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Some slides courtesy Tim Finin and Frank Ferraro 
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Bayesian Networks:
Directed Acyclic Graphs

𝑥!

𝑥"𝑥# 𝑥$

𝑥%

𝑝 𝑥!, 𝑥", 𝑥#, 𝑥$, 𝑥% =
𝑝 𝑥! 𝑝 𝑥# 𝑝 𝑥" 𝑥!, 𝑥# 𝑝 𝑥$ 𝑥", 𝑥# 𝑝(𝑥%|𝑥", 𝑥$)
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Bayesian Networks:
Directed Acyclic Graphs

𝑥!

𝑥"𝑥# 𝑥$

𝑥%

𝑝 𝑥!, 𝑥", 𝑥#, … , 𝑥$ =&
%

𝑝 𝑥% 	 𝜋(𝑥%))

exact inference in general DAGs is NP-hard

inference in trees can be exact
3



Markov Blanket

xi

Markov blanket of a node x 
is its parents, children, and 

children's parents

The Markov Blanket of a node xi
the set of nodes needed to form 
the complete conditional for a 

variable xi

(in this example, shading does not show 
observed/latent)
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p(        |                                       )

 
=

p(        |                                       )

Given its Markov blanket, 
a node is conditionally 
independent of all other 
nodes in the BN



Fundamental Inference & Learning 
Question

• Compute posterior probability of a node given 
some other nodes

𝑝(𝑄|𝑥!, … , 𝑥")
• Some techniques
– MLE (maximum likelihood estimation)/MAP 

(maximum a posteriori) [covered 2nd]
– Variable Elimination [covered 1st]
– (Loopy) Belief Propagation ((Loopy) BP)
– Monte Carlo
– Variational methods
– …
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Advanced 
topics



Variable Elimination

• Inference: Compute posterior probability of a 
node given some other nodes

𝑝(𝑄|𝑥!, … , 𝑥")
• Variable elimination: An algorithm for exact 

inference
– Uses dynamic programming
– Not necessarily polynomial time!
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Variable Elimination (High-level)

Goal: 𝑝(𝑄|𝑥!, … , 𝑥")
(The word “factor” is used for each CPT.)
1.Pick one of the non-conditioned, MB variables
2.Eliminate this variable by marginalizing 

(summing) it out from all factors (CPTs) that 
contain it

3.Go back to 1 until no (MB) variables remain
4.Multiply the remaining factors and normalize.
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Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)





Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

Task: Eliminate Fire



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

f1(Fire)
f2(Tampering, Fire, Alarm) 
f3(Fire)

f6(Tampering, Alarm) =

=$
&

𝑓! Fire = 𝑢 𝑓% 𝑇, 𝐹 = 𝑢, 𝐴 𝑓#(𝐹 = 𝑢)

=$
&

𝑝 Fire = 𝑢 𝑝 𝐴	|	𝑇, 𝐹 = 𝑢 𝑝 𝑆 = 𝑦	 𝐹 = 𝑢)



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)
f6(Tampering, Alarm) =

=$
&

𝑝 Fire = 𝑢 𝑝 𝐴	|	𝑇, 𝐹 = 𝑢 𝑝 𝑆 = 𝑦	 𝐹 = 𝑢)

= 𝑝 Fire = 𝑦 𝑝 𝐴	|	𝑇, 𝐹 = 𝑦 𝑝 𝑆 = 𝑦	 𝐹 = 𝑦) +
𝑝 Fire = 𝑛 𝑝 𝐴	|	𝑇, 𝐹 = 𝑛 𝑝 𝑆 = 𝑦	 𝐹 = 𝑛)



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.

13

Goal: P(Tampering ∣ Smoke=true ∧ Report=true)
f6(Tampering, Alarm) =

=$
&

𝑝 Fire = 𝑢 𝑝 𝐴	|	𝑇, 𝐹 = 𝑢 𝑝 𝑆 = 𝑦	 𝐹 = 𝑢)

Tamp. Alarm f6
Yes Yes 𝑝 Fire = 𝑦 𝑝 𝐴 = 𝑦	|	𝑇 = 𝑦	, 𝐹 = 𝑦 𝑝 𝑆 = 𝑦	 𝐹 = 𝑦) +

𝑝 Fire = 𝑛 𝑝 𝐴 = 𝑦|	𝑇 = 𝑦, 𝐹 = 𝑛 𝑝 𝑆 = 𝑦	 𝐹 = 𝑛)

Yes No …
No No …
No Yes …



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.

