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Bayesian Networks:
Directed Acyclic Graphs
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Bayesian Networks:
Directed Acyclic Graphs
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p(xl,XZ,xg, ""xN) — Hp(xl | ﬂ(xi))

exact inference in general DAGs is NP-hard

inference in trees can be exact



Markov Blanket

The Markov Blanket of a node x;
the set of nodes needed to form
the complete conditional for a
variable x;

000000
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Markov blanket of a node x P O |"OOO O )

is its , children, and Given its Markov blanket,
children's parents a node is conditionally
independent of all other
nodes in the BN




Fundamental Inference & Learning
Question

 Compute posterior probability of a node given
some other nodes
p(Qlx1, ..., x5)
 Some techniques

— MLE (maximum likelihood estimation)/MAP
(maximum a posteriori) [covered 2"9]

— Variable Elimination [covered 1]
— (Loopy) Belief Propagation ((Loopy) BP)
— Monte Carlo

— Variational methods -




Variable Elimination

* Inference: Compute posterior probability of a
node given some other nodes
P(Q|X1, ,X])
e Variable elimination: An algorithm for exact
inference
— Uses dynamic programming
— Not necessarily polynomial time!



Variable Elimination (High-level)

Goal: p(Q|xy, ..., X;)
(The word “factor” is used for each CPT.)
1.Pick one of the non-conditioned, MB variables

2.Eliminate this variable by marginalizing
(summing) it out from all factors (CPTs) that
contain it

3.Go back to 1 until no (MB) variables remain
4.Multiply the remaining factors and normalize.



Variable Elimination: Example

(The word “factor” is used
for each CPT.)

1.

Pick one of the non-
conditioned, MB
variables

. Eliminate this variable

by marginalizing
(summing) it out from
all factors (CPTs) that
contain it

. Go back to 1 until no

(MB) variables remain

Multiply the remaining
factors and normalize.

o> D

Goal: P(Tampering | Smoke=true A Report=true)
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Variable Elimination: Example

@
@
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Goal: P(Tampering | Smoke=true A Report=true)

(The word “factor” is used
for each CPT.)

1. Pick one of the non-
conditioned, MB
variables

2. Eliminate this variable
by marginalizing
(summing) it out from
all factors (CPTs) that
contain it

3. Go back to 1 until no
(MB) variables remain

4. Multiply the remaining
factors and normalize.

Conditional Probability Factor

P (Tampering) fo (Tampering)

P (F'ire) fi (Fire)

P (Alarm | Tampering, Fire) | fo (Tampering, Fire, Alarm)
P (Smoke = yes | Fire) f3 (Fire)

P (Leaving | Alarm) f1 (Alarm, Leaving)

P (Report = yes | Leaving) | f5 (Leaving)




Variable Elimination: Example

>
(The word “factor” is used .
for each CPT.) S
1. Pick one of the non- Goarind)
conditioned, MB
variables )
2. Eliminate this variable Goal: P(Tampering | Smoke=true A Report=true)

by marginalizing
(summing) it out from

all factors (CPTs) that o .
contain it Task: Eliminate Fire

3. Go back to 1 until no
(MB) variables remain

4. Multiply the remaining
factors and normalize.

Conditional Probability Factor
P (Tampering) fo (Tampering)
P (Fire) fl (Fire)
P (Alarm | Tampering, Fire) | fo (Tampering, Fire, Alarm)
(Smoke = yes | Fire) fa (Fire)
(Leaving | Alarm) f1 (Alarm, Leaving)
( fs (Leaving) 10

Report = yes | Leaving)



