
CMSC 471
Propositional and First-Order Logic

KMA Solaiman
ksolaima@umbc.edu

Some slides courtesy Tim Finin
1

Models: example

Formula:

f = Rain _Wet

Models:

M(f) =
0 1

0

1

Wet

R
ai
n

Key idea: compact representation

A formula compactly represents a set of models.

CS221 / Autumn 2019 / Liang & Sadigh 47

Knowledge base

Definition: Knowledge base

A knowledge base KB is a set of formulas representing their con-
junction / intersection:

M(KB) =
\

f2KB

M(f).

Intuition: KB specifies constraints on the world. M(KB) is the set
of all worlds satisfying those constraints.

Let KB = {Rain _ Snow,Tra�c}.

M(Rain _ Snow) M(Tra�c)M(KB)

CS221 / Autumn 2019 / Liang & Sadigh 49

Knowledge base: example

M(Rain) M(Rain ! Wet)

0 1

0

1

Wet

R
ai
n

0 1

0

1

Wet

R
ai
n

Intersection:

M({Rain,Rain ! Wet})

0 1

0

1

Wet

R
ai
n

CS221 / Autumn 2019 / Liang & Sadigh 51

Adding to the knowledge base

Adding more formulas to the knowledge base:

KB KB [{f}

Shrinks the set of models:

M(KB) M(KB) \M(f)

How much does M(KB) shrink?

[whiteboard]

CS221 / Autumn 2019 / Liang & Sadigh 53

Entailment

M(f)M(KB)

Intuition: f added no information/constraints (it was already known).

Definition: entailment

KB entails f (written KB |= f) i↵

M(KB) ✓ M(f).

Example: Rain ^ Snow |= Snow

CS221 / Autumn 2019 / Liang & Sadigh 55

Contradiction

M(KB) M(f)

Intuition: f contradicts what we know (captured in KB).

Definition: contradiction

KB contradicts f i↵ M(KB) \M(f) = ;.

Example: Rain ^ Snow contradicts ¬Snow

CS221 / Autumn 2019 / Liang & Sadigh 57

Contingency

M(KB) M(f)

Intuition: f adds non-trivial information to KB

; (M(KB) \M(f) (M(KB)

Example: Rain and Snow

CS221 / Autumn 2019 / Liang & Sadigh 59

Satisfiability

Definition: satisfiability

A knowledge base KB is satisfiable if M(KB) 6= ;.

Reduce Ask[f] and Tell[f] to satisfiability:

Is KB [{¬f} satisfiable?

entailment Is KB [{f} satisfiable?

contradiction contingent

no yes

no yes

CS221 / Autumn 2019 / Liang & Sadigh 69

• Now let’s return to pure logic land again. How can we go about actually checking entailment, contradiction,
and contingency? One useful concept to rule them all is satisfiability.

• Recall that we said a particular model w satisfies f if the interpretation function returns true I(f, w) = 1.
We can say that a formula f by itself is satisfiable if there is some model that satisfies f . Finally, a
knowledge base (which is no more than just the conjunction of its formulas) is satisfiable if there is some
model that satisfies all the formulas f 2 KB.

• With this definition in hand, we can implement Ask[f] and Tell[f] as follows:

• First, we check if KB[{¬f} is satisfiable. If the answer is no, that means the models of ¬f and KB don’t
intersect (in other words, the two contradict each other). Recall that this is equivalent to saying that KB
entails f .

• Otherwise, we need to do another test: check whether KB [{f} is satisfiable. If the answer is no here,
then KB and f are contradictory. Otherwise, we have that both f and ¬f are compatible with KB, so the
result is contingent.

Model checking

Checking satisfiability (SAT) in propositional logic is special case of solv-
ing CSPs!

Mapping:

propositional symbol) variable

formula) constraint

model (assignment

CS221 / Autumn 2019 / Liang & Sadigh 71

• Now we have reduced the problem of working with knowledge bases to checking satisfiability. The bad
news is that this is an (actually, the canonical) NP-complete problem, so there are no e�cient algorithms
in general.

• The good news is that people try to solve the problem anyway, and we actually have pretty good SAT
solvers these days. In terms of this class, this problem is just a CSP, if we convert the terminology: Each
propositional symbol becomes a variable and each formula is a constraint. We can then solve the CSP,
which produces an assignment, or in logic-speak, a model.