14

Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

Task: Eliminate Alarm



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

…other computations not 
shown---see the book or 
lecture… 
PM example 9.27



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

Task: Normalize in order 
to compute p(Tampering)

We’ll have a single factor f8(Tampering):

𝑝 𝑇 = 𝑢 =
𝑓'(𝑇 = 𝑢)
∑( 𝑓'(𝑇 = 𝑣)



Variable Elimination: Example

(The word “factor” is used 
for each CPT.)
1. Pick one of the non-

conditioned, MB 
variables 

2. Eliminate this variable 
by marginalizing 
(summing) it out from 
all factors (CPTs) that 
contain it

3. Go back to 1 until no 
(MB) variables remain

4. Multiply the remaining 
factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

Task: Normalize in order to 
compute p(Tampering)

We’ll have a single factor f8(Tampering):

𝑝 𝑇 = 𝑦𝑒𝑠 =
𝑓'(𝑇 = 𝑦𝑒𝑠)

𝑓' 𝑇 = 𝑦𝑒𝑠 + 𝑓'(𝑇 = 𝑛𝑜)



Variable Elimination: Example

• The posterior distribution 
over Tampering is given by

𝑃 𝑇𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔 = 𝑢 	𝑓#(𝑇𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔 = 𝑢)
∑$ 𝑃 𝑇𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔 = 𝑣 	𝑓#(𝑇𝑎𝑚𝑝𝑒𝑟𝑖𝑛𝑔 = 𝑣)
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Another example
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Learning Bayesian networks 

• Given training set
• Find graph that best matches D
– model selection 
– parameter estimation
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Learning Bayesian Networks
•Describe a BN by specifying its (1) structure and (2) 

conditional probability tables (CPTs)
• Both can be learned from data, but

–learning structure much harder than learning parameters
–learning when some nodes are hidden, or with missing data 
harder still

• Four cases:
Structure Observability Method
Known Full             Maximum Likelihood Estimation
Known Partial          EM (or gradient ascent)
Unknown Full             Search through model space 
Unknown Partial          EM + search through model 
space 
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Variations on a theme
• Known structure, fully observable: only need to 

do parameter estimation
• Unknown structure, fully observable: do heuristic 

search through structure space, then parameter 
estimation

• Known structure, missing values: use expectation 
maximization (EM) to estimate parameters

• Known structure, hidden variables: apply adaptive 
probabilistic network (APN) techniques

• Unknown structure, hidden variables: too hard to 
solve!
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Fundamental Inference Question

• Compute posterior probability of a node given 
some other nodes

𝑝(𝑄|𝑥!, … , 𝑥")
• Some techniques
– MLE (maximum likelihood estimation)/MAP 

(maximum a posteriori) [covered 2nd]
– Variable Elimination [covered 1st]
– (Loopy) Belief Propagation ((Loopy) BP)
– Monte Carlo
– Variational methods
– …

25

Advanced 
topics



Parameter estimation
• Assume known structure
• Goal: estimate BN parameters q
– entries in local probability models, P(X | Parents(X))

• A parameterization q is good if it is likely to 
generate the observed data:

• Maximum Likelihood Estimation (MLE) Principle: 
Choose q*  so as to maximize L

Õ==
m

mxPDPDL )|][()|():( qqq

i.i.d. samples
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Parameter estimation II
• The likelihood decomposes according to the structure 

of the network
→ we get a separate estimation task for each parameter

• The MLE (maximum likelihood estimate) solution for 
discrete data & RV values:
– for each value x of a node X
– and each instantiation u of Parents(X)

– Just need to collect the counts for every combination of 
parents and children observed in the data

– MLE is equivalent to an assumption of a uniform prior over 
parameter values

)(
),(*

| uN
uxN

ux =q sufficient statistics
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Estimating Probability of Heads 
X=1 X=0 



Estimating θ = P(X=1) 
Test A:  
  100 flips: 51 Heads (X=1), 49 Tails (X=0) 
 
 
Test B:  
  3 flips:  2 Heads (X=1), 1 Tails (X=0) 

X=1 X=0 



Maximum Likelihood Estimation 
P(X=1) = θ        P(X=0) = (1-θ) 
 
Data D:  
 
 
 
 
Flips produce data D with        heads,        tails 
•  flips are independent, identically distributed 1’s and 0’s 

(Bernoulli) 
•        and        are counts that sum these outcomes (Binomial) 

X=1 X=0 



Maximum Likelihood Estimate for Θ 

[C. Guestrin]  



hint: 



Summary:  
Maximum Likelihood Estimate 

X=1 X=0 
P(X=1) = θ 

P(X=0) = 1-θ 
(Bernoulli) 

 



