CMSC 471: Reasoning with Bayesian Belief Network

Chapters 12 & 13

KMA Solaiman – ksolaima@umbc.edu

Some slides courtesy Tim Finin and Frank Ferraro

Bayesian Networks: Directed Acyclic Graphs

 $p(x_1, x_2, x_3, x_4, x_5) =$ $p(x_1)p(x_3)p(x_2|x_1,x_3)p(x_4|x_2,x_3)p(x_5|x_2,x_4)$

Bayesian Networks: Directed Acyclic Graphs

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

exact inference in general DAGs is NP-hard inference in trees can be exact

Markov blanket of a node x is its parents, children, and children's parents

Markov Blanket

The **Markov Blanket** of a node x_i the set of nodes needed to form the complete conditional for a variable x_i

p() |

=

Given its Markov blanket, a node is conditionally independent of all other nodes in the BN

(in this example, shading does not show observed/latent)

Fundamental Inference & Learning Question

 Compute posterior probability of a node given some other nodes

$$p(Q|x_1, \dots, x_j)$$

- Some techniques
 - MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered 2nd]
 - Variable Elimination [covered 1st]
 - (Loopy) Belief Propagation ((Loopy) BP)
 - Monte Carlo
 - Variational methods

Advanced topics

Variable Elimination

- Inference: Compute posterior probability of a node given some other nodes $p(Q|x_1, ..., x_j)$
- Variable elimination: An algorithm for exact inference
 - Uses dynamic programming
 - Not necessarily polynomial time!

Variable Elimination (High-level)

Goal: $p(Q|x_1, ..., x_i)$

(The word "factor" is used for each CPT.)

- 1. Pick one of the non-conditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3.Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Goal: P(Tampering | Smoke=true ∧ Report=true)

P (Tampering | Smoke = y A Report = y) = & P(Tem., Smoke = J, Report : y) $= \alpha \pounds \pounds f P(T, S=Y, R=Y, A=q, A=q, L=l, F=f)$ $\gamma(P(T), Z P(R = Y) L = 1)$ Z P(2|A=a) $\leq P(F=f) \cdot P(A|T, F=f) \cdot P(S=y|F=f)$ 12 P(T=u) $f_{g}(T=u)$ Q.F.F. \subseteq $SP(T=u)f_{g}(T=u)$

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Goal: P(Tampering | Smoke=true ∧ Report=true)

Conditional Probability	Factor
$\overline{P(Tampering)}$	f_0 (Tampering)
P(Fire)	f_1 (Fire)
P(Alarm Tampering, Fire)	f_2 (Tampering, Fire, Alarm)
$P(Smoke = yes \mid Fire)$	f_3 (Fire)
P(Leaving Alarm)	f_4 (Alarm, Leaving)
$P(Report = yes \mid Leaving)$	f_5 (Leaving)

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	f_0 (Tampering)
P(Fire)	f_1 (Fire)
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
P(Smoke = yes Fire)	f_3 (Fire)
P (Leaving Alarm)	f_4 (Alarm, Leaving)
	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Eliminate Fire

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

nditional Probability	Factor
Tampering)	$f_0 (Tampering)$
Fire	f_1 (Fire)
Alarm Tampering, Fire)	f_2 (Tampering, Fire, Alarm)
Smoke = yes Fire)	f_3 (Fire)
Leaving Alarm)	f_4 (Alarm, Leaving)
$Report = yes \mid Leaving)$	f_5 (Leaving)
	$Tampering) \ Fire) \ Alarm \mid Tampering, Fire) \ Smoke = yes \mid Fire) \ Leaving \mid Alarm)$

Goal: P(Tampering | Smoke=true ∧ Report=true)

f1(Fire) f2(Tampering, Fire, Alarm) f3(Fire)

f6(Tampering, Alarm) =

$$= \sum_{u} f_{1}(\text{Fire} = u) f_{2}(T, F = u, A) f_{3}(F = u)$$
$$= \sum_{u} p(\text{Fire} = u) p(A \mid T, F = u) p(S = y \mid F = u)$$

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
P(Tampering)	$f_0 (Tampering)$
P(Fire)	f_1 (Fire)
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
P(Smoke = yes Fire)	f_3 (Fire)
P (Leaving Alarm)	f_4 (Alarm, Leaving)
$P(Report = yes \mid Leaving)$	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

f6(Tampering, Alarm) =

 $= \sum_{u} p(\text{Fire} = u)p(A \mid T, F = u)p(S = y \mid F = u)$ $= p(\text{Fire} = y)p(A \mid T, F = y)p(S = y \mid F = y) + p(\text{Fire} = n)p(A \mid T, F = n)p(S = y \mid F = n)$

