CMSC 471:

Reasoning with Bayesian Belief Network

Chapters 12 \& 13
KMA Solaiman - ksolaima@umbc.edu

Bayesian Networks:
 Directed Acyclic Graphs

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=
$$

$$
p\left(x_{1}\right) p\left(x_{3}\right) p\left(x_{2} \mid x_{1}, x_{3}\right) p\left(x_{4} \mid x_{2}, x_{3}\right) p\left(x_{5} \mid x_{2}, x_{4}\right)
$$

Bayesian Networks:
 Directed Acyclic Graphs

$$
p\left(x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right)=\prod_{i} p\left(x_{i} \mid \pi\left(x_{i}\right)\right)
$$

exact inference in general DAGs is NP-hard inference in trees can be exact

Markov Blanket

Markov blanket of a node x is its parents, children, and children's parents

The Markov Blanket of a node x_{i} the set of nodes needed to form the complete conditional for a variable x_{i}

$=$

Given its Markov blanket, a node is conditionally independent of all other nodes in the BN

Fundamental Inference \& Learning Question

- Compute posterior probability of a node given some other nodes

$$
p\left(Q \mid x_{1}, \ldots, x_{j}\right)
$$

- Some techniques
- MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered $2^{\text {nd }}$]
- Variable Elimination [covered $1^{\text {st] }}$]
- (Loopy) Belief Propagation ((Loopy) BP)
- Monte Carlo
- Variational methods

Variable Elimination

- Inference: Compute posterior probability of a node given some other nodes

$$
p\left(Q \mid x_{1}, \ldots, x_{j}\right)
$$

- Variable elimination: An algorithm for exact inference
- Uses dynamic programming
- Not necessarily polynomial time!

Variable Elimination (High-level)

$$
\text { Goal: } p\left(Q \mid x_{1}, \ldots, x_{j}\right)
$$

(The word "factor" is used for each CPT.)

1. Pick one of the non-conditioned, MB variables
2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
3. Go back to 1 until no (MB) variables remain 4. Multiply the remaining factors and normalize.

Variable Elimination: Example

(The word "factor" is used for each CPT.)

1. Pick one of the nonconditioned, MB variables
2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
3. Go back to 1 until no (MB) variables remain

4. Multiply the remaining factors and normalize.

Goal: P(Tampering | Smoke=true \wedge Report=true)
$P($ Tampering / Smoke $=y \wedge$ Report $=y)$
$=\alpha P\left(\right.$ Term.,$S_{m o k e}=y$, Report $\left.=y\right)$

$$
\begin{array}{r}
=\alpha \sum_{\alpha l f} \sum_{i} P(T, S=y, R=y, A=\alpha, \\
L=l, F=f)
\end{array}
$$

$$
=\alpha P(T) \cdot \sum_{l} P(R=y \mid L=l)
$$

$$
=\alpha \cdot f_{0} \cdot f_{8}=\frac{P(T=u) f_{8}(T=u)}{\sum P(T=u) f_{8}(T=u)}
$$

Variable Elimination: Example

(The word "factor" is used for each CPT.)

1. Pick one of the nonconditioned, MB variables
2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
3. Go back to 1 until no (MB) variables remain
4. Multiply the remaining factors and normalize.

Goal: P(Tampering | Smoke=true \wedge Report=true)

ConditionalProbability	Factor
$P($ Tampering $)$	$f_{0}($ Tampering $)$
$P($ Fire $)$	$f_{1}($ Fire $)$
$P($ Alarm \mid Tampering, Fire $)$	f_{2} (Tampering, Fire, Alarm $)$
$P($ Smoke $=$ yes \mid Fire $)$	f_{3} (Fire $)$
$P($ Leaving \mid Alarm $)$	f_{4} (Alarm, Leaving $)$
$P($ Report $=$ yes \mid Leaving $)$	f_{5} (Leaving $)$

Variable Elimination: Example

(The word "factor" is used for each CPT.)

1. Pick one of the nonconditioned, MB variables
2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it

Goal: P(Tampering | Smoke=true \wedge Report=true)

Task: Eliminate Fire
3. Go back to 1 until no (MB) variables remain
4. Multiply the remaining factors and normalize.