Variable Elimination: Example

>
(The word “factor” is used .
for each CPT.) S
1. Pick one of the non- Goarind)
conditioned, MB
variables T
2. Eliminate this variable Goal: P(Tampering | Smoke=true A Report=true)
by marginalizing .
(summing) it out from f1(Fire)
all factors (CPTs) that f2(Tampering, Fire, Alarm)
contain it f3(Fire)
3. Go backto 1 until no
(MB) variables remain
factors and normalize.
Conditional Probability Factor — Z fl (Fire = u)fZ (T) F = U, A)fS (F = u)
P (Tampering) fo (Tampering)
P (Fire f1 (Fire
g(gilar;cn | Tamﬁe;mg) , Fire) | fs Egamfemng Fire, Alarm) .
PELZZ;;LM%ZTm;re fa (A;Zf'm Leaving) = 2 p(Flre = u)p(A | Tl F = u)p(S =y |F = u)
P (Report = yes | Leaving) | fs (Leaving) " 11



Variable Elimination: Example

(The word “factor” is used
for each CPT.)

1.

3.

4.

Pick one of the non-
conditioned, MB
variables

. Eliminate this variable

by marginalizing
(summing) it out from
all factors (CPTs) that
contain it

Go back to 1 until no
(MB) variables remain

Multiply the remaining
factors and normalize.

Conditional Probability Factor

P (Tampering) fo (Tampering)

(
Alarm | Tampering, Fire) | fy (Tampering, Fire, Alarm)
Smoke = yes | Fire) fa (Fire)
Leaving | Alarm) f4 (Alarm, Leaving)
Report = yes | Leaving) | fs (Leaving)

S
Goks)
Caepod
Goal: P(Tampering | Smoke=true A Report=true)
f6(Tampering, Alarm) =

= Ep(Fire =wp@|T,F=uwpS=y|F=u)

u
=p(Fire=y)p(A|T,F =y)p(S=y|F=y)+
p(Fire = n)p(A|T,F =n)p(S =y |F =n)

12



Variable Elimination: Example

(The word “factor” is used
for each CPT.)

1. Pick one of the non-
conditioned, MB
variables

2. Eliminate this variable
by marginalizing
(summing) it out from
all factors (CPTs) that
contain it

3. Go back to 1 until no
(MB) variables remain

4. Multiply the remaining
factors and normalize.

Conditional Probability Factor

P (Tampering) fo (Tampering)
P (Fire) f1 (Fire)
Alarm | Tampering, Fire) | fo (Tampering, Fire, Alarm)
Smoke = yes | Fire) fa (Fire)
Leaving | Alarm) f1 (Alarm, Leaving)
Report = yes | Leaving) | fs (Leaving)

Campering> (S
Guoks)
),
Goal: P(Tampering | Smoke=true A Report=true)
f6(Tampering, Alarm) =

= Zp(Fire =wp@|T,F=uwpS=y|F=u)

e )

\ Yes Yes pFire=y)pA=y|T=y,F=y)pS=y|F=y)+

|

p(Fire=n)p(A=y|T =y,F=n)p(S=y|F =n)

Yes No
No No
No Yes



Variable Elimination: Example

(The word “factor” is used
for each CPT.)

1. Pick one of the non-
conditioned, MB

variables
2. Eliminate this variable Goal: P(Tampering | Smoke=true A Report=true)

by marginalizing
(summing) it out from

all factors (CPTs) that o
contain it Task: Eliminate Alarm

3. Go backto 1 until no
(MB) variables remain

4. Multiply the remaining
factors and normalize.

Conditional Probability Factor
P (Tampering) fo (Tampering)
P (Fire) f1 (Fire)

P (Alarm | Tampering, Fire) | fo (
P (Smoke = yes | Fire) fa (Fire)

P (Leaving | Alarm) f1 (Alarm, Leaving)

P (Report = yes | Leaving) | fs (Leaving) 14

Tampering, Fire, Alarm)




Variable Elimination: Example

(The word “factor” is used
for each CPT.)

1. Pick one of the non-
conditioned, MB

variables CT0)
2. Eliminate this variable Goal: P(Tampering | Smoke=true A Report=true)

by marginalizing
(summing) it out from
all factors (CPTs) that

contain it
3. Go backto 1 until no ...other computations not
(MB) variables remain shown---see the book or
4. Multiply the remaining lecture...
factors and normalize. PM example 9.27
Conditional Probability Factor
P (Tampering) fo (Tampering)
P (Fire) f1 (Fire)

P (Alarm | Tampering, Fire) | fo (Tampering, Fire, Alarm)

P (Smoke = yes | Fire) fa (Fire)

P (Leaving | Alarm) f1 (Alarm, Leaving)

P (Report = yes | Leaving) | f5 (Leaving) 15




Variable Elimination: Example

(The word “factor” is used
for each CPT.)