Model checking

Example: model checking

KB = {A _B,B $ ¬C}

Propositional symbols (CSP variables):

{A,B,C}

CSP:

A B C
A _B B $ ¬C

Consistent assignment (satisfying model):

{A : 1, B : 0, C : 1}

CS221 / Autumn 2019 / Liang & Sadigh 73

• As an example, consider a knowledge base that has two formulas and three variables. Then the CSP is
shown. Solving the CSP produces a consistent assignment (if one exists), which is a model that satisfies
KB.

• Note that in the knowledge base tell/ask application, we don’t technically need the satisfying assignment.
An assignment would only o↵er a counterexample certifying that the answer isn’t entailment or contra-
diction. This is an important point: entailment and contradiction is a claim about all models, not about
the existence of a model.

Model checking

Definition: model checking

Input: knowledge base KB

Output: exists satisfying model (M(KB) 6= ;)?

Popular algorithms:

• DPLL (backtracking search + pruning)

• WalkSat (randomized local search)

Next: Can we exploit the fact that factors are formulas?

CS221 / Autumn 2019 / Liang & Sadigh 75

• Checking satisfiability of a knowledge base is called model checking. For propositional logic, there
are several algorithms that work quite well which are based on the algorithms we saw for solving CSPs
(backtracking search and local search).

• However, can we do a bit better? Our CSP factors are not arbitrary — they are logic formulas, and recall
that formulas are defined recursively and have some compositional structure. Let’s see how to exploit this.

Propositional logic

Syntax Semantics

formula

Inference

rules

models

CS221 / Autumn 2019 / Liang & Sadigh 77

• So far, we have used formulas, via semantics, to define sets of models. And all our reasoning on formulas
has been through these models (e.g., reduction to satisfiability). Inference rules allow us to do reasoning
on the formulas themselves without ever instantiating the models.

• This can be quite powerful. If you have a huge KB with lots of formulas and propositional symbols,
sometimes you can draw a conclusion without instantiating the full model checking problem. This will be
very important when we move to first-order logic, where the models can be infinite, and so model checking
would be infeasible.

Inference rules

Example of making an inference:

It is raining. (Rain)

If it is raining, then it is wet. (Rain ! Wet)

Therefore, it is wet. (Wet)

Rain, Rain ! Wet

Wet
(premises)
(conclusion)

Definition: Modus ponens inference rule

For any propositional symbols p and q:
p, p!q

q

CS221 / Autumn 2019 / Liang & Sadigh 79

• The idea of making an inference should be quite intuitive to you. The classic example is modus ponens,
which captures the if-then reasoning pattern.

Inference framework

Definition: inference rule

If f1, . . . , fk, g are formulas, then the following is an inference
rule:

f1, . . . , fk
g

Key idea: inference rules

Rules operate directly on syntax, not on semantics.

CS221 / Autumn 2019 / Liang & Sadigh 81

• In general, an inference rule has a set of premises and a conclusion. The rule says that if the premises are
in the KB, then you can add the conclusion to the KB.

• We haven’t yet specified whether this is a valid thing to do, but it is a thing to do. Remember, syntax
is just about symbol pushing; it is only by linking to models that we have notions of truth and meaning
(semantics).

Inference algorithm

Algorithm: forward inference

Input: set of inference rules Rules.

Repeat until no changes to KB:

Choose set of formulas f1, . . . , fk 2 KB.

If matching rule f1, ... ,fk
g exists:

Add g to KB.

Definition: derivation

KB derives/proves f (KB ` f) i↵ f eventually gets added to KB.

CS221 / Autumn 2019 / Liang & Sadigh 83

• Given a set of inference rules (e.g., modus ponens), we can just keep on trying to apply rules. Those rules
generate new formulas which get added to the knowledge base, and those formulas might then be premises
of other rules, which in turn generate more formulas, etc.

• We say that the KB derives or proves a formula f if by blindly applying rules, we can eventually add f to
the KB.

Inference example

Example: Modus ponens inference

Starting point:

KB = {Rain,Rain ! Wet,Wet ! Slippery}

Apply modus ponens to Rain and Rain ! Wet:

KB = {Rain,Rain ! Wet,Wet ! Slippery,Wet}

Apply modus ponens to Wet and Wet ! Slippery:

KB = {Rain,Rain ! Wet,Wet ! Slippery,Wet, Slippery}

Converged.

