000000000000004
>>> train_and_test(dtl(), zoo, 90, 101)
0.81818181818181823
>>> train_and_test(dtl(), zoo, 80, 90)
0.90000000000000002

Zoo evaluation

train_and_test(learner, data, start, end) uses data[start:end] for test and rest for train

- We hold out 10 data items for test; train on the other 91; show the accuracy on the test data
- Doing this four times for different test subsets shows accuracy from 80% to 100%
- What's the true accuracy of our approach?

K-fold Cross Validation

- Problems:
- getting ground truth data expensive
- need different test data for each test
- experiments needed to find right feature space \& parameters for ML algorithms
- Goal: minimize training+test data needed
- Idea: split training data into K subsets; use K-1 for training and one for development testing
- Repeat K times and average performance
- Common K values are 5 and 10

All Data

Training data

Test data

Zoo evaluation

- AIMA code has a cross_validation function that runs K-fold cross validation
- cross_validation(learner, data, K, N) does N iterations, each time randomly selecting $1 / K$ data points for test, leaving rest for train
>>> cross_validation(dtl(), zoo, 10, 20) 0.95500000000000007
- This is a very common approach to evaluating the accuracy of a model during development
- Best practice is still to hold out a final test data set

Leave one out Cross Validation

- AIMA code also has a leave1out function that runs a different set of experiments to estimate accuracy of the model
- leave1out(learner, data) does len(data) trials, each using one element for test, rest for train

$$
\begin{aligned}
& \text { >>> leavelout(dtl(), zoo) } \\
& 0.97029702970297027
\end{aligned}
$$

- K-fold cross validation can be too pessimistic, since it only trains with 80% or 90% of the data
- The leave one out evaluation is an alternative

Learning curve (1)

A learning curve shows accuracy on test set as a function of training set size or (for neural networks) running time

Learning curve

- When evaluating ML algorithms, steeper learning curves are better
- They represents faster learning with less data

Here the system with the red curve is better since it requires less data to achieve desired accuracy

EVALUATION METRICS

Classification Evaluation: the 2-by-2 contingency table

Let's assume there are two classes/labels

Assume is the "positive" label

Given X, our classifier predicts either label

$$
p(\bigcirc \mid x) \text { vs. } p(\bigcirc \mid x)
$$

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Actually
Correct

Actually
 Incorrect

Selected/
Guessed
Not selected/
not guessed

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Actually
Correct

Actually

Incorrect
Selected/
Guessed
True Positive
Attual (TP)
Guessed
Not selected/
not guessed

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct

Actually
 Incorrect

Selected/
 Guessed

True Positive
False Positive
(TP)
Guessed

A
Guessed

Not selected/
not guessed

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Selected/
 Guessed

Not selected/ not guessed

Actually
Correct

Actually

Incorrect
True Positive
False Positive

Guessed

(FP)

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct

Actually

Incorrect

Selected/
 Guessed

Not selected/
not guessed

True Positive (TP) Guessed
False Negative (FN)

False Positive

Guessed
True Negative
O (TN)
Guessed

Classification Evaluation:

 the 2-by-2 contingency table
What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct

Actually
 Incorrect

Selected/
 Guessed
 True Positive
 False Positive
 (TP)
 Guessed

 (FP)
 Guessed

Not selected/ False Negative
not guessed
(FN)
Guessed

True Negative
$\underset{\text { Actual }}{\bigcirc}$ (TN)
Guessed

Construct this table by counting the number of TPs, FPs, FNs, TNs

Contingency Table Example

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct
 Actually
 Incorrect

Selected/
Guessed

Not selected/ False Negative

True Positive (TP) (FN)

False Positive (FP) not guessed

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct
 Actually
 Incorrect

Selected/
Guessed

Not selected/ False Negative

True Positive
(TP) = 2 (FN)

False Positive (FP) not guessed

True Negative
(TN)

Contingency Table Example

 Predicted:Actual:

What is the actual label?

What label does our system predict? (\downarrow)

Actually
 Correct
 Actually
 Incorrect

Selected/
Guessed

True Positive
(TP) = 2
Not selected/ False Negative not guessed
(FP) = 1
False Positive

True Negative

Contingency Table Example

Predicted:

--

Actual:

What is the actual label?

What label does our system predict? (\downarrow)
Actually
Correct
Actually
Incorrect

Selected/
Guessed

True Positive
(TP) = 2
(FP) = 1
True Negative (TN)

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)
Actually
Correct
Actually
Incorrect

Selected/
Guessed

Not selected/ False Negative

True Positive

$$
(T P)=2
$$

$$
(F N)=1
$$

False Positive
(FP) = 1 not guessed

True Negative
$(\mathrm{TN})=1$

Contingency Table Example

Predicted:
Actual:

What is the actual label?