1.

3.

4.

Pick one of the non-
conditioned, MB
variables

Eliminate this variable
by marginalizing
(summing) it out from
all factors (CPTs) that
contain it

Go back to 1 until no

(MB) variables remain
Multiply the remaining
factors and normalize.

Conditional Probability Factor

P (Tampering)

P(
P (Alarm | Tampering, Fire) | f-
P (Smoke = yes | Fire)
P (Leaving | Alarm)

P (Report = yes | Leaving)

fo (Tampering)
f 1 (Fire)
5 (Tampering, Fire, Alarm)
fa (Fire)
f1 (Alarm, Leaving)
f5 (Leaving)

Goal: P(Tampering | Smoke=true A Report=true)

Task: Normalize in order
to compute p(Tampering)

We’'ll have a single factor f8(Tampering):

fe(T = u)
2y fo(T =)

p(T=u)=

16



Variable Elimination: Example

(The word “factor” is used
for each CPT.)

1.

3.

4.

Pick one of the non-
conditioned, MB
variables

Eliminate this variable
by marginalizing
(summing) it out from
all factors (CPTs) that
contain it

Go back to 1 until no

(MB) variables remain
Multiply the remaining
factors and normalize.

Conditional Probability Factor

P (Tampering)

P(
P (Alarm | Tampering, Fire) | f-
P (Smoke = yes | Fire)
P (Leaving | Alarm)

P (Report = yes | Leaving)

fo (Tampering)
f 1 (Fire)
5 (Tampering, Fire, Alarm)
fa (Fire)
f1 (Alarm, Leaving)
f5 (Leaving)

Goal: P(Tampering | Smoke=true A Report=true)

Task: Normalize in order to
compute p(Tampering)

We’'ll have a single factor f8(Tampering):

fe(T = yes)
fe(T = yes) + fg(T = no)

p(T = yes) =

17



Variable Elimination: Example

« The posterior distribution
over Tampering is given by

P(Tampering = u) fg(Tampering = u)

Yoo P(Tampering = v) fg(Tampering = v)



Another example

Figure 13.2

P(B=true)
001

P(E=true)
002

B E| P(A=true|B,E)
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Tt 70
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P(J=true|A)
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A | P(M=true|A)
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i 01

P (Burglary|JohnCalls = true,MaryCalls = true) = (0.284,0.716).



P(B|j,m) = aP(Bjm) =a Y Y P(Bjmea).

P(b|j,m —aZZP (€) P(alb,e) P(j|a) P(m|a).

P(b|j,m) = a P(b) Y | P(e) ) | P(a|b,e)P(jla) P(m]a).

P(BJjm) = aP(B) Y re) 3" P(alB.e)P(jla) P(ma).

e a

£.(B) £2(E) fs(A B,E) f:(A) fs(A)

P(B|jm) = afi(B) x Y _fo(E) x Y f3(A,B,E) x f4(A) x £5(A).

20



fo(B,E) = Y f3(A,B,E) x f4(A) x f5(A)

= (f3(a,B,E) x f4(a) x f5(a)) + (f3(—a,B,E) x f4(—a) x f5(—a)).

Now we are left with the expression

P(B|jm) = afi(B) x Y _fy(E) x f4(B,E).