ConditionalProbability	Factor
$P($ Tampering $)$	$f_{0}($ Tampering $)$
$P($ Fire $)$	$f_{1}($ Fire $)$
$P($ Alarm \mid Tampering, Fire $)$	$f_{2}($ Tampering, Fire, Alarm $)$
$P($ Smoke $=$ yes \mid Fire $)$	$f_{3}($ Fire $)$
$P($ Leaving \mid Alarm $)$	$f_{4}($ Alarm, Leaving $)$
$P($ Report $=$ yes \mid Leaving $)$	$f_{5}($ Leaving $)$

Variable Elimination: Example

(The word "factor" is used for each CPT.)

1. Pick one of the nonconditioned, MB variables
2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
3. Go back to 1 until no (MB) variables remain

Goal: P(Tampering | Smoke=true \wedge Report=true)
f1(Fire)
f2(Tampering, Fire, Alarm)
f3(Fire)

4. Multiply the remaining factors and normalize.

ConditionalProbability	Factor
$P($ Tampering $)$	$f_{0}($ Tampering $)$
$P($ Fire $)$	$f_{1}($ Fire $)$
$P($ Alarm \mid Tampering, Fire $)$	$f_{2}($ Tampering, Fire, Alarm $)$
$P($ Smoke $=$ yes \mid Fire $)$	$f_{3}($ Fire $)$
$P($ Leaving \mid Alarm $)$	$f_{4}($ Alarm, Leaving $)$
$P($ Report $=$ yes \mid Leaving $)$	$f_{5}($ Leaving $)$

f6(Tampering, Alarm) $=$

$$
\begin{gathered}
=\sum_{u} f_{1}(\text { Fire }=u) f_{2}(T, F=u, A) f_{3}(F=u) \\
=\sum_{u} p(\text { Fire }=u) p(A \mid T, F=u) p(S=y \mid F=u)
\end{gathered}
$$

Variable Elimination: Example

(The word "factor" is used for each CPT.)

1. Pick one of the nonconditioned, MB variables
2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
3. Go back to 1 until no (MB) variables remain

Goal: P(Tampering | Smoke=true \wedge Report=true) f6(Tampering, Alarm) $=$

$$
\begin{aligned}
= & \sum_{u} p(\text { Fire }=u) p(A \mid T, F=u) p(S=y \mid F=u) \\
= & p(\text { Fire }=y) p(A \mid T, F=y) p(S=y \mid F=y)+ \\
& p(\text { Fire }=n) p(A \mid T, F=n) p(S=y \mid F=n)
\end{aligned}
$$

4. Multiply the remaining factors and normalize.

ConditionalProbability	Factor
$P($ Tampering $)$	$f_{0}($ Tampering $)$
$P($ Fire $)$	$f_{1}($ Fire $)$
$P($ Alarm \mid Tampering, Fire $)$	$f_{2}($ Tampering, Fire, Alarm $)$
$P($ Smoke $=$ yes \mid Fire $)$	$f_{3}($ Fire $)$
$P($ Leaving \mid Alarm $)$	$f_{4}($ Alarm, Leaving $)$
$P($ Report $=$ yes \mid Leaving $)$	$f_{5}($ Leaving $)$

Variable Elimination: Example

(The word "factor" is used for each CPT.)

1. Pick one of the nonconditioned, MB variables
2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
3. Go back to 1 until no (MB) variables remain
4. Multiply the remaining factors and normalize.