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	$f_0 (Tampering)$
P(Fire)	f_1 (Fire)
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
$P(Smoke = yes \mid Fire)$	$f_3(Fire)$
P(Leaving Alarm)	f_4 (Alarm, Leaving)
$P(Report = yes \mid Leaving)$	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

f6(Tampering, Alarm) =

$= \sum_{u} p(\text{Fire} = u)p(A \mid T, F = u)p(S = y \mid F = u)$			
	Tamp.	Alarm	f6
	Yes	Yes	p(Fire = y)p(A = y T = y, F = y)p(S = y F = y) + p(Fire = n)p(A = y T = y, F = n)p(S = y F = n)
7	Yes	No	
	No	No	
	No	Yes	

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

rm)

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Eliminate Alarm

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- 2. Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
$\overline{P(Tampering)}$	f_0 (Tampering)
P(Fire)	f_1 (Fire)
P(Alarm Tampering, Fire)	f_2 (Tampering, Fire, Alarm)
P(Smoke = yes Fire)	f_3 (Fire)
P(Leaving Alarm)	f_4 (Alarm, Leaving)
$P(Report = yes \mid Leaving)$	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

...other computations not shown---see the book or lecture... **PM example 9.27**

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
P(Tampering)	f_0 (Tampering)
P(Fire)	f_1 (Fire)
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
P(Smoke = yes Fire)	f_3 (Fire)
P (Leaving Alarm)	f_4 (Alarm, Leaving)
	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Normalize in order to compute p(Tampering)

We'll have a single factor f8(Tampering):

$$p(T = u) = \frac{f_8(T = u)}{\sum_v f_8(T = v)}$$

(The word "factor" is used for each CPT.)

- Pick one of the nonconditioned, MB variables
- Eliminate this variable by marginalizing (summing) it out from all factors (CPTs) that contain it
- 3. Go back to 1 until no (MB) variables remain
- 4. Multiply the remaining factors and normalize.

Conditional Probability	Factor
P(Tampering)	f_0 (Tampering)
P(Fire)	f_1 (Fire)
$P(Alarm \mid Tampering, Fire)$	f_2 (Tampering, Fire, Alarm)
P(Smoke = yes Fire)	f_3 (Fire)
P(Leaving Alarm)	f_4 (Alarm, Leaving)
	f_5 (Leaving)

Goal: P(Tampering | Smoke=true ∧ Report=true)

Task: Normalize in order to compute *p(Tampering)*

We'll have a single factor f8(Tampering):

$$p(T = yes) = \frac{f_8(T = yes)}{f_8(T = yes) + f_8(T = no)}$$

 The posterior distribution over *Tampering* is given by

 $\frac{P(Tampering = u) f_8(Tampering = u)}{\sum_{v} P(Tampering = v) f_8(Tampering = v)}$

Another example

 $\mathbf{P}(Burglary|JohnCalls = true, MaryCalls = true) = \langle 0.284, 0.716 \rangle.$

$$\begin{split} \mathbf{P}(B|j,m) &= \alpha \, \mathbf{P}(B,j,m) = \alpha \, \sum_{e} \sum_{a} \mathbf{P}(B,j,m,e,a). \\ P(b|j,m) &= \alpha \, \sum_{e} \sum_{a} P(b)P(e)P(a|b,e)P(j|a)P(m|a). \\ P(b|j,m) &= \alpha \, P(b) \sum_{e} P(e) \sum_{a} P(a|b,e)P(j|a)P(m|a). \\ \mathbf{P}(B|j,m) &= \alpha \, \underbrace{\mathbf{P}(B)}_{\mathbf{f}_{1}(B)} \sum_{e} \underbrace{P(e)}_{\mathbf{f}_{2}(E)} \sum_{a} \underbrace{\mathbf{P}(a|B,e)P(j|a)P(m|a)}_{\mathbf{f}_{3}(A,B,E)} \underbrace{\mathbf{P}(B|a)P(m|a)}_{\mathbf{f}_{4}(A)}. \\ \mathbf{P}(B|j,m) &= \alpha \, \mathbf{f}_{1}(B) \times \sum_{e} \mathbf{f}_{2}(E) \times \sum_{a} \mathbf{f}_{3}(A,B,E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A). \end{split}$$

$$egin{array}{rl} {f f}_6(B,E)&=&\sum_a {f f}_3(A,B,E) imes {f f}_4(A) imes {f f}_5(A) \ &=& ({f f}_3(a,B,E) imes {f f}_4(a) imes {f f}_5(a))+({f f}_3(
eg a,B,E) imes {f f}_4(
eg a) imes {f f}_5(
eg a)). \end{array}$$

