CMSC 471:

Probability, and Reasoning and Learning with Uncertainty (Bayesian Reasoning)

Chapters 12 \& 13
KMA Solaiman - ksolaima@umbc.edu

Today's topics

- Motivation
- Review probability theory
- Bayesian inference
-From the joint distribution
-Using independence/factoring
-From sources of evidence
- Naïve Bayes algorithm for inference and classification tasks

Motivation: causal reasoning

- As the sun rises, the rooster crows
-Does this correlation imply causality?
- If so, which way does it go?
- The evidence can come from
-Probabilities and Bayesian reasoning
- Common sense knowledge
-Experiments
- Bayesian Belief Networks (BBNs) are useful for modeling causal reasoning

Motivation: logic isn't enough

- Classical logic is designed to work with certainties
- Getting a positive result on a COVID test doesn't necessarily mean you are infected
- And a negative result doesn't necessarily mean you are not infected
- You need to know the true/false positive and true/false negative rates of the test

Decision making with uncertainty

Rational behavior: for each possible action:

- Identify possible outcomes and for each
-Compute probability of outcome
-Compute utility of outcome
-Compute probability-weighted (expected) utility of outcome
- Select action with the highest expected utility (principle of Maximum Expected Utility)

Consider

- Your house has an alarm system
- It should go off if a burglar breaks into the house
- It can also go off if there is an earthquake
- How can we predict what's happened if the alarm goes off?
-Someone has broken in!
-It's a minor earthquake

Probability theory 101

- Random variables:
- Domain
- Atomic event:
complete specification of state
- Prior probability:
degree of belief
without any other evidence or info
- Joint probability: matrix of combined probabilities of set of variables
- Alarm, Burglary, Earthquake Boolean (these) or discrete (0-9), continuous (float)
- Alarm $=\mathrm{T} \wedge$ Burglary=T^Earthquake=F alarm \wedge burglary $\wedge \neg$-earthquake
- $P($ Burglary $)=0.1$ $\mathrm{P}($ Alarm $)=0.1$
$P($ earthquake $)=0.000003$
- P(Alarm, Burglary) =

	alarm	-alarm
burglary	.09	.01
-burglary	.1	.8

Probability theory 101

	alarm	-alarm
burglary	.09	.01
-burglary	.1	.8

- Conditional probability: prob. of effect given causes
- Computing conditional probs:
$-P(a \mid b)=P(a \wedge b) / P(b)$
- $P(b)$: normalizing constant
- Product rule:
$-P(a \wedge b)=P(a \mid b) * P(b)$
- Marginalizing:
$-P(B)=\Sigma_{a} P(B, a)$
$-P(B)=\Sigma_{a} P(B \mid a) P(a)$ (conditioning)
- $\mathrm{P}($ burglary | alarm $)=.47$ P(alarm | burglary) = . 9
- $P($ burglary \mid alarm $)=$ P(burglary \wedge alarm) / P(alarm) $=.09 / .19=.47$
- $P($ burglary \wedge alarm $)=$ P(burglary | alarm) * P(alarm)
$=.47$ * $.19=.09$
- $\mathrm{P}($ alarm $)=$
$\mathrm{P}($ alarm \wedge burglary) +
P(alarm $\wedge \neg$ burglary)
= .09+. 1 = . 19

Probability theory 101

	alarm	万alarm
burglary	.09	.01
-burglary	.1	.8

- Conditional probability: prob. of effect given causes
- Computing conditional probs:
$-P(a \mid b)=P(a \wedge b) / P(b)$
$-P(b)$: normalizing constant
- Product rule:
$-P(a \wedge b)=P(a \mid b) * P(b)$
- Marginalizing:
$-P(B)=\Sigma_{a} P(B, a)$
$-P(B)=\Sigma_{a} P(B \mid a) P(a)$ (conditioning)
- $\mathrm{P}($ burglary | alarm $)=.47$ P(alarm | burglary) = . 9
- $\mathrm{P}($ burglary | alarm) $=$

P(burglary \wedge alarm) / P(alarm)
$=.09 / .19=.47$

- $\mathrm{P}($ burglary \wedge alarm $)=$

P(burglary | alarm) * P(alarm)
$=.47$ * $.19=.09$

- $\mathrm{P}($ alarm $)=$
$\mathrm{P}($ alarm \wedge burglary $)+$
P(alarm $\wedge \neg$ burglary)
= .09+. 1 = . 19