« Next, we sum out F from the product of f; and f§:

f7(B)

Y £3(E) x f(B,E)

= fg(e) X fﬁ(B,e) -+ fg(ﬁe) X fe(B,ﬂe).
This leaves the expression

P(B|j,m) = afi(B) x f7(B)



Learning Bayesian networks

* Given training set D = {x[1]...., x| M]}
* Find graph that best matches D

— model selection

— parameter estimation

L E B0l Al Qg_‘ Ij> !

f Inieltgar o
|E[MT BIM] AIM] CIM]] E

Data D



Learning Bayesian Networks

* Describe a BN by specifying its (1) structure and (2)
conditional probability tables (CPTs)

* Both can be learned from data, but
—learning structure much harder than learning parameters
—learning when some nodes are hidden, or with missing data

harder still

* Four cases:
Structure
Known
Known
Unknown

Unknown
space

Observability Method

Full Maximum Likelihood Estimation
Partial EM (or gradient ascent)

Full Search through model space
Partial EM + search through model



Variations on a theme

Known structure, fully observable: only need to
do parameter estimation

Unknown structure, fully observable: do heuristic
search through structure space, then parameter
estimation

Known structure, missing values: use expectation
maximization (EM) to estimate parameters

Known structure, hidden variables: apply adaptive
probabilistic network (APN) techniques

Unknown structure, hidden variables: too hard to
solve!



Fundamental Inference Question

 Compute posterior probability of a node given
some other nodes
p(Qlx1, ..., x5)
 Some techniques

— MLE (maximum likelihood estimation)/MAP
(maximum a posteriori) [covered 2"9]

— Variable Elimination [covered 15]

— (Loopy) Belief Propagation ((Loopy) BP)

— Monte Carlo -
— Variational methods

25



Parameter estimation

Assume known structure
Goal: estimate BN parameters 0
— entries in local probability models, P(X | Parents(X))

A parameterization O is good if it is likely to
generate the observed data:

L(©:D)=P(D|0)=] | P(x[m]|6)

({d.\samples ]

Maximum Likelihood Estimation (MLE) Principle:
Choose 0* so as to maximize L




Parameter estimation |l

* The likelihood decomposes according to the structure
of the network

— we get a separate estimation task for each parameter

e The MLE (maximum likelihood estimate) solution for
discrete data & RV values:
— for each value x of a node X
— and each instantiation u of Parents(X)

* N(xa ll) T . L
Xu = sufficient statistics
Nu) —
— Just need to collect the counts for every combination of
parents and children observed in the data

— MLE is equivalent to an assumption of a uniform prior over
parameter values




Estimating Probability of Heads

e | show you the above coin X, and hire you to estimate
the probability that it will turn up heads (X = 1) or
tails (X = 0)

e You flip it repeatedly, observing

— it turns up heads o times /\
— it turns up tails ag times P (X""D ~ D/

e Your estimate for P(X = 1) is...7




Estimating 6 = P(X=1)

Test A: , X,
100 flips: 51 Heads (X=1), 49 Ta|Is (X=0)
- ¥, _ 5
N,'-LNO - ) © O 47?(7("0:0.5—/

Test B: o

<,
3 flips: 2 Heads (X=1), 1 Tails (X=0)

. =2
25 )

= O.L{4



Maximum Likelihood Estimation

Ex=1) =_gll P(X=0) = (1-6)

DataD::U O O l\ /

POV, O.6-6.(-8)-6-0 = O (l-oye

Flips produce data D with (¥q heads (X tails )

 flips are independent, identically distributed 1's and 0’s
(Bernoulli)

« (X1 and (X() are counts that sum these outcomes (Binomial)

P(D|0) = P(a, aplf) = 0“1 (1 — 0)*




Maximum Likelihood Estimate for ©

" A
: 0 = arg meax In P(D | 0)
= arg meax INOH (1 —0)T

m Set derivative to zero: |4 | P(D | 0) =0

[C. Guestrin]



A

O — arg mélx In P(D |9) m Set derivative to zero: d% InP(D | 0) = 0

&) I _ ond 1
= argmax In[[04)(1 — 6)] hint: — E}

o
= o N + chylu((-8) A
O[‘—l@-—— /}- DZ~9’“/I¢Q-L




Summary:
Maximum Likelihood Estimate

e Each flip yields boolean value for X ((
X ~ Bernoulli: P(X) = QX(l — 0)<1—X)