Learning:
Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:
• Observe some data 𝒳
• Compute some distribution 𝑔(𝒳) to {predict, 

explain, generate}	𝒳
• Assume 𝑔 is controlled by parameters 𝜙, i.e., 
𝑔%(𝒳)
– Sometimes written 𝑔(𝒳;𝜙)

• Learning appropriate value(s) of 𝜙 allows you to 
GENERALIZE about 𝒳



Learning:
Maximum Likelihood Estimation (MLE)

Central to machine learning:
• Observe some data (𝒳,𝒴)
• Compute some function 𝑓(𝒳) to {predict, explain, 

generate} 𝒴
• Assume 𝑓 is controlled by parameters 𝜃, i.e., 𝑓&(𝒳)
– Sometimes written 𝑓(𝒳; 𝜃)



Learning Parameters for the Die Model

𝑝 𝑤!, 𝑤", … , 𝑤$ = 𝑝 𝑤! 𝑝 𝑤" ⋯𝑝 𝑤$ =&
%

𝑝 𝑤%

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing log-
likelihood a reasonable 

thing to do?



Learning Parameters for the Die Model

𝑝 𝑤!, 𝑤", … , 𝑤$ = 𝑝 𝑤! 𝑝 𝑤" ⋯𝑝 𝑤$ =&
%

𝑝 𝑤%

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing log-
likelihood a reasonable 

thing to do?

A: Develop a good model 
for what we observe



Learning Parameters for the Die Model: 
Maximum Likelihood (Intuition)

𝑝 𝑤!, 𝑤", … , 𝑤$ = 𝑝 𝑤! 𝑝 𝑤" ⋯𝑝 𝑤$ =&
%

𝑝 𝑤%

maximize (log-) likelihood to learn the probability parameters

p(1) = ?

p(3) = ?

p(5) = ?

p(2) = ?

p(4) = ?

p(6) = ?

If you observe 
these 9 rolls…

…what are “reasonable” 
estimates for p(w)?



Learning Parameters for the Die Model: 
Maximum Likelihood (Intuition)

p(1) = 2/9

p(3) = 1/9

p(5) = 1/9

p(2) = 1/9

p(4) = 3/9

p(6) = 1/9

maximum 
likelihood 
estimates

𝑝 𝑤!, 𝑤", … , 𝑤$ = 𝑝 𝑤! 𝑝 𝑤" ⋯𝑝 𝑤$ =&
%

𝑝 𝑤%

maximize (log-) likelihood to learn the probability parameters

If you observe 
these 9 rolls…

…what are “reasonable” 
estimates for p(w)?



Learning:
Maximum Likelihood Estimation (MLE)
Core concept in intro statistics:
• Observe some data 𝒳
• Compute some distribution 
𝑔(𝒳) to {predict, explain, 
generate}	𝒳

• Assume 𝑔 is controlled by 
parameters 𝜙, i.e., 𝑔=(𝒳)
– Sometimes written 𝑔(𝒳;𝜙)

• Learning appropriate 
value(s) of 𝜙 allows you to 
GENERALIZE about 𝒳

How do we “learn 
appropriate value(s) 

of 𝜙?”
Many different options: a 
common one is maximum 
likelihood estimation (MLE)
• Find values 𝜙 s.t. 
𝑔=(𝒳 = {𝑥>, … , 𝑥?}) is 
maximized

• Independence assumptions 
are very useful here!

• Logarithms are also useful!



Learning:
Maximum Likelihood Estimation (MLE)
Core concept in intro statistics:
• Observe some data 𝒳
• Compute some distribution 
𝑔(𝒳) to {predict, explain, 
generate}	𝒳

• Assume 𝑔 is controlled by 
parameters 𝜙, i.e., 𝑔=(𝒳)
– Sometimes written 𝑔(𝒳;𝜙)

• MLE: Find values 𝜙 s.t. 
𝑔=(𝒳 = {𝑥>, … , 𝑥?}) is 
maximized

Example: How much does it 
snow?
• 𝒳 = 𝑥>, 𝑥@, … , 𝑥?  are 

snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔 
correctly models, as 
accurately as possible, the 
amount of snow likely



Learning:
Maximum Likelihood 

Estimation (MLE)
Core concept in intro statistics:
• Observe some data 𝒳
• Compute some distribution 
𝑔(𝒳) to {predict, explain, 
generate}	𝒳

• Assume 𝑔 is controlled by 
parameters 𝜙, i.e., 𝑔=(𝒳)
– Sometimes written 𝑔(𝒳;𝜙)

• MLE: Find values 𝜙 s.t. 
𝑔=(𝒳 = {𝑥>, … , 𝑥?}) is 
maximized

Example: How much does it 
snow?
• 𝒳 = 𝑥>, 𝑥@, … , 𝑥?  are 

snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔 
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each 𝑥A is 
independent from all others

max
=

0
AB>

?

log 𝑔=(𝑥A)

Advanced 
topic



MLE Snowfall Example
Example: How much does it 
snow?
• 𝒳 = 𝑥!, 𝑥", … , 𝑥#  are 

snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔 
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each 𝑥$ is 
independent from all 
others

max
%

0
$&!