Example: Inference from the joint

	alarm		ᄀalarm	
	earthquake	ᄀearthquake	earthquake	ᄀearthquake
burglary	.01	.08	.001	.009
-burglary	.01	.09	.01	.79

P (burglary | alarm) = α P(burglary, alarm)
$=\alpha[P($ burglary, alarm, earthquake $)+P($ burglary, alarm, -earthquake $)$
$=\alpha[(.01, .01)+(.08, .09)]$
$=\alpha[(.09, .1)]$
Since $P($ burglary \mid alarm $)+P(\neg$ burglary \mid alarm $)=1, \alpha=1 /(.09+.1)=5.26$
(i.e., $P($ alarm $)=1 / \alpha=.19-$ quizlet: how can you verify this?)
$\mathrm{P}($ burglary \mid alarm $)=.09 * 5.26=.474$
$\mathrm{P}(-$ burglary | alarm) $=.1 * 5.26=.526$

Consider

- A student has to take an exam
-She might be smart
-She might have studied
-She may be prepared for the exam
- How are these related?
- We can collect joint probabilities for the three events
- Measure "prepared" as "got a passing grade"

Exercise: Inference from the joint

p(smart \wedge study \wedge prepared)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Each of the 8 highlighted boxes has the joint probability for the three values of smart, study, prepared Queries:
-What is the prior probability of smart?
-What is the prior probability of study?
Standard way
to show joint probabilities
of 3 variables as a 2 D table
-What is the conditional probability of prepared, given study and smart?

Exercise:

Inference from the joint

p(smart \wedge study \wedge prepared)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?
$\mathrm{p}($ smart $)=.432+.16+.048+.16=0.8$

Exercise:

Inference from the joint

p(smart \wedge study \wedge prepared)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?

Exercise:

Inference from the joint

p(smart \wedge study \wedge prepared)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?
$p($ study $)=.432+.048+.084+.036=0.6$

Exercise:

Inference from the joint

p(smart \wedge study \wedge prepared)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?

Exercise:

Inference from the joint

p(smart \wedge study \wedge prepared)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of smart?
- What is the prior probability of study?
- What is the conditional probability of prepared, given study and smart?
$\mathrm{p}($ prepared \mid smart,study $)=\mathrm{p}($ prepared,smart,study)/p(smart, study)
$=.432 /(.432+.048)$
$=0.9$

Independence

- When variables don't affect each others' probabilities, they are independent; we can easily compute their joint \& conditional probability:
Independent $(A, B) \rightarrow P(A \wedge B)=P(A) * P(B) ; P(A \mid B)=P(A)$
- \{moonPhase, lightLevel\} might be independent of \{burglary, alarm, earthquake\}
- Maybe not: burglars may be more active during a new moon because darkness hides their activity
- But if we know light level, moon phase doesn't affect whether we are burglarized
- If burglarized, light level doesn't affect if alarm goes off
- Need a more complex notion of independence and methods for reasoning about the relationships

Exercise: Independence

p(smart \wedge study \wedge prepared)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Queries:

-Q1: Is smart independent of study?
-Q2: Is prepared independent of study?
How can we tell?

Exercise: Independence

p(smart \wedge study \wedge prepared)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Q1: Is smart independent of study?

- You might have some intuitive beliefs based on your experience
- You can also check the data

Which way to answer this is better?

Exercise: Independence

p(smart \wedge study \wedge prepared)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Q1: Is smart independent of study?
Q1 true iff $p(s m a r t \mid$ study $)==p(s m a r t)$
$p($ smart $)=.432+0.048+.16+.16=0.8$
p(smart|study) $=$ p(smart,study)/p(study)

$$
=(.432+.048) / .6=0.48 / .6=0.8
$$

$0.8=0.8 \therefore$ smart is independent of study

Exercise: Independence

p(smart ^ study ^ prep)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Q2: Is prepared independent of study?
-What is prepared?

