
CMSC 471
Propositional and First-Order Logic

KMA Solaiman
ksolaima@umbc.edu

Some slides courtesy Tim Finin
1

Big Ideas

• Logic: great knowledge representation (KR)
language for many AI problems
• Propositional logic: simple foundation and fine

for many AI problems
• First order logic (FOL): more expressive as a KR

language; needed for many AI problems
• Variations on classical FOL are common: horn

logic, higher-order logic, modal logic, three-
valued logic, probabilistic logic, fuzzy logic, etc.

4

AI Use Cases for Logic

Logic has many use cases even in a time dominated
by deep learning, including these examples:
• Modeling and using knowledge
• Allowing agents to develop complex plans to

achieve a goal and create optimal plans
• Defining and using semantic knowledge graphs

such as schema.org and Wikidata
• Adding features to neural network systems

5

Question #2

Try to determine, as quickly as you can, if the
argument is logically valid. Does the
conclusion follow the premises?

• (P) All roses are flowers
• (P) Some flowers fade quickly
• (C) Therefore some roses fade quickly

12

Question #2

Try to determine, as quickly as you can, if the
argument is logically valid. Does the
conclusion follow the premises?

• All roses are flowers
• Some flowers fade quickly
• Therefore some roses fade quickly

It is possible that there are no roses among
the flowers that fade quickly

13

Wason Selection Task
• I have a pack of cards; each has a letter written

on one side and a number on the other
• I claim the following rule is true:

If a card has a vowel on one side, then it has
an even number on the other

•Which cards should you turn over in order to
decide whether the rule is true or false?

E 4 T 7
Wikipedia17

Wason Selection Task
•Wason (1966) showed that people are bad at

this task
• To disprove rule P=>Q, find a situation in

which P is true but Q is false, i.e., show P ∧ ~#
• To disprove vowel => even, find a card with a

vowel and an odd number
• Thus, turn over the cards showing vowels and

those showing odd numbers

E 4 T 7
18

Logic as a Methodology

Even if people don’t use formal logical reasoning for
solving a problem, logic might be a good approach
for AI for a number of reasons
• Airplanes don’t need to flap their wings
• Logic may be a good implementation strategy
• Solution in a formal system can offer other benefits,

e.g., letting us prove properties of the approach

•See neats vs. scruffies

20

Knowledge-based agents
• Knowledge-based agents have a knowledge base

(KB) and an inference system
• KB: a set of representations of facts believed true
• Each individual representation is called a sentence
• Sentences are expressed in a knowledge

representation language
• The agent operates as follows:

1. It TELLs the KB what it perceives
2. It ASKs the KB what action it should perform
3. It performs the chosen action

21

22

Negation in Natural Language
•We often model the meaning of natural

language sentences as a logic statements
• This maps these into equivalent statements
• All elephants are gray
• No elephant are not gray

• Double negation is common in informal
language: that won’t do you no good
• But what does this mean: we cannot

underestimate the importance of logic

23

Language

Language is a mechanism for expression.

Natural languages (informal):

English: Two divides even numbers.

German: Zwei dividieren geraden zahlen.

Programming languages (formal):

Python: def even(x): return x % 2 == 0

C++: bool even(int x) { return x % 2 == 0; }

Logical languages (formal):

First-order-logic: 8x.Even(x) ! Divides(x, 2)

CS221 / Autumn 2019 / Liang & Sadigh 17

24

Architecture of a KB agent
• Knowledge Level
• Most abstract: describe agent by what it knows
• Ex: Autonomous vehicle knows Golden Gate Bridge

connects San Francisco with the Marin County
• Logical Level
• Level where knowledge is encoded into sentences
• Ex: links(GoldenGateBridge, SanFran, MarinCounty)
• Implementation Level
• Software representation of sentences, e.g.
(links goldengatebridge sanfran marincounty)

25

Does your agent have complete
knowledge?
• Closed world assumption (CWA): the lack of

knowledge is assumed to mean it’s false
• Open world assumption: no such assumption is

made

26

Q: Why would we ever make a closed world
assumption?

Logic

• Logics are formal languages for representing
information so that conclusions can be drawn

27

Ingredients of a Logic
• Syntax defines a set of valid sentences/formulas

(!	#$ %)	
Example: Rain ∧ Wet

• Semantics define the "meaning" of sentences: (/*
• i.e., for each formula, specify a set of models

(assignments / configurations of the world)

28

Syntax versus semantics

Syntax: what are valid expressions in the language?

Semantics: what do these expressions mean?