Now we are left with the expression

$$\mathbf{P}(B|j,m) = lpha \, \mathbf{f}_1(B) imes \sum_e \mathbf{f}_2(E) imes \mathbf{f}_6(B,E).$$

• Next, we sum out *E* from the product of **f**₂ and **f**₆:

$$egin{array}{rll} {f f}_7(B)&=&\sum_e {f f}_2(E) imes {f f}_6(B,E)\ &=&{f f}_2(e) imes {f f}_6(B,e)+{f f}_2(
egne e) imes {f f}_6(B,
egne e). \end{array}$$

This leaves the expression

$$\mathbf{P}(B|j,m) = lpha \, \mathbf{f}_1(B) imes \mathbf{f}_7(B)$$

Learning Bayesian networks

- Given training set **D** = {**x**[1],..., **x**[**M**]}
- Find graph that best matches **D**
 - model selection
 - parameter estimation

Learning Bayesian Networks

- Describe a BN by specifying its (1) structure and (2) conditional probability tables (CPTs)
- Both can be learned from data, but
 - -learning structure much harder than learning parameters
 - –learning when some nodes are hidden, or with missing data harder still
- Four cases:
 - Structure Observability Method

Known	Full	Maximum Likelihood Estimation
Known	Partial	EM (or gradient ascent)
Unknown	Full	Search through model space
Unknown space	Partial	EM + search through model

Variations on a theme

- Known structure, fully observable: only need to do parameter estimation
- Unknown structure, fully observable: do heuristic search through structure space, then parameter estimation
- Known structure, missing values: use expectation maximization (EM) to estimate parameters
- Known structure, hidden variables: apply adaptive probabilistic network (APN) techniques
- Unknown structure, hidden variables: too hard to solve!

Fundamental Inference Question

 Compute posterior probability of a node given some other nodes

$$p(Q|x_1, \dots, x_j)$$

- Some techniques
 - MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered 2nd]
 - Variable Elimination [covered 1st]
 - (Loopy) Belief Propagation ((Loopy) BP)
 - Monte Carlo
 - Variational methods

Advanced topics

Parameter estimation

- Assume known structure
- Goal: estimate BN parameters θ
 entries in local probability models, P(X | Parents(X))
- A parameterization θ is good if it is likely to generate the observed data:

$$L(\theta: D) = P(D | \theta) = \prod_{m} P(x[m] | \theta)$$

i.i.d. samples

 Maximum Likelihood Estimation (MLE) Principle: Choose θ* so as to maximize L

Parameter estimation II

• The likelihood **decomposes** according to the structure of the network

 \rightarrow we get a separate estimation task for each parameter

- The MLE (maximum likelihood estimate) solution for **discrete** data & RV values:
 - for each value x of a node X
 - and each instantiation u of Parents(X)

- Just need to collect the counts for every combination of parents and children observed in the data
- MLE is equivalent to an assumption of a uniform prior over parameter values

Estimating Probability of Heads

- I show you the above coin X, and hire you to estimate the probability that it will turn up heads (X = 1) or tails (X = 0)
- You flip it repeatedly, observing
 - it turns up heads α_1 times
 - it turns up tails α_0 times
- Your estimate for P(X = 1) is....?

Flips produce data D with $lpha_1$ heads, $lpha_0$ tails

- flips are independent, identically distributed 1's and 0's (Bernoulli)
- $lpha_1$ and $lpha_0$ are counts that sum these outcomes (Binomial)

$$P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$$

Maximum Likelihood Estimate for Θ

Set derivative to zero:

$$\frac{d}{d\theta} \ln P(\mathcal{D} \mid \theta) = 0$$

[C. Guestrin]

$$\hat{\theta} = \arg \max_{\theta} \ln P(D|\theta) \quad \text{set derivative to zero:} \quad \frac{d}{d\theta} \ln P(D|\theta) = 0$$

$$= \arg \max_{\theta} \ln \left[\frac{\theta^{\alpha}}{(1-\theta)^{\alpha_0}} \right] \quad \text{hint:} \quad \frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta}$$

$$= \frac{\partial}{\partial \theta} \quad \forall, \ln \theta + d_0 \ln (1-\theta) \quad \text{hint:} \quad \frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta}$$

$$= \frac{1}{\theta} \quad \forall, \ln \theta + d_0 \ln (1-\theta) \quad \text{hint:} \quad \frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta}$$

$$= \frac{1}{\theta} \quad \forall, \ln \theta + d_0 \ln (1-\theta) \quad \text{hint:} \quad \frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta}$$

$$= \frac{1}{\theta} \quad \forall, \ln \theta + d_0 \ln (1-\theta) \quad \text{hint:} \quad \frac{\partial \ln \theta}{\partial \theta} = \frac{1}{\theta}$$

