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Big Ideas

• Logic: great knowledge representation (KR) 
language for many AI problems
• Propositional logic: simple foundation and fine 

for many AI problems
• First order logic (FOL): more expressive as a KR 

language; needed for many AI problems
• Variations on classical FOL are common: horn 

logic, higher-order logic, modal logic, three-
valued logic, probabilistic logic, fuzzy logic, etc.
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AI Use Cases for Logic

Logic has many use cases even in a time dominated 
by deep learning, including these examples:
• Modeling and using knowledge
• Allowing agents to develop complex plans to 

achieve a goal and create optimal plans
• Defining and using semantic knowledge graphs 

such as schema.org and Wikidata 
• Adding features to neural network systems
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Question #2

Try to determine, as quickly as you can, if the 
argument is logically valid. Does the 
conclusion follow the premises?

• (P) All roses are flowers
• (P) Some flowers fade quickly
• (C) Therefore some roses fade quickly
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Question #2

Try to determine, as quickly as you can, if the 
argument is logically valid. Does the 
conclusion follow the premises?

• All roses are flowers
• Some flowers fade quickly
• Therefore some roses fade quickly

It is possible that there are no roses among 
the flowers that fade quickly
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Wason Selection Task
• I have a pack of cards; each has a letter written 

on one side and a number on the other
• I claim the following rule is true: 

If a card has a vowel on one side, then it has 
an even number on the other

•Which cards should you turn over in order to 
decide whether the rule is true or false? 

E 4 T 7
Wikipedia17



Wason Selection Task
•Wason (1966) showed that people are bad at 

this task
• To disprove rule P=>Q, find a situation in 

which P is true but Q is false, i.e., show P ∧ ~#
• To disprove vowel => even, find a card with a 

vowel and an odd number
• Thus, turn over the cards showing vowels and 

those showing odd numbers

E 4 T 7
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Logic as a Methodology

Even if people don’t use formal logical reasoning for 
solving a problem, logic might be a good approach 
for AI for a number of reasons
• Airplanes don’t need to flap their wings
• Logic may be a good implementation strategy
• Solution in a  formal system can offer other benefits, 

e.g., letting us prove properties of the approach

•See neats vs. scruffies
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Knowledge-based agents 
• Knowledge-based agents have a knowledge base 

(KB) and an inference system
• KB: a set of representations of facts believed true
• Each individual representation is called a sentence 
• Sentences are expressed in a knowledge 

representation language
• The agent operates as follows: 

1. It TELLs the KB what it perceives 
2. It ASKs the KB what action it should perform
3. It performs the chosen action

21



22



Negation in Natural Language
•We often model the meaning of natural 

language sentences as a logic statements
• This maps these into equivalent statements
• All elephants are gray
• No elephant are not gray

• Double negation is common in informal 
language: that won’t do you no good
• But what does this mean: we cannot 

underestimate the importance of logic
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Language

Language is a mechanism for expression.

Natural languages (informal):

English: Two divides even numbers.

German: Zwei dividieren geraden zahlen.

Programming languages (formal):

Python: def even(x): return x % 2 == 0

C++: bool even(int x) { return x % 2 == 0; }

Logical languages (formal):

First-order-logic: 8x.Even(x) ! Divides(x, 2)
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Architecture of a KB agent
• Knowledge Level
• Most abstract: describe agent by what it knows 
• Ex: Autonomous vehicle knows Golden Gate Bridge 

connects San Francisco with the Marin County
• Logical Level
• Level where knowledge is encoded into sentences 
• Ex: links(GoldenGateBridge, SanFran, MarinCounty)
• Implementation Level
• Software representation of sentences, e.g.
(links goldengatebridge sanfran marincounty)
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Does your agent have complete 
knowledge?
• Closed world assumption (CWA): the lack of 

knowledge is assumed to mean it’s false
• Open world assumption: no such assumption is 

made
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Q: Why would we ever make a closed world 
assumption?



Logic

• Logics are formal languages for representing 
information so that conclusions can be drawn
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Ingredients of a Logic
• Syntax defines a set of valid sentences/formulas 

(!	#$ %)	
Example: Rain ∧ Wet 

• Semantics define the "meaning" of sentences: (/*
• i.e., for each formula, specify a set of models 

(assignments / configurations of the world) 
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Syntax versus semantics

Syntax: what are valid expressions in the language?

Semantics: what do these expressions mean?

