
CMSC 471
Propositional and First-Order Logic

KMA Solaiman
ksolaima@umbc.edu

Some slides courtesy Tim Finin
1

First-order logic
• First-order logic (FOL) models the world in terms of
• Objects, which are things with individual identities
• Properties of objects that distinguish them from others
• Relations that hold among sets of objects
• Functions, a subset of relations where there is only one
“value” for any given “input”

• Examples:
• Objects: students, lectures, companies, cars ...
• Relations: brother-of, bigger-than, outside, part-of, has-

color, occurs-after, owns, visits, precedes, ...
• Properties: blue, oval, even, large, ...
• Functions: father-of, best-friend, more-than ...

2

Quantifiers: " and $
• Universal quantification
• ("x)P(X) means P holds for all values of X

in the domain associated with variable1

• E.g., ("X) dolphin(X) ® mammal(X)
• Existential quantification
• ($x)P(X) means P holds for some value of

X in domain associated with variable
• E.g., ($X) mammal(X) Ù lays_eggs(X)
• This lets us make statements about an

object without identifying it
1 a variable’s domain is often not explicitly stated and is assumed by the context 3

Universal Quantifier: "

• Universal quantifiers typically used with
implies to form rules:
Logic: ("X) student(X) ® smart(X)
Means: All students are smart

• Universal quantification rarely used without
implies:
Logic: ("X) student(X) Ù smart(X)
Means: Everything is a student and is smart

4

Existential Quantifier: $

• Existential quantifiers usually used with and to
specify a list of properties about an individual

Logic: ($ X) student(X) Ù smart(X)
Meaning: There is a student who is smart

• Common mistake: represent this in FOL as:
Logic: ($ X) student(X) ® smart(X)
Meaning: ?

5

Existential Quantifier: $

• Existential quantifiers usually used with and to
specify a list of properties about an individual

Logic: ($ X) student(X) Ù smart(X)
Meaning: There is a student who is smart

• Common mistake: represent this in FOL as:
Logic: ($ X) student(X) ® smart(X)
P ® Q = ~P v Q
$ X student(X) ® smart(X) = $ X ~student(X) v smart(X)
Meaning: There’s something that is either not a
student or is smart

6

Quantifier Scope
• FOL sentences have structure, like programs
• In particular, variables in a sentence have a scope
• Suppose we want to say “everyone who is alive loves

someone”
("X) alive(X) ® ($ Y) loves(X, Y)

• Here’s how we scope the variables

("X) alive(X) ® ($Y) loves(X, Y)

Scope of x
Scope of y

7

Quantifier Scope
• Switching order of universal quantifiers does not

change the meaning
• ("X)("Y)P(X,Y) ↔ ("Y)("X) P(X,Y)
• Dogs hate cats (i.e., all dogs hate all cats)

• You can switch order of existential quantifiers
• ($X)($Y)P(X,Y) ↔ ($Y)($X) P(X,Y)
• A cat killed a dog

• Switching order of universal and existential
quantifiers does change meaning:
• Everyone likes someone: ("X)($Y) likes(X,Y)
• Someone is liked by everyone: ($Y)("X) likes(X,Y)

8

Procedural example 1
(Illustrative only!)

def verify1():
 # Everyone likes someone: ("x)($y) likes(x,y)
 for p1 in people():
 foundLike = False
 for p2 in people():
 if likes(p1, p2):
 foundLike = True
 break
 if not foundLike:
 print(p1, ‘does not like anyone L’)
 return False
 return True

Every person has at
least one individual that
they like.

9

Procedural example 2
(Illustrative only!)def verify2():

 # Someone is liked by everyone: ($y)("x) likes(x,y)
 for p2 in people():
 foundHater = False
 for p1 in people():
 if not likes(p1, p2):
 foundHater = True
 break
 if not foundHater
 print(p2, ‘is liked by everyone J’)
 return True
 return False

There is a person who is
liked by every person in
the universe.

