CMSC 471:
 Reasoning with Bayesian Belief Network

Chapters 12 \& 13
KMA Solaiman - ksolaima@umbc.edu

Overview

- Bayesian Belief Networks (BBNs) can reason with networks of propositions and associated probabilities
- Useful for many AI problems
- Diagnosis
- Expert systems
- Planning
- Learning

Probabilistic Graphical Models

A graph G that represents a probability distribution over N random variables X_{1}, \ldots, X_{N}

Probabilistic Graphical Models

A graph G that represents a probability distribution over N random variables X_{1}, \ldots, X_{N}

Graph $\mathrm{G}=($ vertices V , edges E)

$$
\text { Distribution } P\left(X_{1}, \ldots, X_{N}\right)
$$

Probabilistic Graphical Models

A graph G that represents a probability distribution over random N variables X_{1}, \ldots, X_{N}

> Graph $\mathrm{G}=($ vertices V, edges E$)$
> Distribution $P\left(X_{1}, \ldots, X_{N}\right)$

Vertices \leftrightarrow random variables
Edges show dependencies among random variables

Probabilistic Graphical Models

A graph G that represents a probability distribution over N random variables X_{1}, \ldots, X_{N}

Graph $\mathrm{G}=($ vertices V , edges E)
Distribution $p\left(X_{1}, \ldots, X_{N}\right)$
Vertices \leftrightarrow random variables
Edges show dependencies among random variables

Two main flavors: directed graphical models and undirected graphical models

Probabilistic Graphical Models

A graph G that represents a probability distribution over N random variables X_{1}, \ldots, X_{N}

Graph $\mathrm{G}=($ vertices V , edges E)
Distribution $p\left(X_{1}, \ldots, X_{N}\right)$
Vertices \leftrightarrow random variables
Edges show dependencies among random variables

Two main flavors: directed graphical models and undirected graphical models

Directed Graphical Models

A directed (acyclic) graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ that represents a probability distribution over random variables

$$
X_{1}, \ldots, X_{N}
$$

Joint probability factorizes into factors of X_{i} conditioned on the parents of X_{i}

Directed Graphical Models

A directed (acyclic) graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ that represents a probability distribution over random variables

$$
X_{1}, \ldots, X_{N}
$$

Joint probability factorizes into factors of X_{i} conditioned on the parents of X_{i}

Benefit: the independence properties are transparent

Directed Graphical Models

A directed (acyclic) graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ that represents a probability distribution over random variables

$$
X_{1}, \ldots, X_{N}
$$

Joint probability factorizes into factors of X_{i} conditioned on the parents of X_{i}

A graph/joint distribution that follows this is a Bayesian network

BBN Definition

- AKA Bayesian Network, Bayes Net
- A graphical model (as a DAG) of probabilistic relationships among a set of random variables
- Nodes are variables, links represent direct influence of one variable on another
source
- Nodes have prior probabilities or conditional probability tables (CPTs)

History lesson: Judea Pearl

- UCLA CS professor
- Introduced Bayesian networks in the 1980s
- Pioneer of probabilistic approach to Al reasoning
- First to formalize causal modeling in empirical sciences
- Written many books on the topics, including the popular

THE NEW SCIENCE 2018 Book of Why

Why? Three (Four) kinds of reasoning

BBNs support three main kinds of reasoning:

- Predicting conditions given predispositions
- Diagnosing conditions given symptoms (and predisposing)
- Explaining a condition by one or more predispositions
To which we can add a fourth:
- Deciding on an action based on probabilities of the conditions

Recall Bayes Rule

$P(H, E)=P(H \mid E) P(E)=P(E \mid H) P(H)$

$$
P(E \mid H)=\frac{P(H \mid E) * P(E)}{P(H)}
$$

Note symmetry: we can compute probability of a hypothesis given its evidence as well as probability of evidence given hypothesis

Simple Bayesian Network

$$
S \in\{\text { no, light, heavy }\} \text { Smoking } \longrightarrow \xrightarrow[C \in\{\text { none,benign, malignant }\}]{\longrightarrow \text { Cancer }}
$$