Di↵erent syntax, same semantics (5):

2 + 3 , 3 + 2

Same syntax, di↵erent semantics (1 versus 1.5):

3 / 2 (Python 2.7) 6, 3 / 2 (Python 3)
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Propositional logic

Syntax Semantics

formula

Inference

rules

models
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• We begin with the syntax of propositional logic: what are the allowable formulas?



Syntax of propositional logic

Propositional symbols (atomic formulas): A,B,C

Logical connectives: ¬,^,_,!,$

Build up formulas recursively—if f and g are formulas, so are the fol-
lowing:

• Negation: ¬f

• Conjunction: f ^ g

• Disjunction: f _ g

• Implication: f ! g

• Biconditional: f $ g
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• The building blocks of the syntax are the propositional symbols and connectives. The set of propositional
symbols can be anything (e.g., A,Wet, etc.), but the set of connectives is fixed to these five.

• All the propositional symbols are atomic formulas (also called atoms). We can recursively create larger
formulas by combining smaller formulas using connectives.



Syntax of propositional logic

• Formula: A

• Formula: ¬A

• Formula: ¬B ! C

• Formula: ¬A ^ (¬B ! C) _ (¬B _D)

• Formula: ¬¬A

• Non-formula: A¬B

• Non-formula: A+B

CS221 / Autumn 2019 / Liang & Sadigh 31



• Here are some examples of valid and invalid propositional formulas.



Syntax of propositional logic

Key idea: syntax provides symbols

Formulas by themselves are just symbols (syntax).

No meaning yet (semantics)!
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• It’s important to remember that whenever we talk about syntax, we’re just talking about symbols; we’re

not actually talking about what they mean — that’s the role of semantics. Of course it will be di�cult to

ignore the semantics for propositional logic completely because you already have a working knowledge of

what the symbols mean.



Propositional logic

Syntax Semantics

formula

Inference

rules

models
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• Having defined the syntax of propositional logic, let’s talk about their semantics or meaning.



Model

Definition: model

A model w in propositional logic is an assignment of truth values
to propositional symbols.

Example:

• 3 propositional symbols: A,B,C

• 23 = 8 possible models w:
{A : 0, B : 0, C : 0}
{A : 0, B : 0, C : 1}
{A : 0, B : 1, C : 0}
{A : 0, B : 1, C : 1}
{A : 1, B : 0, C : 0}
{A : 1, B : 0, C : 1}
{A : 1, B : 1, C : 0}
{A : 1, B : 1, C : 1}
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• In logic, the word model has a special meaning, quite distinct from the way we’ve been using it in the
class (quite an unfortunate collision). A model (in the logical sense) represents a possible state of a↵airs
in the world. In propositional logic, this is an assignment that specifies a truth value (true or false) for
each propositional symbol.



Interpretation function

Definition: interpretation function

Let f be a formula.

Let w be a model.

An interpretation function I(f, w) returns:
• true (1) (say that w satisfies f)

• false (0) (say that w does not satisfy f)

f w
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• The semantics is given by an interpretation function, which takes a formula f and a model w, and
returns whether w satisfies f . In other words, is f true in w?

• For example, if f represents ”it is Wednesday” and w corresponds to right now, then I(f, w) = 1. If w
corresponded to yesterday, then I(f, w) = 0.



Interpretation function: definition

Base case:

• For a propositional symbol p (e.g., A,B,C): I(p, w) = w(p)

Recursive case:

• For any two formulas f and g, define:

I(f, w) I(g, w) I(¬f, w) I(f ^ g, w) I(f _ g, w) I(f ! g, w) I(f $ g, w)

0 0 1 0 0 1 1

0 1 1 0 1 1 0

1 0 0 0 1 0 0

1 1 0 1 1 1 1
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• The interpretation function is defined recursively, where the cases neatly parallel the definition of the
syntax.

• Formally, for propositional logic, the interpretation function is fully defined as follows. In the base case,
the interpretation of a propositional symbol p is just gotten by looking p up in the model w. For every
possible value of (I(f, w), I(g, w)), we specify the interpretation of the combination of f and g.



Interpretation function: example

Example: interpretation function

Formula: f = (¬A ^B) $ C

Model: w = {A : 1, B : 1, C : 0}
Interpretation:

I((¬A ^B) $ C,w) = 1

I(¬A ^B,w) = 0

I(¬A,w) = 0

I(A,w) = 1

I(B,w) = 1

I(C,w) = 0
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• For example, given the formula, we break down the formula into parts, recursively compute the truth value
of the parts, and then finally combines these truth values based on the connective.