Can’t derive some formulas: ¬Wet, Rain ! Slippery

CS221 / Autumn 2019 / Liang & Sadigh 85

• Here is an example where we’ve applied modus ponens twice. Note that Wet and Slippery are derived by

the KB.

• But there are some formulas which cannot be derived. Some of these underivable formulas will look bad

anyway (¬Wet), but others will seem reasonable (Rain ! Slippery).

Resolution
• Resolution is a valid inference rule producing a

new clause implied by two clauses containing
complementary literals

Literal: atomic symbol or its negation, i.e., P, ~P
• Amazingly, this is the only interference rule needed

to build a sound & complete theorem prover
• Based on proof by contradiction, usually called

resolution refutation
• The resolution rule was discovered by Alan

Robinson (CS, U. of Syracuse) in the mid 1960s

84

Resolution
• A KB is a set of sentences all of which are true,

i.e., a conjunction of sentences
• To use resolution, put KB into conjunctive

normal form (CNF)
• Each sentence is a disjunction of one or more

literals (positive or negative atoms)
• Every KB can be put into CNF, it's just a matter

of rewriting its sentences using standard
tautologies, e.g.: P®Q ≡ ~PÚQ

85

CNF (Conjunctive Normal Form)

36

Each sentence is a disjunction of one or
more literals (positive or negative atoms)

Resolution Example

• KB: [P®Q , Q®RÙS]
• KB: [P®Q , Q®R, Q®S]
• KB in CNF: [~PÚQ , ~QÚR , ~QÚS]
• Resolve KB[0] and KB[1] producing:

~PÚR (i.e., P®R)
• Resolve KB[0] and KB[2] producing:

~PÚS (i.e., P®S)
• New KB: [~PÚQ , ~QÚR, ~QÚS, ~PÚR, ~PÚS]

Tautologies
 (A®B) ↔ (~A Ú B)

(AÚ (B Ù C)) ↔
(AÚB)Ù(AÚC)

86

Proving it’s raining with rules
• A proof is a sequence of sentences, where each is a

premise (i.e., a given) or is derived from earlier
sentences in the proof by an inference rule
• Last sentence is the theorem (also called goal or query)

that we want to prove
• The weather problem using traditional reasoning

1 Hu premise “It's humid”
2 Hu®Ho premise “If it's humid, it's hot”
3 Ho modus ponens(1,2) “It's hot”
4 (HoÙHu)®R premise “If it's hot & humid, it's raining”
5 HoÙHu and introduction(1,3) “It's hot and humid”
6 R modus ponens(4,5) “It's raining”

87

Proving it’s raining with resolution

Hu ~Hu∨Ho ~Hu∨~Ho∨R

Hu => Ho
~Hu ∨ Ho

Hu ∧ Ho => R
~(Hu ∧ Ho) ∨ R
~Hu ∨ ~Ho ∨ R

Hu

Ho

~Hu∨R

R

Hu => R

Resolution proof of R

88

A simple proof procedure
This procedure generates new sentences in a KB
1. Convert all sentences in the KB to CNF1
2. Find all pairs of sentences in KB with

complementary literals2 that have not yet been
resolved

3. If there are no pairs stop else resolve each pair,
adding the result to the KB and go to 2

• Is it sound?
• Is it complete?
•Will it always terminate?

1: a KB in conjunctive normal form is a set of
disjunctive sentences

2: a literal is a variable or its negation
89

Propositional Resolution

• It is sound!
• It’s not generatively complete in that it can’t

derive all clauses that follow from the KB
• The issues are not serious limitations, though
• Example: if the KB includes P and includes Q we

won’t derive P ^ Q
• It will always terminate
• But generating all clauses that follow can take a

long time and many may be useless

Resolution refutation
1. Add negation of goal to the KB
2. Convert all sentences in KB to CNF
3. Find all pairs of sentences in KB with

complementary literals that have not yet been
resolved

4. If there are no pairs stop else resolve each pair,
adding the result to the KB and go to 2

• If we derived an empty clause (i.e., a contradiction)
then the conclusion follows from the KB
• If we did not, the conclusion cannot be proved from

the KB
93

Proving it’s raining with refutation resolution

Hu ~Hu∨Ho ~Hu∨~Ho∨R

Hu => Ho
~Hu ∨ Ho

Hu ∧ Ho => R
~(Hu ∧ Ho) ∨ R
~Hu ∨ ~Ho ∨ R

Hu

Ho

~Hu∨R

R

Hu => R

~R

negation
of goal

empty
clause

A Resolution proof of R

Desiderata for inference rules

Semantics

Interpretation defines entailed/true formulas: KB |= f :

M(f)M(KB)

Syntax:

Inference rules derive formulas: KB ` f

How does {f : KB |= f} relate to {f : KB ` f}?

