CMSC 471: Reasoning with Bayesian Belief Network

Chapters 12 & 13

KMA Solaiman – <u>ksolaima@umbc.edu</u>

Some slides courtesy Tim Finin and Frank Ferraro

Overview

- Bayesian Belief Networks (BBNs) can reason with networks of propositions and associated probabilities
- Useful for many AI problems
 - Diagnosis
 - Expert systems
 - Planning
 - Learning

A graph G that represents a probability distribution over N random variables X_1, \ldots, X_N

A graph G that represents a probability distribution over N random variables X_1, \ldots, X_N

Graph G = (vertices V, edges E) Distribution $P(X_1, ..., X_N)$

A graph G that represents a probability distribution over random N variables X_1, \dots, X_N

> Graph G = (vertices V, edges E) Distribution $P(X_1, ..., X_N)$

Vertices ↔ random variables Edges show dependencies among random variables

A graph G that represents a probability distribution over N random variables X_1, \dots, X_N

> Graph G = (vertices V, edges E) Distribution $p(X_1, ..., X_N)$

Vertices ↔ random variables Edges show dependencies among random variables

Two main flavors: *directed* graphical models and *undirected* graphical models

A graph G that represents a probability distribution over N random variables X_1, \dots, X_N

> Graph G = (vertices V, edges E) Distribution $p(X_1, ..., X_N)$

Vertices ↔ random variables Edges show dependencies among random variables

Two main flavors: *directed* graphical models and *undirected* graphical models

Directed Graphical Models

A *directed* (acyclic) graph G=(V,E) that represents a probability distribution over random variables X_1, \dots, X_N

Joint probability factorizes into factors of X_i conditioned on the parents of X_i

Directed Graphical Models

A *directed* (acyclic) graph G=(V,E) that represents a probability distribution over random variables X_1, \dots, X_N

Joint probability factorizes into factors of X_i conditioned on the parents of X_i

> Benefit: the independence properties are *transparent*

Directed Graphical Models

A *directed* (acyclic) graph G=(V,E) that represents a probability distribution over random variables X_1, \ldots, X_N

Joint probability factorizes into factors of X_i conditioned on the parents of X_i

A graph/joint distribution that follows this is a Bayesian network

BBN Definition

- AKA Bayesian Network, Bayes Net
- A graphical model (as a <u>DAG</u>) of probabilistic relationships among a set of random variables
- Nodes are variables, links represent direct influence of one variable on another
- Nodes have prior probabilities or conditional probability tables (CPTs)

source

History lesson: Judea Pearl

- UCLA CS professor
- Introduced <u>Bayesian</u> <u>networks</u> in the 1980s
- Pioneer of probabilistic approach to AI reasoning
- First to formalize causal modeling in empirical sciences
- Written many books on the topics, including the popular 2018 <u>Book of Why</u>

Why? Three (Four) kinds of reasoning

BBNs support three main kinds of reasoning:

- Predicting conditions given predispositions
- Diagnosing conditions given symptoms (and predisposing)
- Explaining a condition by one or more predispositions

To which we can add a fourth:

 Deciding on an action based on probabilities of the conditions

Recall Bayes Rule

P(H, E) = P(H | E)P(E) = P(E | H)P(H)

Note symmetry: we can compute probability of a *hypothesis given its evidence* as well as probability of *evidence given hypothesis*

Simple Bayesian Network

 $S \in \{no, light, heavy\}$ (Smoking)-Cancer

 $C \in \{none, benign, malignant\}$

Simple Bayesian Network

 $S \in \{no, light, heavy\}$ Smoking $C \in \{none, benign, malignant\}$ Nodes represent variables $S \in \{none, benign, malignant\}$ Links represent "causal" relations

Simple Bayesian Network

Prior probability of S

S=no)

'S=light)

S=heavy)

0.80

 $C \in \{none, benign, malignant\}$

Nodes with no in-links

0.15have prior0.05probabilities

Conditional distribution of S and C

Nodes with in-links have joint probability distributions	Smoking=	no	light	heavy
	C=none	0.96	0.88	0.60
	C=benign	0.03	0.08	0.25
	C=malignant	0.01	0.04	0.1517

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

 $p(x_1, x_2, x_3, x_4, x_5) = ???$

 $p(x_1, x_2, x_3, x_4, x_5) =$ $p(x_1)p(x_3)p(x_2|x_1,x_3)p(x_4|x_2,x_3)p(x_5|x_2,x_4)$

$$p(x_1, x_2, x_3, \dots, x_N) = \prod_i p(x_i \mid \pi(x_i))$$

exact inference in general DAGs is NP-hard inference in trees can be exact

Can we predict likelihood of **lung tumor** given values of other 6 variables?

- Model has 7 variables
- Complete joint probability distribution will have 7 dimensions!
- Too much data required ⊗
- BBN simplifies: a node has a CPT with data on itself & parents in graph

CPT = <u>conditional probability table</u>

Independence & Conditional Independence in BBNs

Read these independence relationships right from the graph!

There are two common concepts that can help:

- 1. Markov blanket
- 2. D-separation (not covering)

Markov Blanket

The **Markov Blanket** of a node x_i the set of nodes needed to form the complete conditional for a variable x_i

Markov blanket of a node x is its parents, children, and children's parents

Markov blanket of a node x is its parents, children, and children's parents

Markov Blanket

The Markov Blanket of a node x_i the set of nodes needed to form the complete conditional for a variable x_i

p() |

=

Given its Markov blanket, a node is conditionally independent of all other nodes in the BN

(in this example, shading does not show observed/latent)

Independence

Age and Gender are independent*.