ConditionalProbability	Factor
$P($ Tampering $)$	$f_{0}($ Tampering $)$
$P($ Fire $)$	$f_{1}($ Fire $)$
$P($ Alarm \mid Tampering, Fire $)$	$f_{2}($ Tampering, Fire, Alarm $)$
$P($ Smoke $=$ yes \mid Fire $)$	$f_{3}($ Fire $)$
$P($ Leaving \mid Alarm $)$	$f_{4}($ Alarm, Leaving $)$
$P($ Report $=$ yes \mid Leaving $)$	$f_{5}($ Leaving $)$

Goal: P(Tampering | Smoke=true \wedge Report=true)
f6(Tampering, Alarm) $=$
$=\sum_{u} p($ Fire $=u) p(A \mid T, F=u) p(S=y \mid F=u)$

Tamp.	Alarm	$\mathbf{f 6}$
Yes	Yes	$p($ Fire $=y) p(A=y \mid T=y, F=y) p(S=y \mid F=y)+$ $p($ Fire $=n) p(A=y \mid T=y, F=n) p(S=y \mid F=n)$
Yes	No	\ldots

No
No

No
Nes

Variable Elimination: Example

(The word "factor" is used for each CPT.)

1. Pick one of the nonconditioned, MB variables
2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it

Goal: P(Tampering | Smoke=true \wedge Report=true)

Task: Eliminate Alarm
3. Go back to 1 until no (MB) variables remain
4. Multiply the remaining factors and normalize.

ConditionalProbability	Factor
$P($ Tampering $)$	$f_{0}($ Tampering $)$
$P($ Fire $)$	$f_{1}($ Fire $)$
$P($ Alarm \mid Tampering, Fire $)$	$f_{2}($ Tampering, Fire, Alarm $)$
$P($ Smoke $=$ yes \mid Fire $)$	$f_{3}($ Fire $)$
$P($ Leaving \mid Alarm $)$	$f_{4}($ Alarm, Leaving $)$
$P($ Report $=$ yes \mid Leaving $)$	$f_{5}($ Leaving $)$

Variable Elimination: Example

(The word "factor" is used for each CPT.)

1. Pick one of the nonconditioned, MB variables
2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
3. Go back to 1 until no (MB) variables remain
4. Multiply the remaining factors and normalize.

ConditionalProbability	Factor
$P($ Tampering $)$	$f_{0}($ Tampering $)$
$P($ Fire $)$	$f_{1}($ Fire $)$
$P($ Alarm \mid Tampering, Fire $)$	f_{2} (Tampering, Fire, Alarm $)$
$P($ Smoke $=$ yes \mid Fire $)$	f_{3} (Fire $)$
$P($ Leaving \mid Alarm $)$	$f_{4}($ Alarm, Leaving $)$
$P($ Report $=$ yes \mid Leaving $)$	f_{5} (Leaving $)$

...other computations not shown---see the book or lecture...
PM example 9.27

Goal: P(Tampering | Smoke=true \wedge Report=true)

Variable Elimination: Example

(The word "factor" is used for each CPT.)

1. Pick one of the nonconditioned, MB variables
2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
3. Go back to 1 until no (MB) variables remain
4. Multiply the remaining factors and normalize.

ConditionalProbability	Factor
$P($ Tampering $)$	f_{0} (Tampering $)$
$P($ Fire $)$	f_{1} (Fire $)$
$P($ Alarm \mid Tampering, Fire $)$	f_{2} (Tampering, Fire, Alarm $)$
$P($ Smoke $=$ yes \mid Fire $)$	f_{3} (Fire $)$
$P($ Leaving \mid Alarm $)$	f_{4} (Alarm, Leaving $)$
$P($ Report $=$ yes \mid Leaving $)$	f_{5} (Leaving $)$

Goal: P(Tampering | Smoke=true \wedge Report=true)

We'll have a single factor f8(Tampering):

$$
p(T=u)=\frac{f_{8}(T=u)}{\sum_{v} f_{8}(T=v)}
$$

$$
\begin{aligned}
& \text { Task: Normalize in order } \\
& \text { to compute p(Tampering) }
\end{aligned}
$$

Variable Elimination: Example

(The word "factor" is used for each CPT.)

1. Pick one of the nonconditioned, MB variables
2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
3. Go back to 1 until no (MB) variables remain
4. Multiply the remaining factors and normalize.