Di↵erent syntax, same semantics (5):

2 + 3 , 3 + 2

Same syntax, di↵erent semantics (1 versus 1.5):

3 / 2 (Python 2.7) 6, 3 / 2 (Python 3)

CS221 / Autumn 2019 / Liang & Sadigh 23

30

31

Propositional logic

Syntax Semantics

formula

Inference

rules

models

CS221 / Autumn 2019 / Liang & Sadigh 27

• We begin with the syntax of propositional logic: what are the allowable formulas?

Syntax of propositional logic

Propositional symbols (atomic formulas): A,B,C

Logical connectives: ¬,^,_,!,$

Build up formulas recursively—if f and g are formulas, so are the fol-
lowing:

• Negation: ¬f

• Conjunction: f ^ g

• Disjunction: f _ g

• Implication: f ! g

• Biconditional: f $ g

CS221 / Autumn 2019 / Liang & Sadigh 29

• The building blocks of the syntax are the propositional symbols and connectives. The set of propositional
symbols can be anything (e.g., A,Wet, etc.), but the set of connectives is fixed to these five.

• All the propositional symbols are atomic formulas (also called atoms). We can recursively create larger
formulas by combining smaller formulas using connectives.

Syntax of propositional logic

• Formula: A

• Formula: ¬A

• Formula: ¬B ! C

• Formula: ¬A ^ (¬B ! C) _ (¬B _D)

• Formula: ¬¬A

• Non-formula: A¬B

• Non-formula: A+B

CS221 / Autumn 2019 / Liang & Sadigh 31

• Here are some examples of valid and invalid propositional formulas.

Syntax of propositional logic

Key idea: syntax provides symbols

Formulas by themselves are just symbols (syntax).

No meaning yet (semantics)!

CS221 / Autumn 2019 / Liang & Sadigh 33

• It’s important to remember that whenever we talk about syntax, we’re just talking about symbols; we’re

not actually talking about what they mean — that’s the role of semantics. Of course it will be di�cult to

ignore the semantics for propositional logic completely because you already have a working knowledge of

what the symbols mean.

Propositional logic

Syntax Semantics

formula

Inference

rules

models

CS221 / Autumn 2019 / Liang & Sadigh 35

• Having defined the syntax of propositional logic, let’s talk about their semantics or meaning.

Model

Definition: model

A model w in propositional logic is an assignment of truth values
to propositional symbols.

Example:

• 3 propositional symbols: A,B,C

• 23 = 8 possible models w:
{A : 0, B : 0, C : 0}
{A : 0, B : 0, C : 1}
{A : 0, B : 1, C : 0}
{A : 0, B : 1, C : 1}
{A : 1, B : 0, C : 0}
{A : 1, B : 0, C : 1}
{A : 1, B : 1, C : 0}
{A : 1, B : 1, C : 1}

CS221 / Autumn 2019 / Liang & Sadigh 37

• In logic, the word model has a special meaning, quite distinct from the way we’ve been using it in the
class (quite an unfortunate collision). A model (in the logical sense) represents a possible state of a↵airs
in the world. In propositional logic, this is an assignment that specifies a truth value (true or false) for
each propositional symbol.

Interpretation function

Definition: interpretation function

Let f be a formula.

Let w be a model.

An interpretation function I(f, w) returns:
• true (1) (say that w satisfies f)

• false (0) (say that w does not satisfy f)

f w

CS221 / Autumn 2019 / Liang & Sadigh 39

• The semantics is given by an interpretation function, which takes a formula f and a model w, and
returns whether w satisfies f . In other words, is f true in w?

• For example, if f represents ”it is Wednesday” and w corresponds to right now, then I(f, w) = 1. If w
corresponded to yesterday, then I(f, w) = 0.

Interpretation function: definition

Base case:

• For a propositional symbol p (e.g., A,B,C): I(p, w) = w(p)

Recursive case:

• For any two formulas f and g, define:

I(f, w) I(g, w) I(¬f, w) I(f ^ g, w) I(f _ g, w) I(f ! g, w) I(f $ g, w)

0 0 1 0 0 1 1

0 1 1 0 1 1 0

1 0 0 0 1 0 0

1 1 0 1 1 1 1

CS221 / Autumn 2019 / Liang & Sadigh 41

• The interpretation function is defined recursively, where the cases neatly parallel the definition of the
syntax.

• Formally, for propositional logic, the interpretation function is fully defined as follows. In the base case,
the interpretation of a propositional symbol p is just gotten by looking p up in the model w. For every
possible value of (I(f, w), I(g, w)), we specify the interpretation of the combination of f and g.