- Q2 true iff

Exercise: Independence

p(smart study ^ prep)	smart		\neg smart	
	study	\neg study	study	\neg study
prepared	.432	.16	.084	.008
\neg prepared	.048	.16	.036	.072

Q2: Is prepared independent of study?
Q2 true iff \mathbf{p} (prepared|study) $==\mathbf{p}$ (prepared)
p(prepared) $=.432+.16+.84+.008=.684$
$\mathrm{p}($ prepared \mid study $)=\mathrm{p}($ prepared, study $) / \mathrm{p}($ study $)$
$=(.432+.084) / .6=.86$
$0.86 \neq 0.684, \therefore$ prepared not independent of study

Absolute \& conditional independence

- Absolute independence:
$-A$ and B are independent if $P(A \wedge B)=P(A) * P(B)$; equivalently, $P(A)=P(A \mid B)$ and $P(B)=P(B \mid A)$
- A and B are conditionally independent given C if
$-P(A \wedge B \mid C)=P(A \mid C) * P(B \mid C)$
If it holds, lets us decompose the joint distribution:
$-P(A \wedge B \wedge C)=P(A \mid C) * P(B \mid C) * P(C)$
- Moon-Phase and Burglary are conditionally independent given Light-Level
- Conditional independence is weaker than absolute independence, but useful in decomposing full joint probability distribution

Conditional independence

- Conditional independence often comes from causal relations
-FullMoon causally affects LightLevel at night as does StreetLights
- In burglary scenario, FullMoon doesn't affect anything else
- Knowing LightLevel, we can ignore FullMoon and StreetLights when predicting if alarm suggests Burglary

Bayes' rule

Derived from the product rule:

$-P(A, B)=P(A \mid B)^{*} P(B)$ \#from definition of conditional probability
$-P(B, A)=P(B \mid A) * P(A)$ \# from definition of conditional probability
$-P(A, B)=P(B, A) \quad$ \# since order is not important
So...

$$
P(A \mid B)=\frac{P(B \mid A) * P(A)}{P(B)}
$$

relates $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ and $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$

$\mathrm{P}(\mathrm{A}, \mathrm{B})$ is probability of both A and B being true, so $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{B}, \mathrm{A})$

Useful for diagnosis!

- C is a cause, E is an effect: $-\mathrm{P}(\mathrm{C} \mid \mathrm{E})=\mathrm{P}(\mathrm{E} \mid \mathrm{C}) * \mathrm{P}(\mathrm{C}) / \mathrm{P}(\mathrm{E})$
- Useful for diagnosis:
- E are (observed) effects and C are (hidden) causes,
- Often have model for how causes lead to effects P(E|C)
- We may have info (based on experience) on frequency of causes (P(C))
- Which allows us to reason abductively from effects to causes (P(C|E))
-Recall, abductive reasoning: from $A=>B$ and B, infer (maybe?) A

Example: meningitis and stiff neck

cause

symptom

- Meningitis (M) can cause stiff neck (S), though there are other causes too
- Use S as a diagnostic symptom \& estimate $\mathbf{p (M | S)}$
- Studies can estimate $p(M), p(S) \& p(S \mid M)$, e.g. $p(S \mid M)=0.7, p(S)=0.01, p(M)=0.00002$
- Harder to directly gather data on $\mathrm{p}(\mathrm{M} \mid \mathrm{S})$
- Applying Bayes' Rule:
$p(M \mid S)=p(S \mid M) * p(M) / p(S)=0.0014$

From multiple evidence to a cause

In the setting of diagnostic/evidential reasoning

- Know prior probability of hypothesis $\quad \boldsymbol{P}\left(\boldsymbol{H}_{i}\right)$ conditional probability

$$
P\left(E_{j} \mid H_{i}\right)
$$

- Want to compute the posterior probability $\boldsymbol{P}\left(\boldsymbol{H}_{i} \mid \boldsymbol{E}_{j}\right)$ Bayes' s theorem:

$$
P\left(H_{i} \mid E_{j}\right)=P\left(H_{i}\right) * P\left(E_{j} \mid H_{i}\right) / P\left(E_{j}\right)
$$

Bayesian diagnostic reasoning

- Knowledge base:
-Evidence / manifestations: $\mathrm{E}_{1}, \ldots \mathrm{E}_{\mathrm{m}}$
-Hypotheses / disorders: $\mathrm{H}_{1}, \ldots . \mathrm{H}_{\mathrm{n}}$
Note: E_{j} and H_{i} binary; hypotheses mutually exclusive (non-overlapping) \& exhaustive (cover all possible cases)
- Conditional probabilities: $P\left(E_{j} \mid H_{i}\right), i=1, \ldots n ; j=1, \ldots m$
- Cases (evidence for particular instance): $\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{l}}$
- Goal: Find hypothesis H_{i} with highest posterior
- Max $\mathrm{P}_{\mathrm{i}}\left(\mathrm{H}_{\mathrm{i}} \mid \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{l}}\right)$

Bayesian diagnostic reasoning (2)

