CMSC 471: Probability, and Reasoning and Learning with Uncertainty (Bayesian Reasoning)

Chapters 12 & 13

KMA Solaiman – <u>ksolaima@umbc.edu</u>

Some slides courtesy Tim Finin and Frank Ferraro

Today's topics

- Motivation
- Review probability theory
- Bayesian inference
 - -From the joint distribution
 - –Using independence/factoring
 - -From sources of evidence
- Naïve Bayes algorithm for inference and classification tasks

Motivation: causal reasoning

- As the sun rises, the rooster crows
 - Does this correlation imply causality?
 - -If so, which way does it go?
- The evidence can come from
 - Probabilities and Bayesian reasoning
 - -Common sense knowledge
 - Experiments
- Bayesian Belief Networks (<u>BBNs</u>) are useful for modeling <u>causal reasoning</u>

Motivation: logic isn't enough

- Classical logic is designed to work with certainties
- Getting a positive result on a COVID test doesn't necessarily mean you are infected
- And a negative result doesn't necessarily mean you are not infected
- You need to know the **true/false positive** and **true/false negative** rates of the test

Decision making with uncertainty

Rational behavior: for each possible action:

- Identify possible outcomes and for each
 - -Compute probability of outcome
 - -Compute **utility** of outcome
 - Compute probability-weighted (expected) utility of outcome
- Select action with the highest expected utility (principle of Maximum Expected Utility)

Consider

- Your house has an alarm system
- It should go off if a burglar breaks into the house
- It can also go off if there is an earthquake
- How can we predict what's happened if the alarm goes off?
 - -Someone has broken in!
 - -It's a minor earthquake

Probability theory 101

• Random variables:

– Domain

• Atomic event:

complete specification of state

• Prior probability:

degree of belief without any other evidence or info

Joint probability: matrix of combined probabilities of set of variables

- Alarm, Burglary, Earthquake Boolean (these) or discrete (0-9), continuous (float)
- Alarm=T^Burglary=T^Earthquake=F alarm ^ burglary ^ -earthquake
- P(Burglary) = 0.1
 P(Alarm) = 0.1
 P(earthquake) = 0.000003
- P(Alarm, Burglary) =

	alarm	−alarm
burglary	.09	.01
¬burglary	.1	.8

Probability theory 101

	alarm	−alarm
burglary	.09	.01
¬burglary	.1	.8

- Conditional probability: prob. of effect given causes
- Computing conditional probs:
 - $P(a | b) = P(a \land b) / P(b)$
 - P(b): normalizing constant
- Product rule:
 - − P(a ∧ b) = P(a | b) * P(b)
- Marginalizing:
 - $P(B) = \Sigma_a P(B, a)$
 - $P(B) = \Sigma_a P(B | a) P(a)$ (conditioning)

- P(burglary | alarm) = .47
 P(alarm | burglary) = .9
- P(burglary | alarm) = P(burglary ^ alarm) / P(alarm) = .09/.19 = .47
- P(burglary \wedge alarm) =

 P(burglary | alarm) * P(alarm)
 = .47 * .19 = .09
- P(alarm) = P(alarm \land burglary) + P(alarm \land ¬burglary) = .09+.1 = .19

alarm-alarmburglary.09.01-burglary.1.8

 Conditional probability: prob. of effect given causes

Probability theory 101

• Computing conditional probs:

 $- P(a | b) = P(a \land b) / P(b)$

- P(b): normalizing constant
- Product rule:
 - $P(a \land b) = P(a | b) * P(b)$
- Marginalizing:
 - $P(B) = \Sigma_a P(B, a)$
 - $P(B) = \Sigma_a P(B | a) P(a)$ (conditioning)

- P(burglary | alarm) = .47
 P(alarm | burglary) = .9
- P(burglary | alarm) =
 P(burglary ^ alarm) / P(alarm)
 = .09/.19 = .47
- P(burglary ^ alarm) =
 P(burglary | alarm) * P(alarm)
 = .47 * .19 = .09
- P(alarm) = P(alarm \land burglary) + P(alarm $\land \neg$ burglary) = .09+.1 = .19

Example: Inference from the joint

	ala	rm	-alarm	
	earthquake	rthquake ¬earthquake		
burglary	.01	.08	.001	.009
¬burglary	.01	.09	.01	.79

 $P(burglary | alarm) = \alpha P(burglary, alarm)$

= α [P(burglary, alarm, earthquake) + P(burglary, alarm, ¬earthquake) = α [(.01, .01) + (.08, .09)] = α [(.09, .1)]

Since P(burglary | alarm) + P(¬burglary | alarm) = 1, $\alpha = 1/(.09+.1) = 5.26$ (i.e., P(alarm) = $1/\alpha = .19 - quizlet$: how can you verify this?)