Formula represents a set of models

So far: each formula f and model w has an interpretation I(f, w) 2
{0, 1}

Definition: models

Let M(f) be the set of models w for which I(f, w) = 1.

f
M(f)
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• So far, we’ve focused on relating a single model. A more useful but equivalent way to think about semantics
is to think about the formula M(f) as a set of models — those for which I(f, w) = 1.



Models: example

Formula:

f = Rain _Wet

Models:

M(f) =
0 1

0

1

Wet

R
ai
n

Key idea: compact representation

A formula compactly represents a set of models.
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• In this example, there are four models for which the formula holds, as one can easily verify. From the point
of view of M, a formula’s main job is to define a set of models.

• Recall that a model is a possible configuration of the world. So a formula like ”it is raining” will pick out
all the hypothetical configurations of the world where it’s raining; in some of these configurations, it will
be Wednesday; in others, it won’t.



Knowledge base

Definition: Knowledge base

A knowledge base KB is a set of formulas representing their con-
junction / intersection:

M(KB) =
\

f2KB

M(f).

Intuition: KB specifies constraints on the world. M(KB) is the set
of all worlds satisfying those constraints.

Let KB = {Rain _ Snow,Tra�c}.

M(Rain _ Snow) M(Tra�c)M(KB)
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• If you take a set of formulas, you get a knowledge base. Each knowledge base defines a set of models
— exactly those which are satisfiable by all the formulas in the knowledge base.

• Think of each formula as a fact that you know, and the knowledge is just the collection of those facts.
Each fact narrows down the space of possible models, so the more facts you have, the fewer models you
have.



Knowledge base: example

M(Rain) M(Rain ! Wet)

0 1

0

1

Wet

R
ai
n

0 1

0

1

Wet

R
ai
n

Intersection:

M({Rain,Rain ! Wet})

0 1

0

1

Wet

R
ai
n

CS221 / Autumn 2019 / Liang & Sadigh 51



• As a concrete example, consider the two formulas Rain and Rain ! Wet. If you know both of these facts,
then the set of models is constrained to those where it is raining and wet.



Models for a KB
• KB: [P∨Q, P®R, Q®R]
• What are the formulas?

f1: P∨Q
f2: P®R
f3: Q®R

• What are the propositional variables? 
P, Q, R

• What are the candidate models? 
1) Consider all eight possible 

assignments of T|F to P, Q, R
2) Check if each sentence is consistent 

with the model

P Q R s1 s2 s3
F F F x ✓ ✓
F F T x ✓ ✓
F T F ✓ ✓ x
F T T ✓ ✓ ✓
T F F ✓ x ✓
T F T ✓ ✓ ✓
T T F ✓ x x
T T T ✓ ✓ ✓

Here x means the model 
makes the sentence False 
and ✓means it doesn’t 
make it False
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Models for a KB
• KB: [P∨Q, P®R, Q®R]
• What are the formulas?

f1: P∨Q
f2: P®R
f3: Q®R

• What are the propositional variables? 
P, Q, R

• What are the candidate models? 
1) Consider all eight possible 

assignments of T|F to P, Q, R
2) Check truth tables for consistency, 

eliminating any row that does not 
make every KB sentence true

P Q R s1 s2 s3
F F F x ✓ ✓
F F T x ✓ ✓
F T F ✓ ✓ x
F T T ✓ ✓ ✓
T F F ✓ x ✓
T F T ✓ ✓ ✓
T T F ✓ x x
T T T ✓ ✓ ✓

• Only 3 models are 
consistent with KB

• R true in all of them
• Therefore, R is true and 

can be added to the KB
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A simple example

The KB

P
Q Ú ¬ R 

Models for the KB, !	($%)
P Q R KB
T T F T
T T T T
T F F T
T F T F
F T F F
F T T F
F F T F
F F F F

The KB has 2 
formulas.

The KB has 3 
variables. The KB has 3 models for which 

? @, A = 1.	

Another way to look at this is:
E 7  is true in first 3

E Q Ú ¬ R is true in first 3
So E	(FG) is first 3
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Another simple example
The KB

P Ù Q
R Ù ¬ P 

Models for the KB
P Q R

The KB has 2 
formulas.