- Prior vs. posterior probability
- Prior: probability before we know the evidence, e.g., 0.005 for having COVID)
- Posterior: probability after knowing evidence, e.g., 0.9 if patient tests positive for COVID
- Goal: find hypothesis H_{i} with highest posterior
$-\operatorname{Max}_{i} P\left(H_{i} \mid E_{1}, \ldots, E_{m}\right)$
- Requires knowing joint evidence probabilities
$P\left(H_{i} \mid E_{1} \ldots E_{m}\right)=P\left(E_{1} \ldots E_{m} \mid H_{i}\right) P\left(H_{i}\right) / P\left(E_{1} \ldots E_{m}\right)$
- Having many E_{i} is a big data collection problem!

Simplifying Bayesian diagnostic reasoning

- Having many E_{i} is a big data collection problem!
- Two ways to address this
- \#1 use conditional independence to effect "causal reasoning" and eliminate some E_{i}
- Knowing LightLevel, we can ignore FullMoon and StreetLights when predicting if alarm suggests Burglary
- More on this later as Bayesian Believe Networks
- \#2 Use a Naïve Bayes approximation that assumes evidence variables are all mutually independent

Simple Bayesian diagnostic reasoning

- Bayes' rule:

$$
P\left(H_{i} \mid E_{1} \ldots E_{m}\right)=P\left(E_{1} \ldots E_{m} \mid H_{i}\right) P\left(H_{i}\right) / P\left(E_{1} \ldots E_{m}\right)
$$

- Assume each evidence E_{i} is conditionally independent of the others, given a hypothesis H_{i}, then:

$$
P\left(E_{1} \ldots E_{m} \mid H_{i}\right)=\prod_{j=1}^{m} P\left(E_{j} \mid H_{i}\right)
$$

- If only care about relative probabilities for H_{i}, then:

$$
P\left(H_{i} \mid E_{1} \ldots E_{m}\right)=\alpha P\left(H_{i}\right) \prod_{j=1}^{m} P\left(E_{j} \mid H_{i}\right)
$$

Naive Bayes: Example

p (Wait | Cuisine, Patrons, Rainy?) =

$$
\begin{aligned}
& =\alpha \cdot p(\text { Wait }) \bullet p(\text { Cuisine } \mid \text { Wait }) \bullet p(\text { Patrons } \mid \text { Wait }) \bullet p(\text { Rainy? } \mid \text { Wait }) \\
& \frac{p(\text { Wait }) \bullet p(\text { Cuisine } \mid \text { Wait }) \bullet p(\text { Patrons } \mid \text { Wait }) \bullet p(\text { Rainy? } \mid \text { Wait })}{p(\text { Cuisine }) \bullet p(\text { Patrons }) \bullet p(\text { Rainy? })}
\end{aligned}
$$

We can estimate all of the parameters $p(P)$ and $p(C)$ just by counting from the training examples

Naive Bayes: Analysis

- Naive Bayes is amazingly easy to implement (once you understand the math behind it)
- Naive Bayes can outperform many much more complex algorithms-it's a baseline that should be tried or used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)-for that, we need Bayes nets!

Bag of Words Classifier

Naïve Bayes (NB) Classifier

$\operatorname{argmax}_{Y} p(X \mid Y) * p(Y)$
 label
 text

Start with Bayes Rule

Naïve Bayes (NB) Classifier

Learning for a Naïve Bayes Classifier

Assuming V vocab types w_{1}, \ldots, w_{V} and L classes c_{1}, \ldots, c_{L} (and appropriate corpora)

Learning for a Naïve Bayes Classifier

Assuming V vocab types w_{1}, \ldots, w_{V} and L classes c_{1}, \ldots, c_{L} (and appropriate corpora)

Q: What parameters
(values/weights) must
be learned?

Learning for a Naïve Bayes Classifier

Assuming V vocab types w_{1}, \ldots, w_{V} and L classes c_{1}, \ldots, c_{L} (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Learning for a Naïve Bayes Classifier

Assuming V vocab types w_{1}, \ldots, w_{V} and L classes c_{1}, \ldots, c_{L} (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

$\mathrm{A}: p\left(w_{v} \mid c_{l}\right), p\left(c_{l}\right)$

Q: How many
parameters must be learned?

Learning for a Naïve Bayes Classifier

Assuming V vocab types w_{1}, \ldots, w_{V} and L classes c_{1}, \ldots, c_{L} (and appropriate corpora)

Q: What parameters
(values/weights) must be learned?