What label does our system predict? (\downarrow)
Actually
Correct
Actually
Incorrect

Selected/
Guessed

True Positive

$$
(T P)=2
$$

False Negative

$$
(F N)=1
$$

False Positive
(FP) = 1
True Negative
$(\mathrm{TN})=1$

Classification Evaluation: Accuracy, Precision, and Recall

Accuracy: \% of items correct TP + TN
$\overline{T P+F P+F N+T N}$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)
64		

Classification Evaluation: Accuracy, Precision, and Recall

Accuracy: \% of items correct TP + TN

$$
\overline{T P+F P+F N+T N}
$$

Precision: \% of selected items that are correct
$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)
65		

Classification Evaluation:

Accuracy, Precision, and Recall

Accuracy: \% of items correct TP + TN

$$
\overline{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
$$

Precision: \% of selected items that are correct
$\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}$

Recall: \% of correct items that are selected
TP
$\overline{T P+F N}$

	Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)
Not select/not guessed	False Negative (FN)	True Negative (TN)

Classification Evaluation:

Accuracy, Precision, and Recall

Accuracy: \% of items correct

$$
\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
$$

Precision: \% of selected items that are correct TP

$$
\overline{\mathrm{TP}+\mathrm{FP}}
$$

Min: 0 :
Max: 1 -

Recall: \% of correct items that are selected

TP
$\overline{\mathrm{TP}+\mathrm{FN}}$

				Actually Correct	Actually Incorrect
Selected/Guessed	True Positive (TP)	False Positive (FP)			
Not select/not guessed	False Negative (FN)	True Negative (TN)			

Precision and Recall Present a Tradeoff

Q: Where do you want your ideal model ?

Precision and Recall Present a Tradeoff

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under
 this tradeoff curve

Min AUC: 0 :
 Max AUC: 1 :

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under

Min AUC: 0 :
Max AUC: 1 :
this tradeoff curve

1. Computing the curve You need true labels \& predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

Measure this Tradeoff: Area Under the Curve (AUC)

AUC measures the area under this tradeoff curve

Min AUC: 0 : Max AUC: 1 :

1. Computing the curve You need true labels \& predicted labels with some score/confidence estimate Threshold the scores and for each threshold compute precision and recall
2. Finding the area

How to implement: trapezoidal rule (\& others)

In practice: external library like the sklearn.metrics module

Measure A Slightly Different Tradeoff: ROC-AUC

AUC measures the area under this tradeoff curve

Min ROC-AUC: 0.5 : Max ROC-AUC: 1 :

A combined measure: F

Weighted (harmonic) average of Precision \& Recall

$$
F=\frac{1}{\alpha \frac{1}{P}+(1-\alpha) \frac{1}{R}}
$$

A combined measure: F

Weighted (harmonic) average of Precision \& Recall

$$
F=\frac{1}{\alpha \frac{1}{P}+(1-\alpha) \frac{1}{R}}=\frac{\left(1+\beta^{2}\right) * P * R}{\left(\beta^{2} * P\right)+R}
$$

A combined measure: F

Weighted (harmonic) average of Precision \& Recall

$$
F=\frac{\left(1+\beta^{2}\right) * P * R}{\left(\beta^{2} * P\right)+R}
$$

Balanced F1 measure: $\beta=1$

$$
F_{1}=\frac{2 * P * R}{P+R}
$$

$P / R / F$ in a Multi-class Setting: Micro- vs. Macro-Averaging

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

$P / R / F$ in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.

$$
\text { macroprecision }=\sum_{c} \frac{\mathrm{TP}_{\mathrm{c}}}{\mathrm{TP}_{\mathrm{c}}+\mathrm{FP}_{\mathrm{c}}}=\sum_{c} \text { precision }_{c}
$$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

$$
\text { microprecision }=\frac{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}}{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}+\sum_{\mathrm{c}} \mathrm{FP}_{\mathrm{c}}}
$$

$P / R / F$ in a Multi-class Setting: Micro- vs. Macro-Averaging

Macroaveraging: Compute performance for each class, then average.
macroprecision $=\sum_{c} \frac{\mathrm{TP}_{\mathrm{c}}}{\mathrm{PP}_{\mathrm{c}}+\mathrm{FP}_{\mathrm{c}}}=\sum_{c}$ precision $_{c}$

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.
when to prefer the macroaverage?

Micro- vs. Macro-Averaging: Example

Class 1

	Truth :yes	Truth : no
Classifier: yes	10	10
Classifier: no	10	970

Class 2

	Truth $:$ yes	Truth $:$ no
Classifier: yes	90	10
Classifier: no	10	890

Micro Ave. Table

	Truth :yes	Truth :no
Classifier: yes	100	20
Classifier: no	20	1860

Macroaveraged precision: $(0.5+0.9) / 2=0.7$
Microaveraged precision: 100/120 = . 83
Microaveraged score is dominated by score on frequent classes

Confusion Matrix: Generalizing the 2-by-2 contingency table

Correct Value

\#
\#
\#

\#
\#
\#

Confusion Matrix: Generalizing the 2-by-2 contingency table

Correct Value

		\square
80	9	11
7	86	7
2	8	9

Q: Is this a good result?

Confusion Matrix: Generalizing the 2-by-2 contingency table

Correct Value

		30	40	30
Guessed Value	\bigcirc	25	30	50
		30	35	35

Confusion Matrix: Generalizing the 2-by-2 contingency table

Correct Value

7	3	90
4	8	88
3	7	90

Q: Is this a good result?