Bernoulli)

e Data set D of independent, identically distributed (iid) flips pro-
duces aq ones, g zeros (Binomial)

P(Dl@) — P(Ckl,&()'(g) — (9041(1 — 9)0‘0

OMLE — argmaxy P(D]f) = —

a1+



Learning:
Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:
* Observe some data X

* Compute some distribution g(X') to {predict,
explain, generate} X

* Assume g is controlled by parameters ¢, i.e.,
o (X)
— Sometimes written g(X; @)

* Learning appropriate value(s) of ¢ allows you to
about X'



Learning:
Maximum Likelihood Estimation (MLE)

Central to
* Observe some data (X, y)

* Compute some function f(X) to {predict, explain,
generate} Y

* Assume f is controlled by parameters 0, i.e., fg(X)
— Sometimes written f(X; 0)



Learning Parameters for the Die Model

P2, Wy e wy) = pW)p (W) =+ pCw) = | | p(w)

maximize (log-) likelihood to learn the probability parameters

4 )




Learning Parameters for the Die Model

P2, Wy e wy) = pW)p (W) =+ pCw) = | | p(w)

maximize (log-) likelihood to learn the probability parameters

: Why is maximizing log-
Q. .y § 198 A: Develop a good model
likelihood a reasonable
: for what we observe
thing to do?



Learning Parameters for the Die Model:
Maximum Likelihood (Intuition)

PO, Wa, e wy) = pW)pwy) - p(wy) = | [ p(w)

maximize (log-) likelihood to learn the probability parameters

If you observe ...what are “reasonable”

these 9 rolls... estimates for p(w)?

° o0 ° p(1)="? p(2) =?
°%° [P | [ o e _2
oo ol IS 9 p(3) =" p(4) ="
ool [0e] [0
ool lo o lo o p(5) =7 p(6) =7




Learning Parameters for the Die Model:
Maximum Likelihood (Intuition)

PO, Wa, e wy) = pW)pwy) - p(wy) = | [ p(w)

maximize (log-) likelihood to learn the probability parameters

If you observe ...what are “reasonable”

these 9 rolls... estimates for p(w)?

o oe| | o o(1) = 2/9 0(2)=1/9 |
® ° ° e o maximum
.0‘ 0. : : p(3) =1/9 p(4)=3/9 — Iike_lihood

estimates

ool 0o [0 0 ) )
col lo ol loe p(5) =1/9 p(6) =1/9 B




Learning:

Observe some data X

Compute some distribution

g(X) to {predict, explain,

generate} X

Assume g is controlled by
parameters ¢, i.e., g4 (X)
— Sometimes written g(X; @)
Learning appropriate

value(s) of ¢ allows you to
about X

Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:

How do we “learn
appropriate value(s)

Of ¢ ?ll

Many different options: a
common one is maximum
likelihood estimation (MLE)

* Find values ¢ s.t.

g¢(X = {xl, ...,XN}) IS
maximized

* Independence assumptions
are very useful here!

* Logarithms are also useful!



Learning:
Maximum Likelihood Estimation (MLE)

Core concept in intro statistics: Example: How much does it

e Observe some data X snow?

 Compute some distribution * X ={x1,X3, ..., Xy} are
g(X) to {predict, explain, snowfall values from the
generate} X previous N storms

* Assume g is controlled by * Goal: learn ¢ such that g
parameters ¢, i.e., gg(X) correctly models, as

accurately as possible, the

— Sometimes written g(X; ¢) _
amount of snow likely

* MLE: Find values ¢ s.t.

g(p(X = {xl, ...,XN}) IS
maximized



Learning:
tople Maximum Likelihood
Estimation (MLE)

Core concept in intro statistics: Example: How much does it

Advanced

e Observe some data X snow?