Interpretation function: example

Example: interpretation function

Formula: f = (¬A ^B) $ C

Model: w = {A : 1, B : 1, C : 0}
Interpretation:

I((¬A ^B) $ C,w) = 1

I(¬A ^B,w) = 0

I(¬A,w) = 0

I(A,w) = 1

I(B,w) = 1

I(C,w) = 0

CS221 / Autumn 2019 / Liang & Sadigh 43

• For example, given the formula, we break down the formula into parts, recursively compute the truth value
of the parts, and then finally combines these truth values based on the connective.

Formula represents a set of models

So far: each formula f and model w has an interpretation I(f, w) 2
{0, 1}

Definition: models

Let M(f) be the set of models w for which I(f, w) = 1.

f
M(f)

CS221 / Autumn 2019 / Liang & Sadigh 45

• So far, we’ve focused on relating a single model. A more useful but equivalent way to think about semantics
is to think about the formula M(f) as a set of models — those for which I(f, w) = 1.

Models: example

Formula:

f = Rain _Wet

Models:

M(f) =
0 1

0

1

Wet

R
ai
n

Key idea: compact representation

A formula compactly represents a set of models.

CS221 / Autumn 2019 / Liang & Sadigh 47

• In this example, there are four models for which the formula holds, as one can easily verify. From the point
of view of M, a formula’s main job is to define a set of models.

• Recall that a model is a possible configuration of the world. So a formula like ”it is raining” will pick out
all the hypothetical configurations of the world where it’s raining; in some of these configurations, it will
be Wednesday; in others, it won’t.

Knowledge base

Definition: Knowledge base

A knowledge base KB is a set of formulas representing their con-
junction / intersection:

M(KB) =
\

f2KB

M(f).

Intuition: KB specifies constraints on the world. M(KB) is the set
of all worlds satisfying those constraints.

Let KB = {Rain _ Snow,Tra�c}.

M(Rain _ Snow) M(Tra�c)M(KB)

CS221 / Autumn 2019 / Liang & Sadigh 49

• If you take a set of formulas, you get a knowledge base. Each knowledge base defines a set of models
— exactly those which are satisfiable by all the formulas in the knowledge base.

• Think of each formula as a fact that you know, and the knowledge is just the collection of those facts.
Each fact narrows down the space of possible models, so the more facts you have, the fewer models you
have.

Knowledge base: example

M(Rain) M(Rain ! Wet)

0 1

0

1

Wet

R
ai
n

0 1

0

1

Wet

R
ai
n

Intersection:

M({Rain,Rain ! Wet})

0 1

0

1

Wet

R
ai
n

CS221 / Autumn 2019 / Liang & Sadigh 51

• As a concrete example, consider the two formulas Rain and Rain ! Wet. If you know both of these facts,
then the set of models is constrained to those where it is raining and wet.

Models for a KB
• KB: [P∨Q, P®R, Q®R]
• What are the formulas?

f1: P∨Q
f2: P®R
f3: Q®R

• What are the propositional variables?
P, Q, R

• What are the candidate models?
1) Consider all eight possible

assignments of T|F to P, Q, R
2) Check if each sentence is consistent

with the model

P Q R s1 s2 s3
F F F x ✓ ✓
F F T x ✓ ✓
F T F ✓ ✓ x
F T T ✓ ✓ ✓
T F F ✓ x ✓
T F T ✓ ✓ ✓
T T F ✓ x x
T T T ✓ ✓ ✓

Here x means the model
makes the sentence False
and ✓means it doesn’t
make it False

73

Models for a KB
• KB: [P∨Q, P®R, Q®R]
• What are the formulas?

f1: P∨Q
f2: P®R
f3: Q®R

• What are the propositional variables?
P, Q, R

• What are the candidate models?
1) Consider all eight possible

assignments of T|F to P, Q, R
2) Check truth tables for consistency,

eliminating any row that does not
make every KB sentence true

P Q R s1 s2 s3
F F F x ✓ ✓
F F T x ✓ ✓
F T F ✓ ✓ x
F T T ✓ ✓ ✓
T F F ✓ x ✓
T F T ✓ ✓ ✓
T T F ✓ x x
T T T ✓ ✓ ✓

• Only 3 models are
consistent with KB

• R true in all of them
• Therefore, R is true and

can be added to the KB

74

A simple example

The KB

P
Q Ú ¬ R

Models for the KB, !	($%)
P Q R KB
T T F T
T T T T
T F F T
T F T F
F T F F
F T T F
F F T F
F F F F

The KB has 2
formulas.