10

Connections between " and $
•We can relate sentences involving " and $

using extensions to De Morgan’s laws:
1. ("x) P(x) ↔ ¬($x) ¬ P(x)
2. ¬("x) P(x) ↔ ($x) ¬P(x)
3. ($ x) P(x) ↔ ¬ (" x) ¬P(x)
4. ¬($x) P(x) ↔ ("x) ¬P(x)

• Examples
1. All dogs don’t like cats ↔ No dog likes cats
2. Not all dogs bark ↔ There is a dog that doesn’t bark
3. All dogs sleep ↔ There is no dog that doesn’t sleep
4. There is a dog that talks ↔ Not all dogs can’t talk

11

http://en.wikipedia.org/wiki/De_Morgan's_laws

Notational differences
• Different symbols for and, or, not, implies, ...
• " $ Þ Û Ù Ú ¬ • É
• p v (q ^ r)
• p + (q * r)

• Prolog
cat(X) :- furry(X), meows (X), has(X, claws)

• Lisp notations
(forall ?x (implies (and (furry ?x)
 (meows ?x)
 (has ?x claws))
 (cat ?x)))

12

Translating English to FOL

Every gardener likes the sun

All purple mushrooms are poisonous

13

Translating English to FOL

Every gardener likes the sun
"x gardener(x) ® likes(x,Sun)

All purple mushrooms are poisonous

13

Translating English to FOL

Every gardener likes the sun
"x gardener(x) ® likes(x,Sun)

All purple mushrooms are poisonous
"x (mushroom(x) Ù purple(x)) ® poisonous(x)

13

Translating English to FOL

Every gardener likes the sun
"x gardener(x) ® likes(x,Sun)

All purple mushrooms are poisonous
"x (mushroom(x) Ù purple(x)) ® poisonous(x)

No purple mushroom is poisonous (two ways)

13

Translating English to FOL

Every gardener likes the sun
"x gardener(x) ® likes(x,Sun)

All purple mushrooms are poisonous
"x (mushroom(x) Ù purple(x)) ® poisonous(x)

No purple mushroom is poisonous (two ways)
¬$x purple(x) Ù mushroom(x) Ù poisonous(x)

13

Translating English to FOL

Every gardener likes the sun
"x gardener(x) ® likes(x,Sun)

All purple mushrooms are poisonous
"x (mushroom(x) Ù purple(x)) ® poisonous(x)

No purple mushroom is poisonous (two ways)
¬$x purple(x) Ù mushroom(x) Ù poisonous(x)
"x (mushroom(x) Ù purple(x)) ® ¬poisonous(x)

13

English to FOL: Counting

Use = predicate to identify different individuals

• There are at least two purple mushrooms
$x $y mushroom(x) Ù purple(x) Ù mushroom(y) Ù
purple(y) Ù ¬(x=y)

• There are exactly two purple mushrooms
$x $y mushroom(x) Ù purple(x) Ù mushroom(y) Ù
purple(y) Ù ¬(x=y) Ù
"z (mushroom(z) Ù purple(z)) ® ((x=z) Ú (y=z))

Saying there are 802 different Pokemon will be
hard!

14

Translating English to FOL
What do these mean?

• You can fool some of the people all of the time
$x "t person(x) Ù time(t) ® can-fool(x, t)
"t $x person(x) Ù time(t) ® can-fool(x, t)

• You can fool all of the people some of the time
$t "x time(t) Ù person(x) ® can-fool(x, t)
"x $t person(x) Ù time(t) ® can-fool(x, t)

15

Translating English to FOL
What do these mean?

Both English statements are ambiguous
• You can fool some of the people all of the time

There is a nonempty subset of people so easily
fooled that you can fool that subset every time*

For any given time, there is a non-empty subset at
that time that you can fool

• You can fool all of the people some of the time
There are one or more times when it’s possible to

fool everyone*
Everybody can be fooled at some point in time

* Most common interpretation, I think 16

Some terms we will need

• person(x): True iff x is a person

• time(t): True iff t is a point in time

• canFool(x, t): True iff x can be fooled at time t

Note: iff = if and only if = ↔
17

Translating English to FOL
You can fool some of the people all of the time

There is a nonempty group of people so easily fooled
that you can fool that group every time*

≡ There’s (at least) one person you can fool every time
$x "t person(x) Ù time(t) ® canFool(x, t)

For any given time, there is a non-empty group at that
time that you can fool

≡ For every time, there’s a person at that time that you
can fool

"t $x person(x) Ù time(t) ® canFool(x, t)

* Most common interpretation, I think 18

Translating English to FOL

You can fool all of the people some of the time
There’s at least one time when you can fool everyone*
$t "x time(t) Ù person(x) ® canFool(x, t)

Everybody can be fooled at some point in time
"x $t person(x) Ù time(t) ® canFool(x, t)

* Most common interpretation, I think 19

Limits of classical logic
• Note that there’s no easy, natural way to talk about a few, many, most,

almost all …

• This is natural in human languages
• There are many people you can fool most of the time
• There are a few people you can fool almost every time

• We also can’t have exceptions naturally as in human languages
• All birds can fly, except for penguins, ostriches and a few other species
• This can be represented in FOL, but it may be challenging – lot of new relations,

paraphrasing, and conditions needed.