* Compute some distribution * X ={x1,X3, ..., Xy} are
g(X) to {predict, explain, snowfall values from the
generate} X previous N storms

* Assume g is controlled by * Goal: learn ¢ such that g
parameters ¢, i.e., gg(X) correctly models, as

accurately as possible, the

— Sometimes written g(X; ¢) ,
amount of snow likely

* MLE: Find values ¢ s.t.

g¢(X = {xl, ...,XN}) IS
maximized

Assumption: each x; is
independent from all others

N
max z log go (x:)
=1



Advanced

topic MLE Snowfall Example

Example: How much does it  Q: Why is taking logarithms
snow? okay?

e X = {xl,xz,...,xN} dare

snowfall values from the Q: What other assumptionsl

previous N storms or decisions, do we need to
* Goal:learn ¢ suchthatg  make?

correctly models, as

accurately as possible, the

amount of snow likely

* Assumption: each x; is
independent from all
others

N
max Z log g¢ (x;)
=1



M or MLE Snowfall Example

Example: How much does it Q: Why is taking logarithms
snow? okay?
o X ={xq,x,,..,xy}are
snowfall values from the Q: What other assumptions, or
previous N storms decisions, do we need to
* Goal:learn ¢ such that g make?

correctly models, as

accurately as possible, the X; is positive, real-valued
. i ) - *
amount of snow likely What’s a probability

* Assumption: each x; is distribution for x;?
independent from all

. ?
others, but all from g Normal:
N * Gamma?
maleogg (x;) * Exponential?
4 i=1 PR  Bernoulli?

e Poisson?



M or MLE Snowfall Example

Example: How much does it
Snow?

o X ={xq,x,,..,xy}are
snowfall values from the
previous N storms

* Goal:learn ¢ such that g
correctly models, as
accurately as possible, the
amount of snow likely

* Assumption: each x; is
independent from all
others, but all from g

N
max z log g¢ (x:)
=1

Q: Why is taking logarithms
okay?

Q: What other assumptions, or
decisions, do we need to
make?

X; is positive, real-valued.

What's a probability
distribution for x;?
e Normal?

—k
k-1 —K
X exp( ) )

* Exponential?
e Bernoulli?
e Poisson?



Advanced

topic MLE Snowfall Example

Example: How much does it Q: Why is taking logarithms okay?

snow?

* X ={xy,x3 .., xy}are Q: What other assumptions, or
snowfall values from the decisions, do we need to make?

previous N storms

* Goal:learn ¢ such that g
correctly models, as accurately
as possible, the amount of

X; is positive, real-valued. What’s

: probability
Znow I'kily o distribution for x;? =)

* Assumption: each x; is . 5 L o pX=x)=
independent from all others, Normal: 1 (—(x—u)z)
but all from g * Gamma? V2o P42

N  Exponential?
maxz log 9o (x;) e Bernoulli?
¢ im1 * Poisson?



M or MLE Snowfall Example

Example: How much does x; ~Normal(y, 02)
it snow?
e X = {xl,xz,...,xN} are N
snowfall values from
the previous N storms (ng() z log Normal , ;2(x;) =
* Goal: learn ¢ such that =1

g correctly models, as
accurately as possible,
the amount of snow
likely

* Assumption: each x; is
independent from all
others, but all from g

N
max z log g4 (x;)
=1



M or MLE Snowfall Example

Example: How much does x; ~Normal(u, o2)
it snow?

e X = {xl,xz,...,xN} are N
snowfall values from

the previous N storms (r;gg% z log Normal , ;2(x;) =

* Goal: learn ¢ such that v =t

g correctly models, as —(x; — 1)?
accurately as possible, max z [ 5 ] — Nlogo =F
the amount of snow (n0%) £ a

likely

* Assumption: each x; is
independent from all
others, but all from g

N
max z log g4 (x;)
=1




M or MLE Snowfall Example

ilix;:gwg: How much does x; ~Normal(yu, 02)
e X = {xl,xz,...,xN} are N
snowfall values from
the previous N storms (ng() z logNormal, ;2 (x;) =
* Goal: learn ¢ such that v oL
g correctly models, as —(x; — p)?
accurately as possible, max z 5 — Nlogo =F
the amount of snow (,o%) £ o
likely
* Assumption: each x; is Q: How do we find u, 2?