The KB has 3
variables. The KB has 3 models for which

? @, A = 1.	

Another way to look at this is:
E 7 is true in first 3

E Q Ú ¬ R is true in first 3
So E	(FG) is first 3

75

Another simple example
The KB

P Ù Q
R Ù ¬ P

Models for the KB
P Q R

The KB has 2
formulas.

The KB has 3
variables.

The KB has no models. There is no
assignment of True or False to
every variable that makes every
sentence in the KB true

76

Adding to the knowledge base

Adding more formulas to the knowledge base:

KB KB [{f}

Shrinks the set of models:

M(KB) M(KB) \M(f)

How much does M(KB) shrink?

[whiteboard]

CS221 / Autumn 2019 / Liang & Sadigh 53

• We should think about a knowledge base as carving out a set of models. Over time, we will add additional

formulas to the knowledge base, thereby winnowing down the set of models.

• Intuitively, adding a formula to the knowledge base imposes yet another constraint on our world, which

naturally decreases the set of possible worlds.

• Thus, as the number of formulas in the knowledge base gets larger, the set of models gets smaller.

• A central question is how much f shrinks the set of models. There are three cases of importance.

Entailment

M(f)M(KB)

Intuition: f added no information/constraints (it was already known).

Definition: entailment

KB entails f (written KB |= f) i↵

M(KB) ✓ M(f).

Example: Rain ^ Snow |= Snow

CS221 / Autumn 2019 / Liang & Sadigh 55

• The first case is if the set of models of f is a superset of the models of KB, then f adds no information.
We say that KB entails f .

Contradiction

M(KB) M(f)

Intuition: f contradicts what we know (captured in KB).

Definition: contradiction

KB contradicts f i↵ M(KB) \M(f) = ;.

Example: Rain ^ Snow contradicts ¬Snow

CS221 / Autumn 2019 / Liang & Sadigh 57

• The second case is if the set of models defined by f is completely disjoint from those of KB. Then we say
that the KB and f contradict each other. If we believe KB, then we cannot possibly believe f .

Contingency

M(KB) M(f)

Intuition: f adds non-trivial information to KB

; (M(KB) \M(f) (M(KB)

Example: Rain and Snow

CS221 / Autumn 2019 / Liang & Sadigh 59

• In the third case, we have a non-trivial overlap between the models of KB and f . We say in this case that
f is contingent; f could be satisfied or not satisfied depending on the model.

Contradiction and entailment

Contradiction:

M(KB) M(f)

Entailment:

M(¬f)M(KB)

Proposition: contradiction and entailment

KB contradicts f i↵ KB entails ¬f .
CS221 / Autumn 2019 / Liang & Sadigh 61

• There is a useful connection between entailment and contradiction. If f is contradictory, then its negation
(¬f) is entailed, and vice-versa.

• You can see this because the models M(f) and M(¬f) partition the space of models.

Tell operation

Tell[f] KB ?

Tell: It is raining.

Tell[Rain]

Possible responses:

• Already knew that: entailment (KB |= f)

• Don’t believe that: contradiction (KB |= ¬f)

• Learned something new (update KB): contingent

CS221 / Autumn 2019 / Liang & Sadigh 63

• Having defined the three possible relationships that a new formula f can have with respect to a knowledge

base KB, let’s try to determine the appropriate response that a system should have.

• Suppose we tell the system that it is raining (f = Rain). If f is entailed, then we should reply that we

already knew that. If f contradicts the knowledge base, then we should reply that we don’t believe that. If

f is contingent, then this is the interesting case, where we have non-trivially restricted the set of models,

so we reply that we’ve learned something new.

Ask operation

Ask[f] KB ?

Ask: Is it raining?

Ask[Rain]

Possible responses:

• Yes: entailment (KB |= f)

• No: contradiction (KB |= ¬f)

• I don’t know: contingent

CS221 / Autumn 2019 / Liang & Sadigh 65

• Suppose now that we ask the system a question: is it raining? If f is entailed, then we should reply with
a definitive yes. If f contradicts the knowledge base, then we should reply with a definitive no. If f is
contingent, then we should just confess that we don’t know.

Satisfiability

Definition: satisfiability

A knowledge base KB is satisfiable if M(KB) 6= ;.

Reduce Ask[f] and Tell[f] to satisfiability:

Is KB [{¬f} satisfiable?

entailment Is KB [{f} satisfiable?

contradiction contingent

no yes

no yes

CS221 / Autumn 2019 / Liang & Sadigh 69

• Now let’s return to pure logic land again. How can we go about actually checking entailment, contradiction,
and contingency? One useful concept to rule them all is satisfiability.