#

log 𝑔%(𝑥$)

Q: Why is taking logarithms 
okay?

Q: What other assumptions, 
or decisions, do we need to 
make?

Advanced 
topic



MLE Snowfall Example
Example: How much does it 
snow?
• 𝒳 = 𝑥>, 𝑥@, … , 𝑥?  are 

snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔 
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each 𝑥A is 
independent from all 
others, but all from g

max
=

0
AB>

?

log 𝑔=(𝑥A)

Q: Why is taking logarithms 
okay?

Q: What other assumptions, or 
decisions, do we need to 
make?

𝑥A	is positive, real-valued. 
What’s a faithful probability 
distribution for 𝑥A?
• Normal? ✘
• Gamma? ✓
• Exponential? ✓
• Bernoulli? ✘
• Poisson? ✘

Advanced 
topic



MLE Snowfall Example
Example: How much does it 
snow?
• 𝒳 = 𝑥>, 𝑥@, … , 𝑥?  are 

snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔 
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each 𝑥A is 
independent from all 
others, but all from g

max
=

0
AB>

?

log 𝑔=(𝑥A)

Q: Why is taking logarithms 
okay?

Q: What other assumptions, or 
decisions, do we need to 
make?

𝑥A	is positive, real-valued. 
What’s a faithful probability 
distribution for 𝑥A?
• Normal? ✘
• Gamma? ✓
• Exponential? ✓
• Bernoulli? ✘
• Poisson? ✘

𝑝 𝑋 = 𝑥 =
𝑥)*!exp(−𝑘𝜃 )

𝜃)Γ(𝑘)

Advanced 
topic



MLE Snowfall Example
Example: How much does it 
snow?
• 𝒳 = 𝑥!, 𝑥", … , 𝑥#  are 

snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔 
correctly models, as accurately 
as possible, the amount of 
snow likely

• Assumption: each 𝑥$ is 
independent from all others, 
but all from g

max
%

-
$&!

#

log 𝑔%(𝑥$)

Q: Why is taking logarithms okay?

Q: What other assumptions, or 
decisions, do we need to make?

𝑥$ 	is positive, real-valued. What’s 
a faithful/nice-to-compute-and-
good-enough probability 
distribution for 𝑥$?
• Normal? ✘ ✓
• Gamma? ✓ ?
• Exponential? ✓ ?
• Bernoulli? ✘ ✘
• Poisson? ✘ ✘

𝑝 𝑋 = 𝑥 =
1
2𝜋𝜎

exp(
− 𝑥 − 𝜇 2

2𝜎2
)

Advanced 
topic



MLE Snowfall Example
Example: How much does 
it snow?
• 𝒳 = 𝑥!, 𝑥", … , 𝑥#  are 

snowfall values from 
the previous N storms

• Goal: learn 𝜙 such that 
𝑔 correctly models, as 
accurately as possible, 
the amount of snow 
likely

• Assumption: each 𝑥$ is 
independent from all 
others, but all from g

max
%

-
$&!

#

log 𝑔%(𝑥$)

𝑥$ 	~Normal 𝜇, 𝜎"

max
(6,8+)

-
$&!

#

logNormal6,8+(𝑥$) =

Advanced 
topic



MLE Snowfall Example
Example: How much does 
it snow?
• 𝒳 = 𝑥!, 𝑥", … , 𝑥#  are 

snowfall values from 
the previous N storms

• Goal: learn 𝜙 such that 
𝑔 correctly models, as 
accurately as possible, 
the amount of snow 
likely

• Assumption: each 𝑥$ is 
independent from all 
others, but all from g

max
%

-
$&!

#

log 𝑔%(𝑥$)

𝑥$ 	~Normal 𝜇, 𝜎"

max
(6,8+)

-
$&!

#

logNormal6,8+(𝑥$) =

max
(6,8+)

-
$&!