CS221 / Autumn 2019 / Liang & Sadigh 87

• We can apply inference rules all day long, but now we desperately need some guidance on whether a set

of inference rules is doing anything remotely sensible.

• For this, we turn to semantics, which gives an objective notion of truth. Recall that the semantics provides

us with M, the set of satisfiable models for each formula f or knowledge base. This defines a set of

formulas {f : KB |= f} which are defined to be true.

• On the other hand, inference rules also gives us a mechanism for generating a set of formulas, just by

repeated application. This defines another set of formulas {f : KB ` f}.

Truth

{f : KB |= f}

CS221 / Autumn 2019 / Liang & Sadigh 89

• Imagine a glass that represents the set of possible formulas entailed by the KB (these are necessarily true).

• By applying inference rules, we are filling up the glass with water.

Soundness

Definition: soundness

A set of inference rules Rules is sound if:

{f : KB ` f} ✓ {f : KB |= f}

CS221 / Autumn 2019 / Liang & Sadigh 91

KMA Solaiman
An inference rule is sound if every formula f it produces from a KB logically follows from the KB
i.e., inference rule creates no contradictions

• We say that a set of inference rules is sound if using those inference rules, we never overflow the glass:
the set of derived formulas is a subset of the set of true/entailed formulas.

Completeness

Definition: completeness

A set of inference rules Rules is complete if:

{f : KB ` f} ◆ {f : KB |= f}

CS221 / Autumn 2019 / Liang & Sadigh 93

KMA Solaiman
it can produce every formula that logically follows from (is entailed by) the KB
- Similar to complete search algorithms

• We say that a set of inference rules is complete if using those inference rules, we fill up the glass to the
brim (and possibly go over): the set of derived formulas is a superset of the set of true/entailed formulas.

Sound rules of inference
Examples of sound rules of inference
Each can be shown to be sound using a truth table

RULE PREMISE CONCLUSION
Modus Ponens A, A ® B B
And Introduction A, B A Ù B
And Elimination A Ù B A
Double Negation ¬¬A A
Unit Resolution A Ú B, ¬B A
Resolution A Ú B, ¬B Ú C A Ú C

83

Soundness: example

Is
Rain, Rain ! Wet

Wet
(Modus ponens) sound?

M(Rain) \ M(Rain ! Wet) ✓? M(Wet)

0 1

0

1

Wet

R
ai
n

0 1

0

1

Wet

R
ai
n

0 1

0

1

Wet

R
ai
n

Sound!

CS221 / Autumn 2019 / Liang & Sadigh 97

• To check the soundness of a set of rules, it su�ces to focus on one rule at a time.

• Take the modus ponens rule, for instance. We can derive Wet using modus ponens. To check entailment,
we map all the formulas into semantics-land (the set of satisfiable models). Because the models of Wet is
a superset of the intersection of models of Rain and Rain ! Wet (remember that the models in the KB
are an intersection of the models of each formula), we can conclude that Wet is also entailed. If we had
other formulas in the KB, that would reduce both sides of ✓ by the same amount and won’t a↵ect the
fact that the relation holds. Therefore, this rule is sound.

• Note, we use Wet and Rain to make the example more colorful, but this argument works for arbitrary
propositional symbols.

Soundness: example

Is
Wet, Rain ! Wet

Rain
sound?

M(Wet) \ M(Rain ! Wet) ✓? M(Rain)

0 1

0

1

Wet

R
ai
n

0 1

0

1

Wet

R
ai
n

0 1

0

1

Wet

R
ai
n

Unsound!