• Recall that we said a particular model w satisfies f if the interpretation function returns true I(f, w) = 1.
We can say that a formula f by itself is satisfiable if there is some model that satisfies f . Finally, a
knowledge base (which is no more than just the conjunction of its formulas) is satisfiable if there is some
model that satisfies all the formulas f 2 KB.

• With this definition in hand, we can implement Ask[f] and Tell[f] as follows:

• First, we check if KB[{¬f} is satisfiable. If the answer is no, that means the models of ¬f and KB don’t
intersect (in other words, the two contradict each other). Recall that this is equivalent to saying that KB
entails f .

• Otherwise, we need to do another test: check whether KB [{f} is satisfiable. If the answer is no here,
then KB and f are contradictory. Otherwise, we have that both f and ¬f are compatible with KB, so the
result is contingent.

Model checking

Checking satisfiability (SAT) in propositional logic is special case of solv-
ing CSPs!

Mapping:

propositional symbol) variable

formula) constraint

model (assignment

CS221 / Autumn 2019 / Liang & Sadigh 71

• Now we have reduced the problem of working with knowledge bases to checking satisfiability. The bad
news is that this is an (actually, the canonical) NP-complete problem, so there are no e�cient algorithms
in general.

• The good news is that people try to solve the problem anyway, and we actually have pretty good SAT
solvers these days. In terms of this class, this problem is just a CSP, if we convert the terminology: Each
propositional symbol becomes a variable and each formula is a constraint. We can then solve the CSP,
which produces an assignment, or in logic-speak, a model.

Model checking

Example: model checking

KB = {A _B,B $ ¬C}

Propositional symbols (CSP variables):

{A,B,C}

CSP:

A B C
A _B B $ ¬C

Consistent assignment (satisfying model):

{A : 1, B : 0, C : 1}

CS221 / Autumn 2019 / Liang & Sadigh 73

• As an example, consider a knowledge base that has two formulas and three variables. Then the CSP is
shown. Solving the CSP produces a consistent assignment (if one exists), which is a model that satisfies
KB.

• Note that in the knowledge base tell/ask application, we don’t technically need the satisfying assignment.
An assignment would only o↵er a counterexample certifying that the answer isn’t entailment or contra-
diction. This is an important point: entailment and contradiction is a claim about all models, not about
the existence of a model.

Model checking

Definition: model checking

Input: knowledge base KB

Output: exists satisfying model (M(KB) 6= ;)?

Popular algorithms:

• DPLL (backtracking search + pruning)

• WalkSat (randomized local search)

Next: Can we exploit the fact that factors are formulas?

CS221 / Autumn 2019 / Liang & Sadigh 75

• Checking satisfiability of a knowledge base is called model checking. For propositional logic, there
are several algorithms that work quite well which are based on the algorithms we saw for solving CSPs
(backtracking search and local search).

• However, can we do a bit better? Our CSP factors are not arbitrary — they are logic formulas, and recall
that formulas are defined recursively and have some compositional structure. Let’s see how to exploit this.

Propositional logic

Syntax Semantics

formula

Inference

rules

models

CS221 / Autumn 2019 / Liang & Sadigh 77

• So far, we have used formulas, via semantics, to define sets of models. And all our reasoning on formulas
has been through these models (e.g., reduction to satisfiability). Inference rules allow us to do reasoning
on the formulas themselves without ever instantiating the models.

• This can be quite powerful. If you have a huge KB with lots of formulas and propositional symbols,
sometimes you can draw a conclusion without instantiating the full model checking problem. This will be
very important when we move to first-order logic, where the models can be infinite, and so model checking
would be infeasible.

Inference rules

Example of making an inference:

It is raining. (Rain)

If it is raining, then it is wet. (Rain ! Wet)

Therefore, it is wet. (Wet)

Rain, Rain ! Wet

Wet
(premises)
(conclusion)

Definition: Modus ponens inference rule

For any propositional symbols p and q:
p, p!q

q

CS221 / Autumn 2019 / Liang & Sadigh 79

• The idea of making an inference should be quite intuitive to you. The classic example is modus ponens,
which captures the if-then reasoning pattern.

Inference framework

Definition: inference rule

If f1, . . . , fk, g are formulas, then the following is an inference
rule:

f1, . . . , fk
g

Key idea: inference rules

Rules operate directly on syntax, not on semantics.

CS221 / Autumn 2019 / Liang & Sadigh 81

• In general, an inference rule has a set of premises and a conclusion. The rule says that if the premises are
in the KB, then you can add the conclusion to the KB.