There is no path between them in the graph

$$P(A,G) = P(G) * P(A)$$

P(A | G) = P(A)P(G | A) = P(G)

P(A,G) = P(G|A) P(A) = P(G)P(A)P(A,G) = P(A|G) P(G) = P(A)P(G)

* Not strictly true, but a reasonable approximation³¹

Conditional Independence

Cancer is independent of Age and Gender given Smoking

$$P(C \mid A,G,S) = P(C \mid S)$$

If we know value of smoking, no need to know values of age or gender

Conditional Independence

Cancer is independent of *Age* and *Gender* given *Smoking*

- Instead of one big CPT with 4 variables, we have two smaller CPTs with 3 and 2 variables
- If all variables binary: 12 models (2³ +2²) rather than 16 (2⁴)

Conditional Independence: Naïve Bayes

Serum Calcium and Lung Tumor are dependent

Serum Calcium is independent of *Lung Tumor*, given *Cancer*

 $P(L \mid SC,C) = P(L \mid C)$ $P(SC \mid L,C) = P(SC \mid C)$

Naïve Bayes assumption: evidence (e.g., symptoms) independent given disease; easy to combine evidence

Explaining Away

Exposure to Toxics and Smoking are independent

P(E=heavy | C=malignant) > P(E=heavy
| C=malignant, S=heavy)

- *Explaining away:* reasoning pattern where confirmation of one cause reduces need to invoke alternatives
- Essence of <u>Occam's Razor</u> (prefer hypothesis with fewest assumptions)
- Relies on independence of causes

Smoking

Cancer

Exposure

Conditional Independence

BBN Construction

- The <u>knowledge acquisition</u> process for a BBN involves three steps
 - **KA1**: Choosing appropriate variables
 - KA2: Deciding on the network structure
 - **KA3**: Obtaining data for the conditional probability tables

KA1: Choosing variables

- Variable values: integers, reals or enumerations
- Variable should have collectively *exhaustive*, *mutually exclusive* values

$$x_1 \lor x_2 \lor x_3 \lor x_4$$
$$\neg (x_i \land x_j) \quad i \neq j$$

• They should be values, not probabilities

Heuristic: Knowable in Principle

Example of good variables

- Weather: {Sunny, Cloudy, Rain, Snow}
- Gasoline: Cents per gallon {0,1,2...}
- Temperature: { $\geq 100^{\circ}$ F , < 100° F}
- User needs help on Excel Charts: {Yes, No}
- User's personality: {dominant, submissive}

KA2: Structuring

KA3: The Numbers

- For each variable we have a table of probability of its value for values of its **parents**
- For variables w/o parents, we have prior probabilities

 $S \in \{no, light, heavy\}$ $C \in \{none, benign, malignant\}$

(Smoking)	Cancer)

smoking priors		
no	0.80	
light	0.15	
heavy	0.05	

	smoking			
cancer	no	light	heavy	
none	0.96	0.88	0.60	
benign	0.03	0.08	0.25	
malignant	0.01	0.04	0.15 50	

Three (Four) kinds of reasoning

BBNs support three main kinds of reasoning:

- Predicting conditions given predispositions
- Diagnosing conditions given symptoms (and predisposing)
- Explaining a condition by one or more predispositions

To which we can add a fourth:

 Deciding on an action based on probabilities of the conditions

Predictive Inference

Predictive and diagnostic combined

Explaining away

- If we see a lung tumor, the probability of heavy smoking and of exposure to toxics both go up
- If we then observe heavy smoking, the probability of exposure to toxics goes back down

Decision making

- A decision is a medical domain might be a choice of treatment (e.g., radiation or chemotherapy)
- Decisions should be made to maximize expected utility
- View decision making in terms of
 - Beliefs/Uncertainties
 - Alternatives/Decisions
 - Objectives/Utilities

Decision Problem

Should I have my party inside or outside?

Decision Making with BBNs

- Today's weather forecast might be either sunny, cloudy or rainy
- Should you take an umbrella when you leave?
- Your decision depends only on the forecast — The forecast "depends on" the actual weather
- Your satisfaction depends on your decision and the weather
 - Assign a utility to each of four situations: (rain | no rain) x (umbrella, no umbrella)

Decision Making with BBNs

- Extend BBN framework to include two new kinds of nodes: decision and utility
- Decision node computes the expected utility of a decision given its parent(s) (e.g., forecast) and a valuation
- **Utility** node computes utility value given its parents, e.g. a decision and weather
 - Assign utility to each situations: (rain | no rain) x (umbrella, no umbrella)
 - Utility value assigned to each is probably subjective

Fundamental Inference & Learning Question

 Compute posterior probability of a node given some other nodes

$$p(Q|x_1, \dots, x_j)$$

- Some techniques
 - MLE (maximum likelihood estimation)/MAP (maximum a posteriori) [covered 2nd]
 - Variable Elimination [covered 1st]
 - (Loopy) Belief Propagation ((Loopy) BP)
 - Monte Carlo
 - Variational methods

Advanced topics