ConditionalProbability	Factor
$P($ Tampering $)$	$f_{0}($ Tampering $)$
$P($ Fire $)$	$f_{1}($ Fire $)$
$P($ Alarm \mid Tampering, Fire $)$	$f_{2}($ Tampering, Fire, Alarm $)$
$P($ Smoke $=$ yes \mid Fire $)$	$f_{3}($ Fire $)$
$P($ Leaving \mid Alarm $)$	$f_{4}($ Alarm, Leaving $)$
$P($ Report $=$ yes \mid Leaving $)$	f_{5} (Leaving $)$

Goal: P(Tampering | Smoke=true \wedge Report=true)

> Task: Normalize in order to compute \boldsymbol{p} (Tampering)

We'll have a single factor f8(Tampering):

$$
p(T=y e s)=\frac{f_{8}(T=y e s)}{f_{8}(T=y e s)+f_{8}(T=n o)}
$$

Variable Elimination: Example

- The posterior distribution over Tampering is given by
$P($ Tampering $=u) f_{8}($ Tampering $=u)$
$\overline{\sum_{v} P(\text { Tampering }=v) f_{8}(\text { Tampering }=v)}$

Another example

Figure 13.2

$\mathbf{P}($ Burglary \mid JohnCalls $=$ true, MaryCalls $=$ true $)=\langle 0.284,0.716\rangle$.

$$
\begin{gathered}
\mathbf{P}(B \mid j, m)=\alpha \mathbf{P}(B, j, m)=\alpha \sum_{e} \sum_{a} \mathbf{P}(B, j, m, e, a) . \\
P(b \mid j, m)=\alpha \sum_{e} \sum_{n} P(b) P(e) P(a \mid b, e) P(j \mid a) P(m \mid a) . \\
P(b \mid j, m)=\alpha P(b) \sum_{e} P(e) \sum_{a} P(a \mid b, e) P(j \mid a) P(m \mid a) . \\
\mathbf{P}(B \mid j, m)=\alpha \underbrace{\mathbf{P}(B)}_{\mathbf{f}_{1}(B)} \sum_{e} \underbrace{P(e)}_{\mathbf{f}_{2}(E)} \sum_{a} \underbrace{\mathbf{P}(a \mid B, e)}_{\mathbf{f}_{3}(A, B, E)} \underbrace{P(j \mid a)}_{\mathbf{f}_{4}(A)} \underbrace{P(m \mid a)}_{\mathbf{f}_{5}(A)} . \\
\mathbf{P}(B \mid j, m)=\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A) .
\end{gathered}
$$

$$
\begin{aligned}
\mathbf{f}_{6}(B, E) & =\sum_{a} \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A) \\
& =\left(\mathbf{f}_{3}(a, B, E) \times \mathbf{f}_{4}(a) \times \mathbf{f}_{5}(a)\right)+\left(\mathbf{f}_{3}(\neg a, B, E) \times \mathbf{f}_{4}(\neg a) \times \mathbf{f}_{5}(\neg a)\right) .
\end{aligned}
$$

Now we are left with the expression

$$
\mathbf{P}(B \mid j, m)=\alpha \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{6}(B, E) .
$$

- Next, we sum out E from the product of \mathbf{f}_{2} and \mathbf{f}_{6} :

$$
\begin{aligned}
\mathbf{f}_{7}(B) & =\sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{6}(B, E) \\
& =\mathbf{f}_{2}(e) \times \mathbf{f}_{6}(B, e)+\mathbf{f}_{2}(\neg e) \times \mathbf{f}_{6}(B, \neg e)
\end{aligned}
$$

This leaves the expression

$$
\mathbf{P}(B \mid j, m)=\alpha \mathbf{f}_{1}(B) \times \mathbf{f}_{7}(B)
$$

Learning Bayesian networks

- Given training set $\boldsymbol{D}=\{\boldsymbol{x}[1], \ldots, x[\boldsymbol{M}]\}$
- Find graph that best matches \boldsymbol{D}
- model selection
- parameter estimation

Data D

Learning Bayesian Networks

- Describe a BN by specifying its (1) structure and (2) conditional probability tables (CPTs)
- Both can be learned from data, but
-learning structure much harder than learning parameters
-learning when some nodes are hidden, or with missing data harder still
- Four cases:

Structure	Observability	Method
Known	Full	Maximum Likelihood Estimation
Known	Partial	EM (or gradient ascent)
Unknown	Full	Search through model space
Unknown space	Partial	EM + search through model

Variations on a theme

- Known structure, fully observable: only need to do parameter estimation
- Unknown structure, fully observable: do heuristic search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!