Summary: Maximum Likelihood Estimate

• Each flip yields boolean value for X $X \sim \text{Bernoulli:} P(X) = \theta^X (1 - \theta)^{(1-X)}$

• Data set D of independent, identically distributed (iid) flips produces α_1 ones, α_0 zeros (Binomial)

 $P(D|\theta) = P(\alpha_1, \alpha_0|\theta) = \theta^{\alpha_1}(1-\theta)^{\alpha_0}$

$$\hat{\theta}^{MLE} = \operatorname{argmax}_{\theta} P(D|\theta) = \frac{\alpha_1}{\alpha_1 + \alpha_0}$$

Learning: Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data ${\mathcal X}$
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$

– Sometimes written $g(\mathcal{X}; \phi)$

- Learning appropriate value(s) of ϕ allows you to GENERALIZE about $\mathcal X$

Learning: Maximum Likelihood Estimation (MLE)

- Central to machine learning:
- Observe some data $(\mathcal{X}, \mathcal{Y})$
- Compute some function $f(\mathcal{X})$ to {predict, explain, generate} \mathcal{Y}
- Assume f is controlled by parameters θ, i.e., f_θ(X)
 Sometimes written f(X; θ)

Learning Parameters for the Die Model

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i [p(w_i)]$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

Learning Parameters for the Die Model

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing loglikelihood a reasonable thing to do?

A: Develop a good model for what we observe

Learning Parameters for the Die Model: Maximum Likelihood (Intuition)

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls... ...what are "reasonable" estimates for p(w)?

p(3) = ? p(4) = ?

p(5) = ? p(6) = ?

Learning Parameters for the Die Model: Maximum Likelihood (Intuition)

$$p(w_1, w_2, ..., w_N) = p(w_1)p(w_2) \cdots p(w_N) = \prod_i p(w_i)$$

maximize (log-) likelihood to learn the probability parameters

If you observe these 9 rolls...

...what are "reasonable" estimates for p(w)?

$$p(1) = 2/9$$
 $p(2) = 1/9$ $p(3) = 1/9$ $p(4) = 3/9$ maximum
likelihood
estimates $p(5) = 1/9$ $p(6) = 1/9$

Learning: Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data X
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(\mathcal{X}; \phi)$
- Learning appropriate value(s) of ϕ allows you to GENERALIZE about $\mathcal X$

How do we "learn appropriate value(s) of φ?"

Many different options: a common one is maximum likelihood estimation (MLE)

- Find values ϕ s.t. $g_{\phi}(\mathcal{X} = \{x_1, \dots, x_N\})$ is maximized
- Independence assumptions are very useful here!
- Logarithms are also useful!

Learning: Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data X
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(X; \phi)$
- MLE: Find values ϕ s.t. $g_{\phi}(\mathcal{X} = \{x_1, \dots, x_N\})$ is maximized

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn φ such that g correctly models, as accurately as possible, the amount of snow likely

Advanced topic

Learning: Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

- Observe some data X
- Compute some distribution $g(\mathcal{X})$ to {predict, explain, generate} \mathcal{X}
- Assume g is controlled by parameters ϕ , i.e., $g_{\phi}(\mathcal{X})$
 - Sometimes written $g(\mathcal{X}; \phi)$
- MLE: Find values ϕ s.t. $g_{\phi}(\mathcal{X} = \{x_1, \dots, x_N\})$ is maximized

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn φ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others

 $\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

Example: How much does it snow?

Advanced

topic

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

 x_i is positive, real-valued. What's a faithful probability distribution for x_i ?

- Normal? X
- Gamma? 🗸
- Exponential? √
- Bernoulli? 🗡
- Poisson? 🗡

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

 x_i is positive, real-valued. What's a faithful probability distribution for x_i ?

- Normal? X
- $=\frac{x^{k-1}\exp(\frac{-k}{\theta})}{1-x^{k-1}\exp(\frac{-k}{\theta})}$
- Gamma? $\checkmark p(X = x) = --$
- Exponential?
- Bernoulli? 🗡
- Poisson? 🗡

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, ..., x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that gcorrectly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

Q: Why is taking logarithms okay?