• We haven’t yet specified whether this is a valid thing to do, but it is a thing to do. Remember, syntax
is just about symbol pushing; it is only by linking to models that we have notions of truth and meaning
(semantics).

Sound rules of inference
Examples of sound rules of inference
Each can be shown to be sound using a truth table

RULE PREMISE CONCLUSION
Modus Ponens A, A ® B B
And Introduction A, B A Ù B
And Elimination A Ù B A
Double Negation ¬¬A A
Unit Resolution A Ú B, ¬B A
Resolution A Ú B, ¬B Ú C A Ú C

83

Inference algorithm

Algorithm: forward inference

Input: set of inference rules Rules.

Repeat until no changes to KB:

Choose set of formulas f1, . . . , fk 2 KB.

If matching rule f1, ... ,fk
g exists:

Add g to KB.

Definition: derivation

KB derives/proves f (KB ` f) i↵ f eventually gets added to KB.

CS221 / Autumn 2019 / Liang & Sadigh 83

• Given a set of inference rules (e.g., modus ponens), we can just keep on trying to apply rules. Those rules
generate new formulas which get added to the knowledge base, and those formulas might then be premises
of other rules, which in turn generate more formulas, etc.

• We say that the KB derives or proves a formula f if by blindly applying rules, we can eventually add f to
the KB.

Inference example

Example: Modus ponens inference

Starting point:

KB = {Rain,Rain ! Wet,Wet ! Slippery}

Apply modus ponens to Rain and Rain ! Wet:

KB = {Rain,Rain ! Wet,Wet ! Slippery,Wet}

Apply modus ponens to Wet and Wet ! Slippery:

KB = {Rain,Rain ! Wet,Wet ! Slippery,Wet, Slippery}

Converged.

Can’t derive some formulas: ¬Wet, Rain ! Slippery

CS221 / Autumn 2019 / Liang & Sadigh 85

• Here is an example where we’ve applied modus ponens twice. Note that Wet and Slippery are derived by

the KB.

• But there are some formulas which cannot be derived. Some of these underivable formulas will look bad

anyway (¬Wet), but others will seem reasonable (Rain ! Slippery).

Resolution
• Resolution is a valid inference rule producing a

new clause implied by two clauses containing
complementary literals

Literal: atomic symbol or its negation, i.e., P, ~P
• Amazingly, this is the only interference rule needed

to build a sound & complete theorem prover
• Based on proof by contradiction, usually called

resolution refutation
• The resolution rule was discovered by Alan

Robinson (CS, U. of Syracuse) in the mid 1960s

84

Resolution
• A KB is a set of sentences all of which are true,

i.e., a conjunction of sentences
• To use resolution, put KB into conjunctive

normal form (CNF)
• Each sentence is a disjunction of one or more

literals (positive or negative atoms)
• Every KB can be put into CNF, it's just a matter

of rewriting its sentences using standard
tautologies, e.g.: P®Q ≡ ~PÚQ

85

CNF (Conjunctive Normal Form)

36

Each sentence is a disjunction of one or
more literals (positive or negative atoms)

Resolution Example

• KB: [P®Q , Q®RÙS]
• KB: [P®Q , Q®R, Q®S]
• KB in CNF: [~PÚQ , ~QÚR , ~QÚS]
• Resolve KB[0] and KB[1] producing:

~PÚR (i.e., P®R)
• Resolve KB[0] and KB[2] producing:

~PÚS (i.e., P®S)
• New KB: [~PÚQ , ~QÚR, ~QÚS, ~PÚR, ~PÚS]

Tautologies
 (A®B) ↔ (~A Ú B)

(AÚ (B Ù C)) ↔
(AÚB)Ù(AÚC)

86

Proving it’s raining with rules
• A proof is a sequence of sentences, where each is a

premise (i.e., a given) or is derived from earlier
sentences in the proof by an inference rule
• Last sentence is the theorem (also called goal or query)

that we want to prove
• The weather problem using traditional reasoning

1 Hu premise “It's humid”
2 Hu®Ho premise “If it's humid, it's hot”
3 Ho modus ponens(1,2) “It's hot”
4 (HoÙHu)®R premise “If it's hot & humid, it's raining”
5 HoÙHu and introduction(1,3) “It's hot and humid”
6 R modus ponens(4,5) “It's raining”

87

Proving it’s raining with resolution

Hu ~Hu∨Ho ~Hu∨~Ho∨R

Hu => Ho
~Hu ∨ Ho

Hu ∧ Ho => R
~(Hu ∧ Ho) ∨ R
~Hu ∨ ~Ho ∨ R

Hu

Ho

~Hu∨R

R

Hu => R

Resolution proof of R

88

A simple proof procedure
This procedure generates new sentences in a KB
1. Convert all sentences in the KB to CNF1
2. Find all pairs of sentences in KB with

complementary literals2 that have not yet been
resolved

3. If there are no pairs stop else resolve each pair,
adding the result to the KB and go to 2

• Is it sound?
• Is it complete?
•Will it always terminate?