Fundamental Inference Question

- Compute posterior probability of a node given some other nodes

$$
p\left(Q \mid x_{1}, \ldots, x_{j}\right)
$$

- Some techniques
- MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered $2^{\text {nd }}$]
- Variable Elimination [covered $1^{\text {st] }}$]
- (Loopy) Belief Propagation ((Loopy) BP)
- Monte Carlo
- Variational methods
- ...

Parameter estimation

- Assume known structure
- Goal: estimate BN parameters θ
- entries in local probability models, $\mathrm{P}(\mathrm{X} \mid$ Parents(X))
- A parameterization θ is good if it is likely to generate the observed data:

$$
L(\theta: D)=P(D \mid \theta)=\prod_{m} P(x[m] \mid \theta)
$$

- Maximum Likelihood Estimation (MLE) Principle: Choose θ^{*} so as to maximize L

Parameter estimation II

- The likelihood decomposes according to the structure of the network
\rightarrow we get a separate estimation task for each parameter
- The MLE (maximum likelihood estimate) solution for discrete data \& RV values:
- for each value x of a node X
- and each instantiation \boldsymbol{u} of Parents (X)

$$
\theta_{x \mid u}^{*}=\frac{\boldsymbol{N}(\boldsymbol{x}, \boldsymbol{u})}{\boldsymbol{N}(\boldsymbol{u})} \text { sufficient statistics }
$$

- Just need to collect the counts for every combination of parents and children observed in the data
- MLE is equivalent to an assumption of a uniform prior over parameter values

Estimating Probability of Heads

- I show you the above coin X, and hire you to estimate the probability that it will turn up heads $(X=1)$ or tails $(X=0)$
- You flip it repeatedly, observing
- it turns up heads α_{1} times
\wedge
- it turns up tails α_{0} times
- Your estimate for $P(X=1)$ is....?

Estimating $\theta=P(X=1)$

Test A:
$\alpha_{1} \quad \alpha_{0}$
100 flips: 51 Heads ($X=1$), 49 Tails ($X=0$)

$$
\frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}=\frac{51}{100} \rightarrow \hat{P}(x=1)=0.51
$$

Test B:
3 flips: 2 Heads $(X=1),{ }_{1}^{\alpha}$ Tails $(X=0)$

$$
=\frac{2}{2+1}=0.666
$$

Maximum Likelihood Estimation

$P(X=1)=\underline{\theta} \quad P(X=0)=(1-\theta)$
Data $\mathrm{D}:=\begin{array}{llll}1 & 0 & 0 & 1 \\ \uparrow & \uparrow & \uparrow & \uparrow\end{array}$
$P(\mathrm{D} \mid \theta)=\theta \cdot(1-\theta) \cdot(1-\theta) \cdot \theta \cdot \theta=\theta^{\alpha_{1}}(1-\theta)^{\alpha_{0}}$

Flips produce data D with α_{1} heads, α_{0} tails

- flips are independent, identically distributed 1 's and 0 's (Bernoulli)
- α_{1} and α_{0} are counts that sum these outcomes (Binomial)

$$
P(D \mid \theta)=P\left(\alpha_{1}, \alpha_{0} \mid \theta\right)=\theta^{\alpha_{1}}(1-\theta)^{\alpha_{0}}
$$

Maximum Likelihood Estimate for Θ

$$
\begin{aligned}
\hat{\theta} & =\arg \max _{\theta} \ln P(\mathcal{D} \mid \theta) \\
& =\arg \max _{\theta} \ln \theta^{\alpha_{H}}(1-\theta)^{\alpha_{T}}
\end{aligned}
$$