independent from all
others, but all from g

N
max » 10g g (x)
=1



M or MLE Snowfall Example

Example: How much does it x; ~Normal(y, 02)
snow?
o X ={xq,%y,..,xy}are N
snowfall values from the .
previous N storms (Ig}g}) log Normal, ;2 (x;) =
* Goal:learn ¢ such that g N 1
correctly models, as —(x; — p)?
accurately as possible, the max z 5 — Nlogo =
amount of snow likely (1,0%) - o
* Assumption: each x; is
independent from all Q: How do we find p, 02?
others, but all from g
N
A: Differentiate and find that
max Z log g (x;)
i=1

XX
#:

N
2 _ il — ()
N

o



Learning:
Maximum Likelihood Estimation (MLE)

Central to
* Observe some data (X, y)

* Compute some function f(X) to {predict, explain,
generate} Y

* Assume f is controlled by parameters 0, i.e., fg(X)
— Sometimes written f(X; 0)



Learning:
Maximum Likelihood Estimation (MLE)

Central to machine learning:
* Observe some data (X, Y)

* Compute some function f(X) to {predict, explain,
generate} Y

* Assume f is controlled by parameters 9, i.e., fg(X)
— Sometimes written f(X; 0)

* Parameters are learned to minimize error (loss) 4
f

Advanced topic




Learning:
Maximum Likelihood Estimation (MLE)

Example: Can | sleep in the next

time it snows/is school canceled?

e X = {xl,xz,...,xN} are
snowfall values from the
previous N storms

* Y={ynLys .., yn}are
closure results from the
previous N storms

* Goal: learn @ such that f
correctly predicts, as
accurately as possible, if
UMBC will close in the next
storm:

*
— Yn+1 from Xn+1

If we assume the
output of f is a
probability distribution
on Y| X...
> f(X) -
{p(yes|X), p(no|X)}
Thenre: 0, {

means... what?



Some software tools

* Netica: Windows app for working with Bayes-
ian belief networks and influence diagrams

— Commercial product, free for small networks

— Includes graphical editor, compiler, inference
engine, etc.

— To run in OS X or Linus you need Wire or Crossover

e Hugin: free demo versions for Linux, Mac, and
Windows are available

* BBN.ipynb based on an AIMA notebook



http://www.norsys.com/
http://www.hugin.com/
https://colab.research.google.com/drive/1FPTgvim1F7M8bmyudPeC07dkEVe58mvu

File Edit Layout Modify Table Network Cases Report Style Window Help
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B 01 - ChestClinic.dne

Visit To Asia Smoking

visit 1.000 @ @ smoker 50.0
novisit 99.0 m—— non smoker 50.0

Tuberculosis Lung Cancer Bronchitis

present 1.04| = present 550§ @ present 45.0
absent  99.0 m—— absent  94.5 p—— absent 55.0

N,

Tuberculosis or Cant_:er
true 6.48p8

falsi/ 93.5 |mm— Chest Clinic

Distributed by Norsys Software Corp

XRay Result Dyspnea
abnormal 11.0 present 43 6 Dyspnea is difficult or

H H H X i lb db h
normal 89.0 m— absent  56.4 abored breathing




Same BBN model in Hugin app

Hugin Lite 8.4

Nw W =% @ X | B(meiie?
%2) Net: ChestClinic
h O @ v 0 © <0 @

|
See the 4-minute HUGIN Tutorial on YouTube



https://www.youtube.com/watch?v=Fs4QZIs8Kj0

Python Code

See this AIMA notebook on colab showing how to
construct this BBN Network in Python

P(B)
001

P(E) Judea Pearl example
002

Burglary

Earthquake

There’s is a house with a
burglar alarm that can be
triggered by a burglary or
earthquake. If it sounds,
one or both neighbors John
& Mary, might call the
alrapl  Owner to say the alarmis

t | .70 sounding.
f 1401



https://colab.research.google.com/drive/1FPTgvim1F7M8bmyudPeC07dkEVe58mvu