The KB has 3 
variables.

The KB has no models. There is no 
assignment of True or False to 
every variable that makes every 
sentence in the KB true
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Adding to the knowledge base

Adding more formulas to the knowledge base:

KB KB [ {f}

Shrinks the set of models:

M(KB) M(KB) \M(f)

How much does M(KB) shrink?

[whiteboard]
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• We should think about a knowledge base as carving out a set of models. Over time, we will add additional

formulas to the knowledge base, thereby winnowing down the set of models.

• Intuitively, adding a formula to the knowledge base imposes yet another constraint on our world, which

naturally decreases the set of possible worlds.

• Thus, as the number of formulas in the knowledge base gets larger, the set of models gets smaller.

• A central question is how much f shrinks the set of models. There are three cases of importance.



Entailment

M(f)M(KB)

Intuition: f added no information/constraints (it was already known).

Definition: entailment

KB entails f (written KB |= f) i↵

M(KB) ✓ M(f).

Example: Rain ^ Snow |= Snow
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• The first case is if the set of models of f is a superset of the models of KB, then f adds no information.
We say that KB entails f .



Contradiction

M(KB) M(f)

Intuition: f contradicts what we know (captured in KB).

Definition: contradiction

KB contradicts f i↵ M(KB) \M(f) = ;.

Example: Rain ^ Snow contradicts ¬Snow
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• The second case is if the set of models defined by f is completely disjoint from those of KB. Then we say
that the KB and f contradict each other. If we believe KB, then we cannot possibly believe f .



Contingency

M(KB) M(f)

Intuition: f adds non-trivial information to KB

; ( M(KB) \M(f) ( M(KB)

Example: Rain and Snow
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• In the third case, we have a non-trivial overlap between the models of KB and f . We say in this case that
f is contingent; f could be satisfied or not satisfied depending on the model.



Contradiction and entailment

Contradiction:

M(KB) M(f)

Entailment:

M(¬f)M(KB)

Proposition: contradiction and entailment

KB contradicts f i↵ KB entails ¬f .
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• There is a useful connection between entailment and contradiction. If f is contradictory, then its negation
(¬f) is entailed, and vice-versa.

• You can see this because the models M(f) and M(¬f) partition the space of models.



Tell operation

Tell[f ] KB ?

Tell: It is raining.

Tell[Rain]

Possible responses:

• Already knew that: entailment (KB |= f)

• Don’t believe that: contradiction (KB |= ¬f)

• Learned something new (update KB): contingent
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• Having defined the three possible relationships that a new formula f can have with respect to a knowledge

base KB, let’s try to determine the appropriate response that a system should have.

• Suppose we tell the system that it is raining (f = Rain). If f is entailed, then we should reply that we

already knew that. If f contradicts the knowledge base, then we should reply that we don’t believe that. If

f is contingent, then this is the interesting case, where we have non-trivially restricted the set of models,

so we reply that we’ve learned something new.



Ask operation

Ask[f ] KB ?

Ask: Is it raining?

Ask[Rain]

Possible responses:

• Yes: entailment (KB |= f)

• No: contradiction (KB |= ¬f)

• I don’t know: contingent
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• Suppose now that we ask the system a question: is it raining? If f is entailed, then we should reply with
a definitive yes. If f contradicts the knowledge base, then we should reply with a definitive no. If f is
contingent, then we should just confess that we don’t know.



Satisfiability

Definition: satisfiability

A knowledge base KB is satisfiable if M(KB) 6= ;.

Reduce Ask[f ] and Tell[f ] to satisfiability:

Is KB [ {¬f} satisfiable?

entailment Is KB [ {f} satisfiable?

contradiction contingent

no yes

no yes
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• Now let’s return to pure logic land again. How can we go about actually checking entailment, contradiction,
and contingency? One useful concept to rule them all is satisfiability.

• Recall that we said a particular model w satisfies f if the interpretation function returns true I(f, w) = 1.
We can say that a formula f by itself is satisfiable if there is some model that satisfies f . Finally, a
knowledge base (which is no more than just the conjunction of its formulas) is satisfiable if there is some
model that satisfies all the formulas f 2 KB.

• With this definition in hand, we can implement Ask[f ] and Tell[f ] as follows:

• First, we check if KB[{¬f} is satisfiable. If the answer is no, that means the models of ¬f and KB don’t
intersect (in other words, the two contradict each other). Recall that this is equivalent to saying that KB
entails f .