P(burglary | alarm) = .09 * 5.26 = .474

 $P(\neg burglary | alarm) = .1 * 5.26 = .526$

Consider

- A student has to take an exam
 - -She might **be smart**
 - -She might have studied
 - -She may be prepared for the exam
- How are these related?
- We can collect joint probabilities for the three events
 - -Measure "prepared" as "got a passing grade"

Exercise: Inference from the joint

p(smart ∧ study	smart		smart	
\land prepared)	study	−study	study	study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Each of the 8 highlighted boxes has the joint probability for the three values of smart, study, prepared

Queries:

- -What is the prior probability of smart?
- What is the prior probability of *study*?
- What is the <u>conditional probability</u> of prepared, given study and smart?

Standard way to show joint probabilities of 3 variables as a 2D table

Exercise:

Inference from the joint

p(smart ∧ study	SI	mart	—SI	nart
∧ prepared)	study	−study	study	−study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

p(smart) = .432 + .16 + .048 + .16 = **0.8**

Inference from the joint

p(smart \land study	smart		smart	
∧ prepared)	study	−study	study	−study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

Exercise:

Inference from the joint

smart -smart $p(smart \land study)$ \wedge prepared) study -study study -study .16 .432 .084 .008 prepared .16 .048 .036 .072 -prepared

Queries:

Exercise:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

p(study) = .432 + .048 + .084 + .036 = **0.6**

Inference from the joint

p(smart \land study	sr	nart	— Sr	nart
\land prepared)	study	−study	study	−study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

Exercise:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given study and smart?

19

Inference from the joint

p(smart \land study	smart		smart	
∧ prepared)	study	⊣study	study	−study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

- What is the prior probability of *smart*?
- What is the prior probability of *study*?
- What is the conditional probability of *prepared*, given *study* and *smart*?

p(prepared|smart,study)= p(prepared,smart,study)/p(smart, study)
= .432 / (.432 + .048)
= 0.9

Independence

 When variables don't affect each others' probabilities, they are independent; we can easily compute their joint & conditional probability:

Independent(A, B) \rightarrow P(A \land B) = P(A) * P(B); P(A|B) = P(A)

- {moonPhase, lightLevel} might be independent of {burglary, alarm, earthquake}
 - Maybe not: burglars may be more active during a new moon because darkness hides their activity
 - But if we know light level, moon phase doesn't affect whether we are burglarized
 - If burglarized, light level doesn't affect if alarm goes off
- Need a more complex notion of independence and methods for reasoning about the relationships

p(smart \land study	smart		—smart	
∧ prepared)	study	—study	study	¬study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Queries:

- -Q1: Is *smart* independent of *study*?
- -Q2: Is *prepared* independent of *study*?

How can we tell?

p(smart \wedge study	smart		smart	
∧ prepared)	study	study	study	¬study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Q1: Is *smart* independent of *study*?

- You might have some intuitive beliefs based on your experience
- You can also check the data

Which way to answer this is better?

p(smart \land study	smart		⊸smart	
∧ prepared)	study	¬study	study	−study
prepared	.432	.16	.084	.008
prepared	.048	.16	.036	.072

Q1: Is *smart* independent of *study*?

Q1 true iff p(smart|study) == p(smart)

p(smart) = .432 + 0.048 + .16 + .16 = 0.8

p(smart|study) = p(smart,study)/p(study)

= (.432 + .048) / .6 = 0.48/.6 = **0.8**

0.8 == 0.8 : smart is independent of study

p(smart 🔨	smart		smart	
study \land prep)	study	¬study	study	¬study
prepared	.432	.16	.084	.008
-prepared	.048	.16	.036	.072

Q2: Is *prepared* independent of *study*?

- What is prepared?
- •Q2 true iff

	p(smart ^ study ^ prep)	smart		−smart	
		study	¬study	study	¬study
	prepared	.432	.16	.084	.008
ĺ	-prepared	.048	.16	.036	.072

Q2: Is prepared independent of study? Q2 true iff p(prepared|study) == p(prepared) p(prepared) = .432 + .16 + .84 + .008 = .684 p(prepared|study) = p(prepared,study)/p(study) = (.432 + .084) / .6 = .86

0.86 ≠ 0.684, ∴ prepared not independent of study

Absolute & conditional independence

- Absolute independence:
 - A and B are **independent** if $P(A \land B) = P(A) * P(B)$; equivalently, P(A) = P(A | B) and P(B) = P(B | A)
- A and B are **conditionally independent** given C if

 $-P(A \land B | C) = P(A | C) * P(B | C)$

If it holds, lets us decompose the joint distribution:

 $-P(A \land B \land C) = P(A | C) * P(B | C) * P(C)$

- Moon-Phase and Burglary are *conditionally independent given* Light-Level
- Conditional independence is weaker than absolute independence, but useful in decomposing full joint probability distribution

Conditional independence

- Conditional independence often comes from causal relations
 - FullMoon causally affects LightLevel at night as does StreetLights
- In burglary scenario, FullMoon doesn't affect anything else
- Knowing LightLevel, we can ignore FullMoon and StreetLights when predicting if alarm suggests Burglary

Bayes' rule

-P(A, B) = P(B, A)

Derived from the product rule:

-P(A, B) = P(A|B) * P(B) # from definition of conditional probability

- -P(B, A) = P(B|A) * P(A) # from definition of conditional probability
 - *# since order is not important*

So...

P(A,B) is probability of both A and B being true, so P(A,B) = P(B,A)

Useful for diagnosis!

- C is a cause, E is an effect: -P(C|E) = P(E|C) * P(C) / P(E)
- Useful for diagnosis:

- E are (observed) effects and C are (hidden) causes,
- -Often have model for how causes lead to effects P(E|C)
- We may have info (based on experience) on frequency of causes (P(C))
- Which allows us to reason <u>abductively</u> from effects to causes (P(C|E))
- Recall, <u>abductive reasoning</u>: from A => B and B, infer (maybe?) A

Example: meningitis and stiff neck

cause

- Meningitis (M) can cause stiff neck (S), though there are other causes too
- Use S as a *diagnostic symptom* & estimate **p(M|S)**
- Studies can estimate p(M), p(S) & p(S|M), e.g.
 p(S|M)=0.7, p(S)=0.01, p(M)=0.00002
- Harder to directly gather data on p(M|S)
- Applying Bayes' Rule:
 p(M|S) = p(S|M) * p(M) / p(S) = 0.0014

symptom

From multiple evidence to a cause

In the setting of diagnostic/evidential reasoning

- Know prior probability of hypothesis $P(H_i)$ conditional probability $P(E_j | H_i)$
- Want to compute the *posterior probability* $P(H_i | E_j)$

Bayes' s theorem:

$$P(H_i | E_j) = P(H_i) * P(E_j | H_i) / P(E_j)$$

Bayesian diagnostic reasoning

- Knowledge base:
 - -Evidence / manifestations: E₁, ... E_m
 - Hypotheses / disorders: H₁, ... H_n

Note: E_j and H_i **binary**; hypotheses **mutually exclusive** (non-overlapping) & **exhaustive** (cover all possible cases)

- Conditional probabilities: $P(E_j | H_i)$, i = 1, ..., n; j = 1, ..., m

- Cases (evidence for particular instance): E₁, ..., E₁
- Goal: Find hypothesis H_i with highest posterior - Max_i P($H_i | E_1, ..., E_i$)

Bayesian diagnostic reasoning (2)

- Prior vs. posterior probability
 - Prior: probability before we know the evidence, e.g., 0.005 for having COVID)
 - Posterior: probability after knowing evidence, e.g., 0.9 if patient tests positive for COVID
- Goal: find hypothesis H_i with highest posterior
 - $-Max_i P(H_i | E_1, ..., E_m)$
- Requires knowing joint evidence probabilities $P(H_i | E_1... E_m) = P(E_1... E_m | H_i) P(H_i) / P(E_1... E_m)$
- Having many E_i is a big data collection problem!

Simplifying Bayesian diagnostic reasoning

- Having many E_i is a big data collection problem!
- Two ways to address this
- #1 use conditional independence to effect "causal reasoning" and eliminate some E_i
 - Knowing LightLevel, we can ignore FullMoon and StreetLights when predicting if alarm suggests Burglary
 - More on this later as **Bayesian Believe Networks**
- #2 Use a <u>Naïve Bayes</u> approximation that assumes evidence variables are all mutually independent

Simple Bayesian diagnostic reasoning

• Bayes' rule:

 $P(H_i | E_1 \dots E_m) = P(E_1 \dots E_m | H_i) P(H_i) / P(E_1 \dots E_m)$

 Assume each evidence E_i is conditionally independent of the others, given a hypothesis H_i, then:

$$P(E_1 ... E_m | H_i) = \prod_{j=1}^m P(E_j | H_i)$$

• If only care about relative probabilities for H_i, then:

$$P(H_i | E_1 ... E_m) = \alpha P(H_i) \prod_{j=1}^m P(E_j | H_i)$$

Naive Bayes: Example

p(Wait | Cuisine, Patrons, Rainy?) =

= α • p(Wait) • p(Cuisine | Wait) • p(Patrons | Wait) • p(Rainy? | Wait)

= p(Wait) • p(Cuisine|Wait) • p(Patrons|Wait) • p(Rainy?|Wait)
p(Cuisine) • p(Patrons) • p(Rainy?)