CS221 / Autumn 2019 / Liang & Sadigh 99

• Here is another example: given Wet and Rain ! Wet, can we infer Rain? To check it, we mechanically

construct the models for the premises and conclusion. Here, the intersection of the models in the premise

are not a subset, then the rule is unsound.

• Indeed, backward reasoning is faulty. Note that we can actually do a bit of backward reasoning using

Bayesian networks, since we don’t have to commit to 0 or 1 for the truth value.

Completeness: example

Recall completeness: inference rules derive all entailed formulas (f such
that KB |= f)

Example: Modus ponens is incomplete

Setup:

KB = {Rain,Rain _ Snow ! Wet}

f = Wet

Rules = { f, f!g
g } (Modus ponens)

Semantically: KB |= f (f is entailed).

Syntactically: KB 6` f (can’t derive f).

Incomplete!

CS221 / Autumn 2019 / Liang & Sadigh 101

• Completeness is trickier, and here is a simple example that shows that modus ponens alone is not complete,
since it can’t derive Wet, when semantically, Wet is true!

Fixing completeness

Option 1: Restrict the allowed set of formulas

propositional logic

propositional logic with only Horn clauses

Option 2: Use more powerful inference rules

Modus ponens

resolution

CS221 / Autumn 2019 / Liang & Sadigh 103

• At this point, there are two ways to fix completeness. First, we can restrict the set of allowed formulas,
making the water glass smaller in hopes that modus ponens will be able to fill that smaller glass.

• Second, we can use more powerful inference rules, pouring more vigorously into the same glass in hopes
that this will be able to fill the glass; we’ll look at one such rule, resolution, in the next lecture.

Definite clauses

Definition: Definite clause

A definite clause has the following form:

(p1 ^ · · · ^ pk) ! q

where p1, . . . , pk, q are propositional symbols.

Intuition: if p1, . . . , pk hold, then q holds.

Example: (Rain ^ Snow) ! Tra�c

Example: Tra�c

Non-example: ¬Tra�c

Non-example: (Rain ^ Snow) ! (Tra�c _ Peaceful)

CS221 / Autumn 2019 / Liang & Sadigh 105

KMA Solaiman
aka Strict Horn Clauses

• First we will choose to restrict the allowed set of formulas. Towards that end, let’s define a definite clause
as a formula that says, if a conjunction of propositional symbols holds, then some other propositional symbol
q holds. Note that this is a formula, not to be confused with an inference rule.

Horn clauses

Definition: Horn clause

A Horn clause is either:

• a definite clause (p1 ^ · · · ^ pk ! q)

• a goal clause (p1 ^ · · · ^ pk ! false)

Example (definite): (Rain ^ Snow) ! Tra�c

Example (goal): Tra�c ^ Accident ! false

equivalent: ¬(Tra�c ^ Accident)

CS221 / Autumn 2019 / Liang & Sadigh 107

• A Horn clause is basically a definite clause, but includes another type of clause called a goal clause,
which is the conjunction of a bunch of propositional symbols implying false. The form of the goal clause
might seem a bit strange, but the way to interpret it is simply that it’s the negation of the conjunction.

Modus ponens

Inference rule:

Definition: Modus ponens

p1, · · · , pk, (p1 ^ · · · ^ pk) ! q

q

Example:

Example: Modus ponens

Wet, Weekday, Wet ^Weekday ! Tra�c

Tra�c

CS221 / Autumn 2019 / Liang & Sadigh 109

• Recall the Modus ponens rule from before. We simply have generalized it to arbitrary number of premises.

Completeness of modus ponens

Theorem: Modus ponens on Horn clauses

Modus ponens is complete with respect to Horn clauses:

• Suppose KB contains only Horn clauses and p is an entailed

propositional symbol.

• Then applying modus ponens will derive p.

Upshot:

KB |= p (entailment) is the same as KB ` p (derivation)!

CS221 / Autumn 2019 / Liang & Sadigh 111

• There’s a theorem that says that modus ponens is complete on Horn clauses. This means that any

propositional symbol that is entailed can be derived by modus ponens too, provided that all the formulas

in the KB are Horn clauses.

• We already proved that modus ponens is sound, and now we have that it is complete (for Horn clauses).

The upshot of this is that entailment (a semantic notion, what we care about) and being able to derive a

formula (a syntactic notion, what we do with inference) are equivalent!