Q: How many
parameters must be learned?

Learning for a Naïve Bayes Classifier

Assuming V vocab types w_{1}, \ldots, w_{V} and L classes c_{1}, \ldots, c_{L} (and appropriate corpora)

Q: What parameters
(values/weights) must be learned?

Q: How many
parameters must be learned?

$$
\mathrm{A}: L V+L
$$

Q: What distributions need to sum to 1 ?

Learning for a Naïve Bayes Classifier

Assuming V vocab types w_{1}, \ldots, w_{V} and L classes c_{1}, \ldots, c_{L} (and appropriate corpora)

Q: What parameters
(values/weights) must be learned?

Q: How many
parameters must be learned?

Q: What distributions need to sum to 1 ?

$$
\mathrm{A}: L V+L
$$

A: Each $p\left(\cdot \mid c_{l}\right)$, and
the prior

Multinomial Naïve Bayes: Learning

From training corpus, extract Vocabulary

Calculate $P\left(c_{j}\right)$ terms
For each c_{j} in C do
docs $_{j}=$ all docs with class $=c_{j}$
Calculate $P\left(w_{k} \mid c_{j}\right)$ terms
Text $_{j}=$ single doc containing all docs $_{j}$
For each word w_{k} in Vocabulary
$n_{k}=\#$ of occurrences of w_{k} in Text ${ }_{j}$

$$
p\left(c_{j}\right)=\frac{\mid \text { docs }_{j} \mid}{\# \text { docs }}
$$

$$
p\left(w_{k} \mid c_{j}\right)
$$

\propto count(word w_{k} in doc
labeled with c_{j})

Naive Bayes: Analysis

- Naive Bayes is amazingly easy to implement (once you understand the math behind it)
- Naive Bayes can outperform many much more complex algorithms-it's a baseline that should be tried or used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)-for that, we need Bayes nets!

With enough data, the classifier may not matter

Naive Bayes: Analysis

- Naive Bayes is amazingly easy to implement (once you understand the math behind it)
- Naive Bayes can outperform many much more complex algorithms-it's a baseline that should be tried or used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)-for that, we need Bayes nets!

Limitations

- Can't easily handle multi-fault situations or cases where intermediate (hidden) causes exist:
- Disease D causes syndrome S, which causes correlated manifestations M_{1} and M_{2}
- Consider composite hypothesis $\mathrm{H}_{1} \wedge \mathrm{H}_{2}$, where H_{1} \& H_{2} independent. What's relative posterior?
$P\left(H_{1} \wedge H_{2} \mid E_{1}, \ldots, E_{1}\right)=\alpha P\left(E_{1}, \ldots, E_{1} \mid H_{1} \wedge H_{2}\right) P\left(H_{1} \wedge\right.$
H_{2})

$$
\begin{aligned}
& =\alpha P\left(E_{1}, \ldots, E_{1} \mid H_{1} \wedge H_{2}\right) P\left(H_{1}\right) P\left(H_{2}\right) \\
& =\alpha \prod_{j=1}^{1} P\left(E_{j} \mid H_{1} \wedge H_{2}\right) P\left(H_{1}\right) P\left(H_{2}\right)
\end{aligned}
$$

- How do we compute $P\left(E_{j} \mid H_{1} \wedge H_{2}\right)$?

Limitations

- Assume H 1 and H 2 independent, given $\mathrm{E} 1, \ldots$, El ?
$-P\left(H_{1} \wedge H_{2} \mid E_{1}, \ldots, E_{1}\right)=P\left(H_{1} \mid E_{1}, \ldots, E_{1}\right) P\left(H_{2} \mid E_{1}, \ldots, E_{1}\right)$
- Unreasonable assumption
- Earthquake \& Burglar independent, but not given Alarm:

P(burglar | alarm, earthquake) << P(burglar | alarm)

- Doesn't allow causal chaining:
- A: 2017 weather; B: 2017 corn production; C: 2018 corn price
- A influences C indirectly: $A \rightarrow B \rightarrow C$
$-P(C \mid B, A)=P(C \mid B)$
- Need richer representation for interacting hypoteses, conditional independence \& causal chaining
- Next: Bayesian Belief networks!

Summary

- Probability a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Answer queries by summing over atomic events
- Must reduce joint size for non-trivial domains
- Bayes rule: compute from known conditional probabilities, usually in causal direction
- Independence \& conditional independence provide tools
- Next: Bayesian belief networks