• Otherwise, we need to do another test: check whether KB [ {f} is satisfiable. If the answer is no here,
then KB and f are contradictory. Otherwise, we have that both f and ¬f are compatible with KB, so the
result is contingent.



Model checking

Checking satisfiability (SAT) in propositional logic is special case of solv-
ing CSPs!

Mapping:

propositional symbol ) variable

formula ) constraint

model ( assignment
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• Now we have reduced the problem of working with knowledge bases to checking satisfiability. The bad
news is that this is an (actually, the canonical) NP-complete problem, so there are no e�cient algorithms
in general.

• The good news is that people try to solve the problem anyway, and we actually have pretty good SAT
solvers these days. In terms of this class, this problem is just a CSP, if we convert the terminology: Each
propositional symbol becomes a variable and each formula is a constraint. We can then solve the CSP,
which produces an assignment, or in logic-speak, a model.



Model checking

Example: model checking

KB = {A _B,B $ ¬C}

Propositional symbols (CSP variables):

{A,B,C}

CSP:

A B C
A _B B $ ¬C

Consistent assignment (satisfying model):

{A : 1, B : 0, C : 1}

CS221 / Autumn 2019 / Liang & Sadigh 73



• As an example, consider a knowledge base that has two formulas and three variables. Then the CSP is
shown. Solving the CSP produces a consistent assignment (if one exists), which is a model that satisfies
KB.

• Note that in the knowledge base tell/ask application, we don’t technically need the satisfying assignment.
An assignment would only o↵er a counterexample certifying that the answer isn’t entailment or contra-
diction. This is an important point: entailment and contradiction is a claim about all models, not about
the existence of a model.



Model checking

Definition: model checking

Input: knowledge base KB

Output: exists satisfying model (M(KB) 6= ;)?

Popular algorithms:

• DPLL (backtracking search + pruning)

• WalkSat (randomized local search)

Next: Can we exploit the fact that factors are formulas?
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• Checking satisfiability of a knowledge base is called model checking. For propositional logic, there
are several algorithms that work quite well which are based on the algorithms we saw for solving CSPs
(backtracking search and local search).

• However, can we do a bit better? Our CSP factors are not arbitrary — they are logic formulas, and recall
that formulas are defined recursively and have some compositional structure. Let’s see how to exploit this.



Propositional logic

Syntax Semantics

formula

Inference

rules

models
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• So far, we have used formulas, via semantics, to define sets of models. And all our reasoning on formulas
has been through these models (e.g., reduction to satisfiability). Inference rules allow us to do reasoning
on the formulas themselves without ever instantiating the models.

• This can be quite powerful. If you have a huge KB with lots of formulas and propositional symbols,
sometimes you can draw a conclusion without instantiating the full model checking problem. This will be
very important when we move to first-order logic, where the models can be infinite, and so model checking
would be infeasible.



Inference rules

Example of making an inference:

It is raining. (Rain)

If it is raining, then it is wet. (Rain ! Wet)

Therefore, it is wet. (Wet)

Rain, Rain ! Wet

Wet
(premises)
(conclusion)

Definition: Modus ponens inference rule

For any propositional symbols p and q:
p, p!q

q
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• The idea of making an inference should be quite intuitive to you. The classic example is modus ponens,
which captures the if-then reasoning pattern.



Inference framework

Definition: inference rule

If f1, . . . , fk, g are formulas, then the following is an inference
rule:

f1, . . . , fk
g

Key idea: inference rules

Rules operate directly on syntax, not on semantics.

CS221 / Autumn 2019 / Liang & Sadigh 81



• In general, an inference rule has a set of premises and a conclusion. The rule says that if the premises are
in the KB, then you can add the conclusion to the KB.

• We haven’t yet specified whether this is a valid thing to do, but it is a thing to do. Remember, syntax
is just about symbol pushing; it is only by linking to models that we have notions of truth and meaning
(semantics).



Sound rules of inference
Examples of sound rules of inference
Each can be shown to be sound using a truth table

RULE   PREMISE  CONCLUSION
Modus Ponens  A, A ® B  B
And Introduction A, B   A Ù B
And Elimination  A Ù B   A
Double Negation ¬¬A   A
Unit Resolution  A Ú B, ¬B  A
Resolution  A Ú B, ¬B Ú C A Ú C
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Inference algorithm

Algorithm: forward inference

Input: set of inference rules Rules.