Example: Modus ponens

KB

Rain

Weekday

Rain ! Wet

Wet ^Weekday ! Tra�c

Tra�c ^ Careless ! Accident

Definition: Modus ponens

p1, · · · , pk, (p1 ^ · · · ^ pk) ! q

q

Question: KB |= Tra�c , KB ` Tra�c

Tra�c

Wet

Rain Rain ! Wet

Weekday Wet ^Weekday ! Tra�c

CS221 / Autumn 2019 / Liang & Sadigh 113

• Let’s see modus ponens on Horn clauses in action. Suppose we have the given KB consisting of only Horn

clauses (in fact, these are all definite clauses), and we wish to ask whether the KB entails Tra�c.

• We can construct a derivation, a tree where the root formula (e.g., Tra�c) was derived using inference

rules.

• The leaves are the original formulas in the KB, and each internal node corresponds to a formula which is

produced by applying an inference rule (e.g., modus ponens) with the children as premises.

• If a symbol is used as the premise in two di↵erent rules, then it would have two parents, resulting in a

DAG.

Propositional logic: pro and con
•Advantages
• Simple KR language good for many

problems
• Lays foundation for higher logics (e.g., FOL)
• Reasoning is decidable, though NP

complete; efficient techniques exist for
many problems

•Disadvantages
• Not expressive enough for most problems
• Even when it is, it can very “un-concise”

95

PL is a weak KR language
• Hard to identify individuals (e.g., Mary, 3)
• Can’t directly represent properties of individuals

or relations between them (e.g., “Bill age 24”)
• Generalizations, patterns, regularities hard to

represent (e.g., “all triangles have 3 sides”)
• First-Order Logic (FOL) represents this informa-

tion via relations, variables & quantifiers, e.g.,
• John loves Mary: loves(John, Mary)
• Every elephant is gray: " x (elephant(x) → gray(x))
• There is a black swan: $ x (swan(X) ^ black(X))

96

Summary

Syntax Semantics

formula

Inference

rules

models

CS221 / Autumn 2019 / Liang & Sadigh 115

Hunt the Wumpus

103

Wumpus World environment
• Based on Hunt the Wumpus computer game
• Agent explores cave of rooms connected by

passageways
• Lurking in a room is the Wumpus, a beast that

eats any agent that enters its room
• Some rooms have bottomless pits that trap

any agent that wanders into the room
• Somewhere is a heap of gold in a room
• Goal: collect gold & exit w/o being eaten

104

AIMA’s Wumpus World

The agent always
starts in the field
[1,1]

Agent’s task is to find
the gold, return to
the field [1,1] and
climb out of the cave

106

Agent in a Wumpus world: Percepts
• The agent perceives
• stench in square containing Wumpus and in adjacent

squares (not diagonally)
• breeze in squares adjacent to a pit
• glitter in the square where the gold is
• bump, if it walks into a wall
• Woeful scream everywhere in cave, if Wumpus killed
• Percepts given as five-tuple, e.g., if stench and

breeze, but no glitter, bump or scream:
[Stench, Breeze, None, None, None]

• Agent cannot perceive its location, e.g., (2,2)
107

Wumpus World Actions
• go forward
• turn right 90 degrees
• turn left 90 degrees
• grab: Pick up object in same square as agent
• shoot: Fire arrow in direction agent faces. It continues

until it hits & kills Wumpus or hits outer wall. Agent
has one arrow, so only first shoot action has effect
• Climb: leave cave, only effective in start square
• die: automatically and irretrievably happens if agent

enters square with pit or living Wumpus

108

Wumpus World Goal

Agent’s goal is to find the gold and bring
it back to the start square as quickly as
possible, without getting killed

• 1,000 point reward for climbing out of
cave with gold
• 1 point deducted for every action

taken
• 10,000 point penalty for getting killed

109

AIMA’s Wumpus World

The agent always
starts in the field
[1,1]

Agent’s task is to
find the gold,
return to the field
[1,1] and climb
out of the cave

112

The Hunter’s first step

¬W

¬W

Since agent is alive and perceives
neither breeze nor stench at [1,1], it
knows [1,1] and its neighbors are OK

Moving to [2,1] is a safe move that
reveals a breeze but no stench, implying
that Wumpus isn’t adjacent but one or
more pits are 113

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

114

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

115

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

116

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

117

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

No stench in (1,2) => Wumpus not in (2,2)
No breeze in (2,1) => no pit in (2,2) => pit in (1,3)

118

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

119

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

Going to (2,2) is the only “safe” move

120

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

Going to (2,3) is a “safe” move

121

Exploring a wumpus world

A agent
B breeze
G glitter
OK safe cell
P pit
S stench
W wumpus

P?