■ Set derivative to zero:

$$
\frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=0
$$

[C. Guestrin]

$$
\begin{aligned}
& \hat{\theta}=\arg \max _{\theta} \ln P(D \mid \theta) \quad \text { - Set derivative to zero: } \underset{\frac{d}{d \theta} \ln P(\mathcal{D} \mid \theta)=0}{ } \\
& =\arg \max _{\theta} \underbrace{\ln \left[\theta^{\alpha}\right)}(1-\theta)^{\alpha_{0}}] \\
& \frac{\partial}{\partial \theta} \alpha_{1} \ln \theta+\alpha_{0} \ln (1-\theta) \\
& \alpha_{1} \frac{1}{\theta}+\alpha_{0} \frac{\partial \ln (1-\theta)}{\partial \theta} \\
& \left.0=\alpha_{1} \frac{1}{\theta}-\frac{\alpha_{0}}{1-\theta}\right] \underbrace{\frac{\partial \ln (1-\theta)}{\partial(1-\theta)}}_{\frac{1}{1-\theta}} \cdot \underbrace{\frac{\partial(1-\theta)}{\partial \theta}}_{-1} \\
& \theta=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}
\end{aligned}
$$

Summary:
 Maximum Likelihood Estimate

- Each flip yields boolean value for X

$$
X \sim \text { Bernoulli: } P(X)=\theta^{X}(1-\theta)^{(1-X)}
$$

- Data set D of independent, identically distributed (iid) flips produces α_{1} ones, α_{0} zeros (Binomial)

$$
\begin{aligned}
& P(D \mid \theta)=P\left(\alpha_{1}, \alpha_{0} \mid \theta\right)=\theta^{\alpha_{1}}(1-\theta)^{\alpha_{0}} \\
& \hat{\theta}^{M L E}=\operatorname{argmax}_{\theta} P(D \mid \theta)=\frac{\alpha_{1}}{\alpha_{1}+\alpha_{0}}
\end{aligned}
$$

Learning:

Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data X
- Compute some distribution $g(X)$ to \{predict, explain, generate\} \mathcal{X}
- Assume g is controlled by parameters ϕ, i.e., $g_{\phi}(\mathcal{X})$
- Sometimes written $g(X ; \phi)$
- Learning appropriate value(s) of ϕ allows you to generalize about \mathcal{X}

Learning:
 Maximum Likelihood Estimation (MLE)

Central to machine learning:

- Observe some data $(\mathcal{X}, \mathcal{Y})$
- Compute some function $f(X)$ to $\{p r e d i c t, ~ e x p l a i n, ~$ generate $\}$
- Assume f is controlled by parameters θ, i.e., $f_{\theta}(\mathcal{X})$
- Sometimes written $f(\mathcal{X} ; \theta)$

Learning Parameters for the Die Model

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable
thing to do?

Learning Parameters for the Die Model

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

A: Develop a good model for what we observe

Learning Parameters for the Die Model:
 Maximum Likelihood (Intuition)

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$ maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

$::$
$0 \begin{array}{ll}0 & 0 \\ 0 & 0\end{array}$

0	0
0	0

...what are "reasonable" estimates for $p(w)$?

$$
\begin{array}{ll}
\mathrm{p}(1)=? & \mathrm{p}(2)=? \\
\mathrm{p}(3)=? & \mathrm{p}(4)=? \\
\mathrm{p}(5)=? & \mathrm{p}(6)=?
\end{array}
$$

Learning Parameters for the Die Model:
 Maximum Likelihood (Intuition)

$$
p\left(w_{1}, w_{2}, \ldots, w_{N}\right)=p\left(w_{1}\right) p\left(w_{2}\right) \cdots p\left(w_{N}\right)=\prod_{i} p\left(w_{i}\right)
$$ maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

::
::

0	0
0	0

...what are "reasonable" estimates for $p(w)$?

$$
\begin{array}{ll}
p(1)=2 / 9 & p(2)=1 / 9 \\
p(3)=1 / 9 & p(4)=3 / 9 \\
p(5)=1 / 9 & p(6)=1 / 9
\end{array}
$$

maximum
likelihood estimates

Learning:

Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data X
- Compute some distribution $g(X)$ to \{predict, explain, generate\} X
- Assume g is controlled by parameters ϕ, i.e., $g_{\phi}(\mathcal{X})$
- Sometimes written $g(\mathcal{X} ; \phi)$
- Learning appropriate value(s) of ϕ allows you to generalize about \mathcal{X}

How do we "learn appropriate value(s) of ϕ ?"
Many different options: a common one is maximum likelihood estimation (MLE)

- Find values ϕ s.t.
$g_{\phi}\left(\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}\right)$ is maximized
- Independence assumptions are very useful here!
- Logarithms are also useful!