Repeat until no changes to KB:

Choose set of formulas f1, . . . , fk 2 KB.

If matching rule f1, ... ,fk
g exists:

Add g to KB.

Definition: derivation

KB derives/proves f (KB ` f) i↵ f eventually gets added to KB.
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• Given a set of inference rules (e.g., modus ponens), we can just keep on trying to apply rules. Those rules
generate new formulas which get added to the knowledge base, and those formulas might then be premises
of other rules, which in turn generate more formulas, etc.

• We say that the KB derives or proves a formula f if by blindly applying rules, we can eventually add f to
the KB.



Inference example

Example: Modus ponens inference

Starting point:

KB = {Rain,Rain ! Wet,Wet ! Slippery}

Apply modus ponens to Rain and Rain ! Wet:

KB = {Rain,Rain ! Wet,Wet ! Slippery,Wet}

Apply modus ponens to Wet and Wet ! Slippery:

KB = {Rain,Rain ! Wet,Wet ! Slippery,Wet, Slippery}

Converged.

Can’t derive some formulas: ¬Wet, Rain ! Slippery
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• Here is an example where we’ve applied modus ponens twice. Note that Wet and Slippery are derived by

the KB.

• But there are some formulas which cannot be derived. Some of these underivable formulas will look bad

anyway (¬Wet), but others will seem reasonable (Rain ! Slippery).



Resolution
• Resolution is a valid inference rule producing a 

new clause implied by two clauses containing 
complementary literals

Literal: atomic symbol or its negation, i.e., P, ~P
• Amazingly, this is the only interference rule needed 

to build a sound & complete theorem prover
• Based on proof by contradiction, usually called 

resolution refutation
• The resolution rule was discovered by Alan

Robinson (CS, U. of Syracuse) in the mid 1960s
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Resolution
• A KB is a set of sentences all of which are true, 

i.e., a conjunction of sentences
• To use resolution, put KB into conjunctive 

normal form (CNF) 
• Each sentence is a disjunction of one or more 

literals (positive or negative atoms)
• Every KB can be put into CNF, it's just a matter 

of rewriting its sentences using standard 
tautologies, e.g.:  P®Q ≡  ~PÚQ
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CNF (Conjunctive Normal Form)

36

Each sentence is a disjunction of one or 
more literals (positive or negative atoms)



Resolution Example

• KB: [P®Q , Q®RÙS]
• KB: [P®Q , Q®R, Q®S ]
• KB in CNF: [~PÚQ , ~QÚR , ~QÚS]
• Resolve KB[0] and KB[1]  producing: 

~PÚR   (i.e., P®R)
• Resolve KB[0] and KB[2]  producing: 

~PÚS   (i.e., P®S)
• New KB: [~PÚQ , ~QÚR, ~QÚS, ~PÚR, ~PÚS]

Tautologies
 (A®B) ↔ (~A Ú B)

(AÚ (B Ù C))  ↔ 
(AÚB)Ù(AÚC) 
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Proving it’s raining with rules
• A proof is a sequence of sentences, where each is a 

premise (i.e., a given) or is derived from earlier 
sentences in the proof by an inference rule
• Last sentence is the theorem (also called goal or query) 

that we want to prove
• The weather problem using traditional reasoning

1 Hu premise  “It's humid”
2 Hu®Ho premise  “If it's humid, it's hot”
3 Ho modus ponens(1,2) “It's hot”
4 (HoÙHu)®R premise  “If it's hot & humid, it's raining”
5 HoÙHu and introduction(1,3) “It's hot and humid”
6 R modus ponens(4,5) “It's raining”
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Proving it’s raining with resolution

Hu ~Hu∨Ho ~Hu∨~Ho∨R

Hu =>  Ho
~Hu ∨  Ho

Hu ∧ Ho => R
~(Hu ∧ Ho) ∨ R
~Hu ∨ ~Ho ∨ R

Hu

Ho

~Hu∨R

R

Hu =>  R

Resolution proof of R 
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A simple proof procedure
This procedure generates new sentences in a KB
1. Convert all sentences in the KB to CNF1
2. Find all pairs of sentences in KB with 

complementary literals2 that have not yet been 
resolved

3. If there are no pairs stop else resolve each pair, 
adding the result to the KB and go to 2

• Is it sound?
• Is it complete?
•Will it always terminate?