Simple Bayesian Network

Simple Bayesian Network

$$
\begin{aligned}
& S \in\{\text { no, light, heavy }\} \text { Smoking } \\
& \text { Prior probability of } S
\end{aligned} \quad \begin{array}{l|l|l}
\text { Cancer } \\
\hline P(S=\text { no }) & 0.80 & \begin{array}{l}
\text { Nodes with no in-links }
\end{array} \\
\begin{array}{|l|l}
\hline P(S=\text { light }) & 0.15 \\
\text { nave prior } \\
\text { probabilities }
\end{array} \\
\hline P(S=\text { heavy }) & 0.05 &
\end{array}
$$

Conditional distribution of S and C

Nodes with in-links have joint probability distributions	Smoking=	no	light	heavy
	C=none	0.96	0.88	0.60
	C=benign	0.03	0.08	0.25
	C=malignant	0.01	0.04	0.15^{17}

Bayesian Networks:
 Directed Acyclic Graphs

$$
p\left(x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right)=\prod_{\substack{i \\ \text { topological } \\ \text { sort }}} p\left(x_{i} \mid \pi\left(x_{i}\right)\right)
$$

Bayesian Networks:
 Directed Acyclic Graphs

$$
\begin{aligned}
& p\left(x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right)=\prod_{i} p\left(x_{i} \mid \pi\left(x_{i}\right)\right) \\
& p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=? ? ?
\end{aligned}
$$

Bayesian Networks:
 Directed Acyclic Graphs

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=
$$

$$
p\left(x_{1}\right) p\left(x_{3}\right) p\left(x_{2} \mid x_{1}, x_{3}\right) p\left(x_{4} \mid x_{2}, x_{3}\right) p\left(x_{5} \mid x_{2}, x_{4}\right)
$$

Bayesian Networks:
 Directed Acyclic Graphs

$$
p\left(x_{1}, x_{2}, x_{3}, \ldots, x_{N}\right)=\prod_{i} p\left(x_{i} \mid \pi\left(x_{i}\right)\right)
$$

exact inference in general DAGs is NP-hard inference in trees can be exact

More Complex Bayesian Network

More Complex Bayesian Network

Nodes represent variables

- Does gender cause smoking?
- Influence might be a better term

More Complex Bayesian Network

More Complex Bayesian Network

More Complex Bayesian Network

More Complex Bayesian Network

Can we predict likelihood of lung tumor given values of other 6 variables?

- Model has 7 variables
- Complete joint probability distribution will have 7 dimensions!
- Too much data required :
- BBN simplifies: a node has a CPT with data on itself \& parents in graph

Independence \& Conditional Independence in BBNs

Read these independence relationships right from the graph!

There are two common concepts that can help:

1. Markov blanket
2. D-separation (not covering)

Markov Blanket

The Markov Blanket of a node x_{i} the set of nodes needed to form the complete conditional for a variable x_{i}

Markov Blanket

Markov blanket of a node x is its parents, children, and children's parents

The Markov Blanket of a node x_{i} the set of nodes needed to form the complete conditional for a variable x_{i}

$=$

Given its Markov blanket, a node is conditionally independent of all other nodes in the BN

Independence

Age and Gender are independent*.

$$
P(A, G)=P(G) * P(A)
$$

There is no path between them in the graph

$$
\begin{aligned}
& P(A \mid G)=P(A) \\
& P(G \mid A)=P(G) \\
& P(A, G)=P(G \mid A) P(A)=P(G) P(A) \\
& P(A, G)=P(A \mid G) P(G)=P(A) P(G)
\end{aligned}
$$

* Not strictly true, but a reasonable approximation ${ }^{31}$

Conditional Independence

Conditional Independence

Cancer is independent of Age and Gender given Smoking

- Instead of one big CPT with 4 variables, we have two smaller CPTs with 3 and 2 variables
- If all variables binary: 12 models $\left(2^{3}+2^{2}\right)$ rather than $16\left(2^{4}\right)$

Conditional Independence: Naïve Bayes

Serum Calcium and Lung Tumor are dependent

Serum Calcium is independent of Lung Tumor, given Cancer

$$
\begin{aligned}
& P(L \mid S C, C)=P(L \mid C) \\
& P(S C \mid L, C)=P(S C \mid C)
\end{aligned}
$$