Learning:

Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data X
- Compute some distribution $g(X)$ to \{predict, explain, generate\} X
- Assume g is controlled by parameters ϕ, i.e., $g_{\phi}(X)$
- Sometimes written $g(X ; \phi)$
- MLE: Find values ϕ s.t.
$g_{\phi}\left(\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}\right)$ is maximized

Example: How much does it snow?

- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely

Learning:

Maximum Likelihood

Estimation (MLE)

Core concept in intro statistics: Example: How much does it

- Observe some data \mathcal{X}
- Compute some distribution $g(\mathcal{X})$ to \{predict, explain, generate \mathcal{X}
- Assume g is controlled by parameters ϕ, i.e., $g_{\phi}(\mathcal{X})$
- Sometimes written $g(\mathcal{X} ; \phi)$
- MLE: Find values ϕ s.t. $g_{\phi}\left(\mathcal{X}=\left\{x_{1}, \ldots, x_{N}\right\}\right)$ is maximized
snow?
- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_{i} is independent from all others

$$
\max _{\phi} \sum_{i=1}^{N} \log g_{\phi}\left(x_{i}\right)
$$

Advanced

 topic
MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_{i} is independent from all others

$$
\max _{\phi} \sum_{i=1}^{N} \log g_{\phi}\left(x_{i}\right)
$$

Q: Why is taking logarithms okay?

Q : What other assumptions, or decisions, do we need to make?

Advanced topic
 MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_{i} is independent from all others, but all from g

$$
\max _{\phi} \sum_{i=1}^{N} \log g_{\phi}\left(x_{i}\right)
$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?
x_{i} is positive, real-valued.
What's a faithful probability distribution for x_{i} ?

- Normal?
- Gamma?
- Exponential?
- Bernoulli?
- Poisson?

Advanced

 topic
MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_{i} is independent from all others, but all from g

$$
\max _{\phi} \sum_{i=1}^{N} \log g_{\phi}\left(x_{i}\right)
$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?
x_{i} is positive, real-valued. What's a faithful probability distribution for x_{i} ?

- Normal? $X \quad$. \quad. ${ }^{x^{k-1} \exp \left(\frac{-k}{\theta}\right)}$
- Exponential?
- Bernoulli?
- Poisson?

Advanced

MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_{i} is independent from all others, but all from g

$$
\max _{\phi} \sum_{i=1}^{N} \log g_{\phi}\left(x_{i}\right)
$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?
x_{i} is positive, real-valued. What's a faithful/nice-to-compute-and-good-enough probability distribution for x_{i} ?

- Normal? $\times \sqrt{ } \longleftarrow p(X=x)=$
- Gamma? $\sqrt{ }$? $\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right)$
- Exponential? $\sqrt{ }$?
- Bernoulli? $X \times$
- Poisson? X X

Advanced

 topic
MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_{i} is independent from all others, but all from g

$$
\max _{\phi} \sum_{i=1}^{N} \log g_{\phi}\left(x_{i}\right)
$$

$$
x_{i} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

Advanced

 topic
MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_{i} is independent from all others, but all from g

$$
\max _{\phi} \sum_{i=1}^{N} \log g_{\phi}\left(x_{i}\right)
$$

$$
\begin{gathered}
x_{i} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right) \\
\max _{\left(\mu, \sigma^{2}\right)} \sum_{i=1}^{N} \log \operatorname{Normal}_{\mu, \sigma^{2}}\left(x_{i}\right)= \\
\max _{\left(\mu, \sigma^{2}\right)} \sum_{i=1}^{N}\left[\frac{-\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right]-N \log \sigma=F
\end{gathered}
$$號

Advanced

MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_{i} is independent from all others, but all from g

$$
\max _{\phi} \sum_{i=1}^{N} \log g_{\phi}\left(x_{i}\right)
$$

$$
x_{i} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

$$
\begin{gathered}
\max _{\left(\mu, \sigma^{2}\right)} \sum_{i=1}^{N} \log \operatorname{Normal}_{\mu, \sigma^{2}}\left(x_{i}\right)= \\
\max _{\left(\mu, \sigma^{2}\right)} \sum_{i=1}^{N}\left[\frac{-\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right]-N \log \sigma=F
\end{gathered}
$$

Q: How do we find μ, σ^{2} ?