We can estimate all of the parameters p(P) and p(C) just by counting from the training examples

Naive Bayes: Analysis

- Naive Bayes is amazingly easy to implement (once you understand the math behind it)
- Naive Bayes can outperform many much more complex algorithms—it's a baseline that should be tried or used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)—for that, we need Bayes nets!

Bag of Words Classifier

Naïve Bayes (NB) Classifier

Start with Bayes Rule

Naïve Bayes (NB) Classifier

Adopt naïve bag of words representation X_t

Assume position doesn't matter

Assuming V vocab types $w_1, ..., w_V$ and L classes $c_1, ..., c_L$ (and appropriate corpora)

Assuming V vocab types $w_1, ..., w_V$ and L classes $c_1, ..., c_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Assuming V vocab types $w_1, ..., w_V$ and L classes $c_1, ..., c_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

A: $p(w_v|c_l), p(c_l)$

Assuming V vocab types $w_1, ..., w_V$ and L classes $c_1, ..., c_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Q: How many parameters must be learned? A: $p(w_v|c_l), p(c_l)$

Assuming V vocab types $w_1, ..., w_V$ and L classes $c_1, ..., c_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Q: How many parameters must be learned? A: $p(w_v|c_l), p(c_l)$

A: LV + L

Assuming V vocab types $w_1, ..., w_V$ and L classes $c_1, ..., c_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Q: How many parameters must be learned?

Q: What distributions need to sum to 1?

Assuming V vocab types $w_1, ..., w_V$ and L classes $c_1, ..., c_L$ (and appropriate corpora)

Q: What parameters (values/weights) must be learned?

Q: How many parameters must be learned?

Q: What distributions need to sum to 1?

A: Each $p(\cdot | c_l)$, and the prior

Multinomial Naïve Bayes: Learning

From training corpus, extract *Vocabulary*

Calculate $P(c_j)$ terms For each c_j in C do $docs_j = all docs with class = c_j$

Calculate P ($w_k \mid c_j$) terms Text_j = single doc containing all $docs_j$ For each word w_k in Vocabulary n_k = # of occurrences of w_k in Text_j

$$p(c_j) = \frac{|docs_j|}{\# docs}$$

$$p(w_k | c_j)$$

 $\propto \text{count}(\text{word } w_k \text{ in doc})$
labeled with c_j)

Naive Bayes: Analysis

- Naive Bayes is amazingly easy to implement (once you understand the math behind it)
- Naive Bayes can outperform many much more complex algorithms—it's a baseline that should be tried or used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)—for that, we need Bayes nets!

Naive Bayes: Analysis

- Naive Bayes is amazingly easy to implement (once you understand the math behind it)
- Naive Bayes can outperform many much more complex algorithms—it's a baseline that should be tried or used for comparison
- Naive Bayes can't capture interdependencies between variables (obviously)—for that, we need Bayes nets!

Limitations

- Can't easily handle **multi-fault situations** or cases where intermediate (hidden) causes exist:
 - Disease D causes syndrome S, which causes correlated manifestations M₁ and M₂
- Consider composite hypothesis $H_1 \wedge H_2$, where $H_1 \& H_2$ independent. What's relative posterior? P($H_1 \wedge H_2 | E_1, ..., E_1$) = $\alpha P(E_1, ..., E_1 | H_1 \wedge H_2) P(H_1 \wedge H_2)$ H₂)
 - = $\alpha P(E_1, ..., E_1 | H_1 \wedge H_2) P(H_1) P(H_2)$ = $\alpha \prod_{j=1}^{I} P(E_j | H_1 \wedge H_2) P(H_1) P(H_2)$
- How do we compute $P(E_j | H_1 \land H_2)$?

Limitations

• Assume H1 and H2 independent, given E1, ..., El?

 $-P(H_1 \land H_2 | E_1, ..., E_l) = P(H_1 | E_1, ..., E_l) P(H_2 | E_1, ..., E_l)$

- Unreasonable assumption
 - Earthquake & Burglar independent, but not given Alarm:
 P(burglar | alarm, earthquake) << P(burglar | alarm)
- Doesn't allow causal chaining:
 - A: 2017 weather; B: 2017 corn production; C: 2018 corn price
 - A influences C indirectly: $A \rightarrow B \rightarrow C$
 - -P(C | B, A) = P(C | B)
- Need richer representation for interacting hypoteses, conditional independence & causal chaining
- Next: Bayesian Belief networks!

Summary

- Probability a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Answer queries by summing over atomic events
- Must reduce joint size for non-trivial domains
- Bayes rule: compute from known conditional probabilities, usually in causal direction
- Independence & conditional independence provide tools
- Next: Bayesian belief networks