P?

Found gold! Now find way back to (1,1)

122

Reasoning in Hunt the
Wumpus

123

Hunt the Wumpus domain
• Some atomic propositions:

A12 = agent is in call (1,2)
S12 = There’s a stench in cell (1,2)
B34 = There’s a breeze in cell (3,4)
W22 = Wumpus is in cell (2,2)
V11 = We’ve visited cell (1,1)
OK11 = cell (1,1) is safe
…

• Some rules:
¬S22 ® ¬W12 Ù ¬W23 Ù ¬W32 Ù ¬W21
S22 ® W12 Ú W23 Ú W32 Ú W21
B22 ® P12 Ú P23 Ú P32 Ú P21
W22 ® S12 Ù S23 Ù S32 Ù W21
W22 ® ¬W11 Ù ¬W21 Ù … ¬W44
A22 ® V22
A22 ®¬W11 Ù ¬W21 Ù … ¬W44
V22 ® OK22

If there’s no stench in cell
2,2 then the Wumpus isn’t
in cell 21, 23 32 or 21

124

Hunt the Wumpus domain
• Eight symbols for each cell,

i.e.: A11, B11, G11, OK11,
P11, S11, V11, W11
• Lack of variables requires

giving similar rules for each
cell!
• Ten rules (I think) for each

A11 ® …
V11 ® …
P11 ® …
¬P11 ® …

W11 ® …
¬W11 ® …
S11 ® …
¬S11 ® …
B11 ® …
¬B11 ® …

• 8 symbols for 16 cells => 128 symbols
• 2128 possible models L
• Must do better than brute force

125

After third move

• We can prove that the
Wumpus is in (1,3) using
these four rules
• See RN section 7.5

(R1) ¬S11 ® ¬W11 Ù ¬ W12 Ù ¬ W21
(R2) ¬ S21 ® ¬W11 Ù ¬ W21 Ù ¬ W22 Ù ¬ W31
(R3) ¬ S12 ® ¬W11 Ù ¬ W12 Ù ¬ W22 Ù ¬ W13
(R4) S12 ® W13 Ú W12 Ú W22 Ú W11

126

Proving W13: Wumpus is in cell 1,3
Apply MP with ¬S11 and R1:

¬ W11 Ù ¬ W12 Ù ¬ W21
Apply AE, yielding three sentences:

¬ W11, ¬ W12, ¬ W21
Apply MP to ~S21 and R2, then apply AE:

¬ W22, ¬ W21, ¬ W31
Apply MP to S12 and R4 to obtain:

W13 Ú W12 Ú W22 Ú W11
Apply UR on (W13 Ú W12 Ú W22 Ú W11) and ¬W11:

W13 Ú W12 Ú W22
Apply UR with (W13 Ú W12 Ú W22) and ¬W22:

W13 Ú W12
Apply UR with (W13 Ú W12) and ¬W12:

W13
QED

(R1) ¬S11 ® ¬W11 Ù ¬ W12 Ù ¬ W21
(R2) ¬ S21 ® ¬W11 Ù ¬ W21 Ù ¬ W22 Ù ¬ W31
(R3) ¬ S12 ® ¬W11 Ù ¬ W12 Ù ¬ W22 Ù ¬ W13
(R4) S12 ® W13 Ú W12 Ú W22 Ú W11

Rule Abbreviation
MP: modes ponens
AE: and elimination
R: unit resolution

127

Propositional Wumpus problems
• Lack of variables prevents general rules, e.g.:
• " x, y V(x,y) → OK(x,y)
• " x, y S(x,y) → W(x-1,y) Ú W(x+1,y) …
• Change of KB over time difficult to represent
• In classical logic; a fact is true or false for all time
• A standard technique is to index dynamic facts with

the time when they’re true
• A(1, 1, 0) # agent was in cell 1,1 at time 0
• A(2, 1, 1) # agent was in cell 2,1 at time 1

• Thus we have a separate KB for every time point

128