Advanced

 topic
MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_{i} is independent from all others, but all from g

$$
\max _{\phi} \sum_{i=1}^{N} \log g_{\phi}\left(x_{i}\right)
$$

$$
x_{i} \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)
$$

$$
\begin{gathered}
\max _{\left(\mu, \sigma^{2}\right)} \sum_{i=1}^{N} \log \operatorname{Normal}_{\mu, \sigma^{2}}\left(x_{i}\right)= \\
\max _{\left(\mu, \sigma^{2}\right)} \sum_{i=1}^{N}\left[\frac{-\left(x_{i}-\mu\right)^{2}}{\sigma^{2}}\right]-N \log \sigma=F
\end{gathered}
$$

Q: How do we find μ, σ^{2} ?

A: Differentiate and find that

$$
\begin{gathered}
\hat{\mu}=\frac{\sum_{i} x_{i}}{N} \\
\sigma^{2}=\frac{\sum_{i}\left(x_{i}-\hat{\mu}\right)^{2}}{N}
\end{gathered}
$$

Learning:
 Maximum Likelihood Estimation (MLE)

Central to machine learning:

- Observe some data $(\mathcal{X}, \mathcal{Y})$
- Compute some function $f(X)$ to $\{p r e d i c t, ~ e x p l a i n, ~$ generate $\}$
- Assume f is controlled by parameters θ, i.e., $f_{\theta}(\mathcal{X})$
- Sometimes written $f(\mathcal{X} ; \theta)$

Learning:

Maximum Likelihood Estimation (MLE)

Central to machine learning:

- Observe some data $(\mathcal{X}, \mathcal{Y})$
- Compute some function $f(X)$ to $\{$ predict, explain, generate \mathcal{Y}
- Assume f is controlled by parameters θ, i.e., $f_{\theta}(\mathcal{X})$
- Sometimes written $f(\mathcal{X} ; \theta)$
- Parameters are learned to minimize error (loss) ℓ

Learning:

Maximum Likelihood Estimation (MLE)

Example: Can I sleep in the next time it snows/is school canceled?

- $\mathcal{X}=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are snowfall values from the previous N storms
- $\mathcal{Y}=\left\{y_{1}, y_{2}, \ldots, y_{N}\right\}$ are closure results from the previous N storms
- Goal: learn θ such that f correctly predicts, as accurately as possible, if UMBC will close in the next storm:
- y_{n+1}^{*} from x_{n+1}
- If we assume the output of f is a probability distribution on $\mathcal{Y} \mid \mathcal{X}$... $>f(X) \rightarrow$ $\{p($ yes $\mid \mathcal{X}), p(\mathrm{no} \mid \mathcal{X})\}$
- Then re: θ, \{predicting, explaining, generating\}
Y means... what?

Some software tools

- Netica: Windows app for working with Bayesian belief networks and influence diagrams
- Commercial product, free for small networks
- Includes graphical editor, compiler, inference engine, etc.
- To run in OS X or Linus you need Wire or Crossover
- Hugin: free demo versions for Linux, Mac, and Windows are available
- BBN.ipynb based on an AIMA notebook

Chest Clinic

Distributed by Norsys Software CorF

Dyspnea is difficult or labored breathing

Same BBN model in Hugin app

See the 4-minute HUGIN Tutorial on YouTube

Python Code

See this AIMA notebook on colab showing how to construct this BBN Network in Python

Judea Pearl example

There's is a house with a burglar alarm that can be triggered by a burglary or earthquake. If it sounds, one or both neighbors John \& Mary, might call the owner to say the alarm is sounding.