1: a KB in conjunctive normal form is a set of 
disjunctive sentences 

2: a literal is a variable or its negation
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Propositional Resolution

• It is sound!
• It’s not generatively complete in that it can’t 

derive all clauses that follow from the KB
• The issues are not serious limitations, though
• Example: if the KB includes P and includes Q we 

won’t derive P ^ Q
• It will always terminate
• But generating all clauses that follow can take a 

long time and many may be useless



Resolution refutation
1. Add negation of goal to the KB
2. Convert all sentences in KB to CNF
3. Find all pairs of sentences in KB with 

complementary literals that have not yet been 
resolved

4. If there are no pairs stop else resolve each pair, 
adding the result to the KB and go to 2

• If we derived an empty clause (i.e., a contradiction) 
then the conclusion follows from the KB
• If we did not, the conclusion cannot be proved from 

the KB
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Proving it’s raining with refutation resolution                                                                     

Hu ~Hu∨Ho ~Hu∨~Ho∨R

Hu =>  Ho
~Hu ∨  Ho

Hu ∧ Ho => R
~(Hu ∧ Ho) ∨ R
~Hu ∨ ~Ho ∨ R

Hu

Ho

~Hu∨R

R

Hu =>  R

~R

negation 
of goal

empty
clause

A Resolution proof of R 



Propositional logic: pro and con
•Advantages
• Simple KR language good for many 

problems
• Lays foundation for higher logics (e.g., FOL)
• Reasoning is decidable, though NP 

complete; efficient techniques exist for 
many problems

•Disadvantages
• Not expressive enough for most problems
• Even when it is, it can very “un-concise”
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PL is a weak KR language
• Hard to identify individuals (e.g., Mary, 3)
• Can’t directly represent properties of individuals 

or relations between them (e.g., “Bill age 24”)
• Generalizations, patterns, regularities hard to 

represent (e.g., “all triangles have 3 sides”)
• First-Order Logic (FOL) represents this informa-

tion via relations, variables & quantifiers, e.g.,
• John loves Mary: loves(John, Mary)
• Every elephant is gray: " x (elephant(x) → gray(x))
• There is a black swan: $ x (swan(X) ^ black(X))
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Hunt the Wumpus
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Wumpus World environment 
• Based on Hunt the Wumpus computer game
• Agent explores cave of rooms connected by 

passageways
• Lurking in a room is the Wumpus, a beast that 

eats any agent that enters its room
• Some rooms have bottomless pits that trap 

any agent that wanders into the room
• Somewhere is a heap of gold in a room
• Goal: collect gold & exit w/o being eaten 
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AIMA’s Wumpus World 

The agent always 
starts in the field 
[1,1]

Agent’s task is to find 
the gold, return to 
the field [1,1] and 
climb out of the cave

106



Agent in a Wumpus world: Percepts 
• The agent perceives 
• stench in square containing Wumpus and in adjacent 

squares (not diagonally) 
• breeze in squares adjacent to a pit
• glitter in the square where the gold is
• bump, if it walks into a wall
• Woeful scream everywhere in cave, if Wumpus killed
• Percepts given as five-tuple, e.g., if stench and 

breeze, but no glitter, bump or  scream:  
[Stench, Breeze, None, None, None] 

• Agent cannot perceive its location, e.g., (2,2)
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Wumpus World Actions
• go forward 
• turn right 90 degrees
• turn left 90 degrees
• grab: Pick up object in same square as agent
• shoot: Fire arrow in direction agent faces. It continues 

until it hits & kills Wumpus or hits outer wall. Agent 
has one arrow, so only first shoot action has effect 
• Climb: leave cave, only effective in start square
• die: automatically and irretrievably happens if agent 

enters square with pit or living Wumpus
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Wumpus World Goal

Agent’s goal is to find the gold and bring 
it back to the start square as quickly as 
possible, without getting killed

• 1,000 point reward for climbing out of 
cave with gold
• 1 point deducted for every action 

taken
• 10,000 point penalty for getting killed
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AIMA’s Wumpus World 

The agent always 
starts in the field 
[1,1]

Agent’s task is to 
find the gold, 
return to the field 
[1,1] and climb 
out of the cave

112



The Hunter’s first step

¬W

¬W

Since  agent is alive and perceives 
neither breeze nor stench at [1,1], it 
knows [1,1] and its neighbors are OK

Moving to [2,1] is a safe move that 
reveals a breeze but no stench, implying 
that Wumpus isn’t adjacent but one or 
more pits are 113



Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus
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Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus
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Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus
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Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus
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Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

No stench in (1,2) => Wumpus not in (2,2)
No breeze in (2,1) => no pit in (2,2) => pit in (1,3)
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Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus
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Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

Going to (2,2) is the only “safe” move
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Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

Going to (2,3) is a “safe” move
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Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

P?