Q: What other assumptions, or decisions, do we need to make?

 x_i is positive, real-valued. What's a faithful/nice-to-compute-andgood-enough probability distribution for x_i ?

- Normal? X \checkmark p(X = x) =Gamma? \checkmark ? $\frac{1}{\sqrt{2\pi}\sigma} \exp(\frac{-(x-\mu)^2}{2\sigma^2})$
- Exponential?
- Bernoulli? X X
- Poisson? X X

Advanced topic

MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

 $x_i \sim \text{Normal}(\mu, \sigma^2)$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^N \log \text{Normal}_{\mu,\sigma^2}(x_i) =$$

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

 $x_i \sim \text{Normal}(\mu, \sigma^2)$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \operatorname{Normal}_{\mu,\sigma^2}(x_i) =$$
$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \left[\frac{-(x_i - \mu)^2}{\sigma^2} \right] - N \log \sigma = F$$

Advanced topic

MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

$$\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$$

 $x_i \sim Normal(\mu, \sigma^2)$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \operatorname{Normal}_{\mu,\sigma^2}(x_i) =$$
$$\max_{\mu,\sigma^2)} \sum_{i=1}^{N} \left[\frac{-(x_i - \mu)^2}{\sigma^2} \right] - N \log \sigma = F$$

Q: How do we find μ , σ^2 ?

Advanced topic

MLE Snowfall Example

Example: How much does it snow?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- Goal: learn ϕ such that g correctly models, as accurately as possible, the amount of snow likely
- Assumption: each x_i is independent from all others, but all from g

 $\max_{\phi} \sum_{i=1}^{N} \log g_{\phi}(x_i)$

 $x_i \sim \text{Normal}(\mu, \sigma^2)$

$$\max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \log \operatorname{Normal}_{\mu,\sigma^2}(x_i) = \max_{(\mu,\sigma^2)} \sum_{i=1}^{N} \left[\frac{-(x_i - \mu)^2}{\sigma^2} \right] - N \log \sigma = F$$

Q: How do we find μ , σ^2 ?

A: Differentiate and find that

$$\hat{\mu} = \frac{\sum_{i} x_{i}}{N}$$
$$\sigma^{2} = \frac{\sum_{i} (x_{i} - \hat{\mu})^{2}}{N}$$

Learning: Maximum Likelihood Estimation (MLE)

- Central to machine learning:
- Observe some data $(\mathcal{X}, \mathcal{Y})$
- Compute some function $f(\mathcal{X})$ to {predict, explain, generate} \mathcal{Y}
- Assume f is controlled by parameters θ, i.e., f_θ(X)
 Sometimes written f(X; θ)

Learning:

Maximum Likelihood Estimation (MLE)

- Central to machine learning:
- Observe some data $(\mathcal{X}, \mathcal{Y})$
- Compute some function $f(\mathcal{X})$ to {predict, explain, generate} \mathcal{Y}
- Assume f is controlled by parameters θ , i.e., $f_{\theta}(X)$ – Sometimes written $f(X; \theta)$
- Parameters are learned to minimize error (loss) &

Advanced topic

Learning: Maximum Likelihood Estimation (MLE)

Example: Can I sleep in the next time it snows/is school canceled?

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ are snowfall values from the previous N storms
- $\mathcal{Y} = \{y_1, y_2, \dots, y_N\}$ are closure results from the previous N storms
- Goal: learn θ such that f correctly predicts, as accurately as possible, if UMBC will close in the next storm:

 $- y_{n+1}^*$ from x_{n+1}

- If we assume the output of f is a probability distribution on $\mathcal{Y}|\mathcal{X}...$ $\gg f(\mathcal{X}) \rightarrow$
 - $\{p(yes|\mathcal{X}), p(no|\mathcal{X})\}\$
- Then re: θ, {predicting, explaining, generating}
 𝒱 means... what?

Some software tools

- <u>Netica</u>: Windows app for working with Bayesian belief networks and influence diagrams
 - Commercial product, free for small networks
 - Includes graphical editor, compiler, inference engine, etc.
 - To run in OS X or Linus you need Wire or Crossover
- <u>Hugin</u>: free demo versions for Linux, Mac, and Windows are available
- <u>BBN.ipynb</u> based on an AIMA notebook

Same BBN model in Hugin app

See the 4-minute HUGIN Tutorial on YouTube

Python Code

See this <u>AIMA notebook</u> on colab showing how to construct this BBN Network in Python

Judea Pearl example

There's is a house with a burglar alarm that can be triggered by a burglary or earthquake. If it sounds, one or both neighbors John & Mary, might call the owner to say the alarm is sounding.