#
− 𝑥$ − 𝜇 "

𝜎" −𝑁 log 𝜎 = 𝐹

Advanced 
topic



MLE Snowfall Example
Example: How much does 
it snow?
• 𝒳 = 𝑥!, 𝑥", … , 𝑥#  are 

snowfall values from 
the previous N storms

• Goal: learn 𝜙 such that 
𝑔 correctly models, as 
accurately as possible, 
the amount of snow 
likely

• Assumption: each 𝑥$ is 
independent from all 
others, but all from g

max
%

-
$&!

#

log 𝑔%(𝑥$)

𝑥$ 	~Normal 𝜇, 𝜎"

max
(6,8+)

-
$&!

#

logNormal6,8+(𝑥$) =

max
(6,8+)

-
$&!

#
− 𝑥$ − 𝜇 "

𝜎" −𝑁 log 𝜎 = 𝐹

Q: How do we find 𝜇, 𝜎"?

Advanced 
topic



MLE Snowfall Example
Example: How much does it 
snow?
• 𝒳 = 𝑥!, 𝑥", … , 𝑥#  are 

snowfall values from the 
previous N storms

• Goal: learn 𝜙 such that 𝑔 
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each 𝑥$ is 
independent from all 
others, but all from g

max
%

3
$&!

#

log 𝑔%(𝑥$)

𝑥$	~Normal 𝜇, 𝜎"

max
((,*3)

3
$&!

#

logNormal(,*3(𝑥$) =

max
((,*3)

3
$&!

#
− 𝑥$ − 𝜇 "

𝜎"
− 𝑁 log 𝜎 = 𝐹

Q: How do we find 𝜇, 𝜎"?

A: Differentiate and find that

	 @𝜇 =
∑$ 𝑥$
𝑁

𝜎" =
∑$ 𝑥$ − @𝜇 "

𝑁

Advanced 
topic



Learning:
Maximum Likelihood Estimation (MLE)

Central to machine learning:
• Observe some data (𝒳,𝒴)
• Compute some function 𝑓(𝒳) to {predict, explain, 

generate} 𝒴
• Assume 𝑓 is controlled by parameters 𝜃, i.e., 𝑓&(𝒳)
– Sometimes written 𝑓(𝒳; 𝜃)



Learning:
Maximum Likelihood Estimation (MLE)

Central to machine learning:
• Observe some data (𝒳,𝒴)
• Compute some function 𝑓(𝒳) to {predict, explain, 

generate} 𝒴
• Assume 𝑓 is controlled by parameters 𝜃, i.e., 𝑓<(𝒳)
– Sometimes written 𝑓(𝒳; 𝜃)

• Parameters are learned to minimize error (loss) ℓ

 

Advanced topic



Learning:
Maximum Likelihood Estimation (MLE)
Example: Can I sleep in the next 
time it snows/is school canceled?
• 𝒳 = 𝑥!, 𝑥", … , 𝑥#  are 

snowfall values from the 
previous N storms

• 𝒴 = 𝑦!, 𝑦", … , 𝑦#  are 
closure results from the 
previous N storms

• Goal: learn 𝜃 such that 𝑓 
correctly predicts, as 
accurately as possible, if 
UMBC will close in the next 
storm:
– 𝑦!"#∗  from 𝑥!"#

• If we assume the 
output of 𝑓 is a 
probability distribution 
on 𝒴|𝒳…
Ø𝑓 𝒳 →
{𝑝(yes|𝒳), 𝑝(no|𝒳)}

• Then re: 𝜃, {predicting, 
explaining, generating} 
𝒴 means… what?



Some software tools
• Netica: Windows app for working with Bayes-

ian belief networks and influence diagrams
– Commercial product, free for small networks
– Includes graphical editor, compiler, inference 

engine, etc.
– To run in OS X or Linus you need Wire or Crossover

• Hugin: free demo versions for Linux, Mac, and 
Windows are available

• BBN.ipynb based on an AIMA notebook

http://www.norsys.com/
http://www.hugin.com/
https://colab.research.google.com/drive/1FPTgvim1F7M8bmyudPeC07dkEVe58mvu


Dyspnea is difficult or 
labored breathing



Same BBN model in Hugin app

See the 4-minute HUGIN Tutorial on YouTube

https://www.youtube.com/watch?v=Fs4QZIs8Kj0


Python Code
See this AIMA notebook on colab showing how to 
construct this BBN Network in Python

Judea Pearl example
There’s is a house with a 
burglar alarm that can be 
triggered by a burglary or 
earthquake. If it sounds, 
one or both neighbors John 
& Mary, might call the 
owner to say the alarm is 
sounding.

https://colab.research.google.com/drive/1FPTgvim1F7M8bmyudPeC07dkEVe58mvu