P?

Found gold!  Now find way back to (1,1)
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Reasoning in Hunt the 
Wumpus
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Hunt the Wumpus domain
• Some atomic propositions:

A12 = agent is in call (1,2)
S12 = There’s a stench in cell (1,2)
B34 = There’s a breeze in cell (3,4)
W22 = Wumpus is in cell (2,2)
V11 = We’ve visited cell (1,1)
OK11 = cell (1,1) is safe
…

• Some rules:
¬S22 ® ¬W12 Ù ¬W23 Ù ¬W32 Ù ¬W21
S22 ® W12 Ú W23 Ú W32 Ú W21
B22 ® P12 Ú P23 Ú P32 Ú P21
W22 ® S12 Ù S23 Ù S32 Ù W21
W22 ® ¬W11 Ù ¬W21 Ù … ¬W44
A22 ® V22
A22 ®¬W11 Ù ¬W21 Ù … ¬W44
V22 ® OK22

If there’s no stench in cell 
2,2 then the Wumpus isn’t 
in cell 21, 23 32 or 21
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Hunt the Wumpus domain
• Eight symbols for each cell, 

i.e.: A11, B11, G11, OK11, 
P11, S11, V11, W11
• Lack of variables requires 

giving similar rules for each 
cell!
• Ten rules (I think) for each

A11 ® …
V11 ® …
P11 ® …
¬P11 ® …

W11 ® …
¬W11 ® …
S11 ® …
¬S11 ® …
B11 ® …
¬B11 ® …

• 8 symbols for 16 cells => 128 symbols
• 2128 possible models  L
• Must do better than brute force
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After third move

• We can prove that the
Wumpus is in (1,3) using
these four rules
• See RN section 7.5

(R1) ¬S11 ® ¬W11 Ù ¬ W12 Ù ¬ W21
(R2) ¬ S21 ® ¬W11 Ù ¬ W21 Ù ¬ W22 Ù ¬ W31
(R3) ¬ S12 ® ¬W11 Ù ¬ W12 Ù ¬ W22 Ù ¬ W13
(R4)    S12 ® W13 Ú W12 Ú W22 Ú W11

126



Proving W13: Wumpus is in cell 1,3
Apply MP with ¬S11  and  R1: 

¬ W11 Ù ¬ W12 Ù ¬ W21 
Apply AE, yielding three sentences: 

¬ W11, ¬ W12, ¬ W21 
Apply MP to ~S21 and R2, then apply AE: 

¬ W22, ¬ W21, ¬ W31 
Apply MP to S12 and  R4 to obtain: 

W13 Ú W12 Ú W22 Ú W11
Apply UR on  (W13 Ú W12 Ú W22 Ú W11) and ¬W11: 

W13 Ú W12 Ú W22
Apply UR with (W13 Ú W12 Ú W22) and ¬W22:

W13 Ú W12
Apply UR  with (W13 Ú W12) and ¬W12:

W13
QED

(R1) ¬S11 ® ¬W11 Ù ¬ W12 Ù ¬ W21
(R2) ¬ S21 ® ¬W11 Ù ¬ W21 Ù ¬ W22 Ù ¬ W31
(R3) ¬ S12 ® ¬W11 Ù ¬ W12 Ù ¬ W22 Ù ¬ W13
(R4)    S12 ® W13 Ú W12 Ú W22 Ú W11

Rule Abbreviation
MP: modes ponens
AE: and elimination
R: unit resolution
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Propositional Wumpus problems
• Lack of variables prevents general rules, e.g.:
• " x, y V(x,y) → OK(x,y)
• " x, y S(x,y) → W(x-1,y) Ú W(x+1,y) …
• Change of KB over time difficult to represent
• In classical logic; a fact is true or false for all time
• A standard technique is to index dynamic facts with 

the time when they’re true
• A(1, 1, 0)   # agent was in cell 1,1 at time 0
• A(2, 1, 1)  # agent was in cell 2,1 at time 1

• Thus we have a separate KB for every time point
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