Naïve Bayes assumption: evidence (e.g., symptoms) independent given disease; easy to combine evidence

Explaining Away

$P(E=$ heavy | $C=$ malignant $)>P(E=$ heavy
| C=malignant, S=heavy)

- Explaining away: reasoning pattern where confirmation of one cause reduces need to invoke alternatives
- Essence of Occam's Razor (prefer hypothesis with fewest assumptions)
- Relies on independence of causes

Conditional Independence

BBN Construction

The knowledge acquisition process for a BBN involves three steps

KA1: Choosing appropriate variables
KA2: Deciding on the network structure
KA3: Obtaining data for the conditional probability tables

KA1: Choosing variables

- Variable values: integers, reals or enumerations
- Variable should have collectively exhaustive, mutually exclusive values

$$
\begin{array}{r}
x_{1} \vee x_{2} \vee x_{3} \vee x_{4} \\
\neg\left(x_{i} \wedge x_{j}\right) \quad i \neq j
\end{array}
$$

No Error

- They should be values, not probabilities

Risk of ;moking
Smoking

Heuristic: Knowable in Principle

Example of good variables

- Weather: \{Sunny, Cloudy, Rain, Snow\}
- Gasoline: Cents per gallon \{0,1,2...\}
- Temperature: $\left\{\geq 100^{\circ} \mathrm{F},<100^{\circ} \mathrm{F}\right\}$
- User needs help on Excel Charts: \{Yes, No\}
- User's personality: \{dominant, submissive\}

KA2: Structuring

KA3: The Numbers

- For each variable we have a table of probability of its value for values of its parents
- For variables w/o parents, we have prior probabilities

$$
\begin{aligned}
& S \in\{\text { no,light, heavy }\} \\
& C \in\{\text { none,benign,malignant }\}
\end{aligned}
$$

smoking priors	
no	0.80
light	0.15
heavy	0.05

	smoking		
cancer	no	light	heavy
none	0.96	0.88	0.60
benign	0.03	0.08	0.25
malignant	0.01	0.04	0.1550

Three (Four) kinds of reasoning

BBNs support three main kinds of reasoning:

- Predicting conditions given predispositions
- Diagnosing conditions given symptoms (and predisposing)
- Explaining a condition by one or more predispositions
To which we can add a fourth:
- Deciding on an action based on probabilities of the conditions

Predictive Inference

Predictive and diagnostic combined

How likely is an elderly male patient with high Serum Calcium to have malignant cancer?

Explaining away

- If we see a lung tumor, the probability of heavy smoking and of exposure to toxics both go up
- If we then observe heavy smoking, the probability of exposure to toxics goes back down

Decision making

- A decision is a medical domain might be a choice of treatment (e.g., radiation or chemotherapy)
- Decisions should be made to maximize expected utility
- View decision making in terms of
- Beliefs/Uncertainties
- Alternatives/Decisions
- Objectives/Utilities

Decision Problem

Should I have my party inside or outside?

Decision Making with BBNs

- Today's weather forecast might be either sunny, cloudy or rainy
- Should you take an umbrella when you leave?
- Your decision depends only on the forecast - The forecast "depends on" the actual weather
- Your satisfaction depends on your decision and the weather
- Assign a utility to each of four situations: (rain|no rain) \times (umbrella, no umbrella)

Decision Making with BBNs

- Extend BBN framework to include two new kinds of nodes: decision and utility
- Decision node computes the expected utility of a decision given its parent(s) (e.g., forecast) and a valuation
- Utility node computes utility value given its parents, e.g. a decision and weather
- Assign utility to each situations: (rain|no rain) x (umbrella, no umbrella)
- Utility value assigned to each is probably subjective

Fundamental Inference \& Learning Question

- Compute posterior probability of a node given some other nodes

$$
p\left(Q \mid x_{1}, \ldots, x_{j}\right)
$$

- Some techniques
- MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered $2^{\text {nd }}$]
- Variable Elimination [covered $1^{\text {st] }}$]
- (Loopy) Belief Propagation ((Loopy) BP)
- Monte Carlo
- Variational methods
- ...