1: a KB in conjunctive normal form is a set of
disjunctive sentences

2: a literal is a variable or its negation
89

Propositional Resolution

• It is sound!
• It’s not generatively complete in that it can’t

derive all clauses that follow from the KB
• The issues are not serious limitations, though
• Example: if the KB includes P and includes Q we

won’t derive P ^ Q
• It will always terminate
• But generating all clauses that follow can take a

long time and many may be useless

Resolution refutation
1. Add negation of goal to the KB
2. Convert all sentences in KB to CNF
3. Find all pairs of sentences in KB with

complementary literals that have not yet been
resolved

4. If there are no pairs stop else resolve each pair,
adding the result to the KB and go to 2

• If we derived an empty clause (i.e., a contradiction)
then the conclusion follows from the KB
• If we did not, the conclusion cannot be proved from

the KB
93

Proving it’s raining with refutation resolution

Hu ~Hu∨Ho ~Hu∨~Ho∨R

Hu => Ho
~Hu ∨ Ho

Hu ∧ Ho => R
~(Hu ∧ Ho) ∨ R
~Hu ∨ ~Ho ∨ R

Hu

Ho

~Hu∨R

R

Hu => R

~R

negation
of goal

empty
clause

A Resolution proof of R

Propositional logic: pro and con
•Advantages
• Simple KR language good for many

problems
• Lays foundation for higher logics (e.g., FOL)
• Reasoning is decidable, though NP

complete; efficient techniques exist for
many problems

•Disadvantages
• Not expressive enough for most problems
• Even when it is, it can very “un-concise”

95

PL is a weak KR language
• Hard to identify individuals (e.g., Mary, 3)
• Can’t directly represent properties of individuals

or relations between them (e.g., “Bill age 24”)
• Generalizations, patterns, regularities hard to

represent (e.g., “all triangles have 3 sides”)
• First-Order Logic (FOL) represents this informa-

tion via relations, variables & quantifiers, e.g.,
• John loves Mary: loves(John, Mary)
• Every elephant is gray: " x (elephant(x) → gray(x))
• There is a black swan: $ x (swan(X) ^ black(X))

96

Hunt the Wumpus

103

Wumpus World environment
• Based on Hunt the Wumpus computer game
• Agent explores cave of rooms connected by

passageways
• Lurking in a room is the Wumpus, a beast that

eats any agent that enters its room
• Some rooms have bottomless pits that trap

any agent that wanders into the room
• Somewhere is a heap of gold in a room
• Goal: collect gold & exit w/o being eaten

104

AIMA’s Wumpus World

The agent always
starts in the field
[1,1]

Agent’s task is to find
the gold, return to
the field [1,1] and
climb out of the cave

106

Agent in a Wumpus world: Percepts
• The agent perceives
• stench in square containing Wumpus and in adjacent

squares (not diagonally)
• breeze in squares adjacent to a pit
• glitter in the square where the gold is
• bump, if it walks into a wall
• Woeful scream everywhere in cave, if Wumpus killed
• Percepts given as five-tuple, e.g., if stench and

breeze, but no glitter, bump or scream:
[Stench, Breeze, None, None, None]

• Agent cannot perceive its location, e.g., (2,2)
107

Wumpus World Actions
• go forward
• turn right 90 degrees
• turn left 90 degrees
• grab: Pick up object in same square as agent
• shoot: Fire arrow in direction agent faces. It continues

until it hits & kills Wumpus or hits outer wall. Agent
has one arrow, so only first shoot action has effect
• Climb: leave cave, only effective in start square
• die: automatically and irretrievably happens if agent

enters square with pit or living Wumpus

108

Wumpus World Goal

Agent’s goal is to find the gold and bring
it back to the start square as quickly as
possible, without getting killed

• 1,000 point reward for climbing out of
cave with gold
• 1 point deducted for every action

taken
• 10,000 point penalty for getting killed

109

AIMA’s Wumpus World

The agent always
starts in the field
[1,1]

Agent’s task is to
find the gold,
return to the field
[1,1] and climb
out of the cave

112

The Hunter’s first step

¬W

¬W

Since agent is alive and perceives
neither breeze nor stench at [1,1], it
knows [1,1] and its neighbors are OK

Moving to [2,1] is a safe move that
reveals a breeze but no stench, implying
that Wumpus isn’t adjacent but one or
more pits are 113

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

114

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

115

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

116

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

117

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

No stench in (1,2) => Wumpus not in (2,2)
No breeze in (2,1) => no pit in (2,2) => pit in (1,3)

118

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

119

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

Going to (2,2) is the only “safe” move

120

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

Going to (2,3) is a “safe” move

121

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

P?

P?

Found gold! Now find way back to (1,1)

122

Reasoning in Hunt the
Wumpus

123

Hunt the Wumpus domain
• Some atomic propositions:

A12 = agent is in call (1,2)
S12 = There’s a stench in cell (1,2)
B34 = There’s a breeze in cell (3,4)
W22 = Wumpus is in cell (2,2)
V11 = We’ve visited cell (1,1)
OK11 = cell (1,1) is safe
…

• Some rules:
¬S22 ® ¬W12 Ù ¬W23 Ù ¬W32 Ù ¬W21
S22 ® W12 Ú W23 Ú W32 Ú W21
B22 ® P12 Ú P23 Ú P32 Ú P21
W22 ® S12 Ù S23 Ù S32 Ù W21
W22 ® ¬W11 Ù ¬W21 Ù … ¬W44
A22 ® V22
A22 ®¬W11 Ù ¬W21 Ù … ¬W44
V22 ® OK22

If there’s no stench in cell
2,2 then the Wumpus isn’t
in cell 21, 23 32 or 21

124

Hunt the Wumpus domain
• Eight symbols for each cell,

i.e.: A11, B11, G11, OK11,
P11, S11, V11, W11
• Lack of variables requires

giving similar rules for each
cell!
• Ten rules (I think) for each

A11 ® …
V11 ® …
P11 ® …
¬P11 ® …

W11 ® …
¬W11 ® …
S11 ® …
¬S11 ® …
B11 ® …
¬B11 ® …

• 8 symbols for 16 cells => 128 symbols
• 2128 possible models L
• Must do better than brute force

125

After third move

• We can prove that the
Wumpus is in (1,3) using
these four rules
• See RN section 7.5

(R1) ¬S11 ® ¬W11 Ù ¬ W12 Ù ¬ W21
(R2) ¬ S21 ® ¬W11 Ù ¬ W21 Ù ¬ W22 Ù ¬ W31
(R3) ¬ S12 ® ¬W11 Ù ¬ W12 Ù ¬ W22 Ù ¬ W13
(R4) S12 ® W13 Ú W12 Ú W22 Ú W11

126

Proving W13: Wumpus is in cell 1,3
Apply MP with ¬S11 and R1:

¬ W11 Ù ¬ W12 Ù ¬ W21
Apply AE, yielding three sentences:

¬ W11, ¬ W12, ¬ W21
Apply MP to ~S21 and R2, then apply AE:

¬ W22, ¬ W21, ¬ W31
Apply MP to S12 and R4 to obtain:

W13 Ú W12 Ú W22 Ú W11
Apply UR on (W13 Ú W12 Ú W22 Ú W11) and ¬W11:

W13 Ú W12 Ú W22
Apply UR with (W13 Ú W12 Ú W22) and ¬W22:

W13 Ú W12
Apply UR with (W13 Ú W12) and ¬W12:

W13
QED

(R1) ¬S11 ® ¬W11 Ù ¬ W12 Ù ¬ W21
(R2) ¬ S21 ® ¬W11 Ù ¬ W21 Ù ¬ W22 Ù ¬ W31
(R3) ¬ S12 ® ¬W11 Ù ¬ W12 Ù ¬ W22 Ù ¬ W13
(R4) S12 ® W13 Ú W12 Ú W22 Ú W11

Rule Abbreviation
MP: modes ponens
AE: and elimination
R: unit resolution

127

Propositional Wumpus problems
• Lack of variables prevents general rules, e.g.:
• " x, y V(x,y) → OK(x,y)
• " x, y S(x,y) → W(x-1,y) Ú W(x+1,y) …
• Change of KB over time difficult to represent
• In classical logic; a fact is true or false for all time
• A standard technique is to index dynamic facts with

the time when they’re true
• A(1, 1, 0) # agent was in cell 1,1 at time 0
• A(2, 1, 1) # agent was in cell 2,1 at time 1

• Thus we have a separate KB for every time point

128