• "For all entities x, if x is a bird and x is not a penguin, not an ostrich, and not one of the
specified other species, then x can fly."

• There are non-classical logic systems that can handle these problems

20

Limits of classical logic
• Note that there’s no easy, natural way to talk about a few, many, most,

almost all …

• This is natural in human languages
• There are many people you can fool most of the time
• There are a few people you can fool almost every time

• We also can’t have exceptions naturally as in human languages
• All birds can fly, except for penguins, ostriches and a few other species
• This can be represented in FOL, but it may be challenging – lot of new relations,

paraphrasing, and conditions needed.

• "For all entities x, if x is a bird and x is not a penguin, not an ostrich, and not one of the
specified other species, then x can fly."

• There are non-classical logic systems that can handle these problems

20

Representation Design
• Many options for representing even a simple fact,

e.g., something’s color as red, green or blue, e.g.:
• green(kermit)
• color(kermit, green)
• hasProperty(kermit, color, green)

• Choice can influence how easy it is to use
• Last option of representing properties & relations

as triples used by modern knowledge graphs
• Easy to ask: What color is Kermit? What are Kermit’s

properties?, What green things are there? Tell me
everything you know, …

21

https://en.wikipedia.org/wiki/Semantic_triple
https://en.wikipedia.org/wiki/Knowledge_Graph

Simple genealogy KB in FOL

Design a knowledge base using FOL that

• Has facts of immediate family relations, e.g.,
spouses, parents, etc.
• Defines more complex relations (ancestors,
relatives)
• Detect conflicts, e.g., you are your own parent
• Infers relations, e.g., grandparent from parent
• Answers queries about relationships between
people

22

How do we approach this?
• Design an initial ontology of types, e.g.
• e.g., person, man, woman, male, female

• Extend ontology by defining simple two
argument relations, e.g.
• spouse, has_child, has_parent

• Add general constraints to relations, e.g.
• spouse(X,Y) => ~ X = Y
• spouse(X,Y) => person(X), person(Y)

• Add FOL sentences for inference, e.g.
• spouse(X,Y) ó spouse(Y,X)
• man(X) ó person(X) ∧male(X)

• Add instance data
• e.g., spouse(djt, mt)

23

Example: A simple genealogy KB by FOL
Predicates:
• parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
• spouse(x, y), husband(x, y), wife(x,y)
• ancestor(x, y), descendant(x, y)
• male(x), female(y)
• relative(x, y)

Facts:
• husband(Joe, Mary), son(Fred, Joe)
• spouse(John, Nancy), male(John), son(Mark, Nancy)
• father(Jack, Nancy), daughter(Linda, Jack)
• daughter(Liz, Linda)
• etc.

24

Example Axioms
("x,y) parent(x, y) ↔ child (y, x)

("x,y) father(x, y) ↔ parent(x, y) Ù male(x) ;similar for mother(x, y)

("x,y) daughter(x, y) ↔ child(x, y) Ù female(x) ;similar for son(x, y)

("x,y) husband(x, y) ↔ spouse(x, y) Ù male(x) ;similar for wife(x, y)

("x,y) spouse(x, y) ↔ spouse(y, x) ;spouse relation is symmetric

("x,y) parent(x, y) ® ancestor(x, y)

("x,y)($z) parent(x, z) Ù ancestor(z, y) ® ancestor(x, y)

("x,y) descendant(x, y) ↔ ancestor(y, x)

("x,y)($z) ancestor(z, x) Ù ancestor(z, y) ® relative(x, y)

("x,y) spouse(x, y) ® relative(x, y) ;related by marriage

("x,y)($z) relative(z, x) Ù relative(z, y) ® relative(x, y) ;transitive

("x,y) relative(x, y) ↔ relative(y, x) ;symmetric
25

Axioms, definitions and theorems
• Axioms: facts and rules that capture (important) facts &

concepts in a domain; axioms are used to prove
theorems
• Mathematicians dislike unnecessary (dependent) axioms, i.e.

ones that can be derived from others
• Dependent axioms can make reasoning faster, however
• Choosing a good set of axioms is a design problem
• A definition of a predicate is of the form “p(X) ↔ …”

and can be decomposed into two parts
• Necessary description: “p(x) ® …”
• Sufficient description “p(x) ¬ …”
• Some concepts have definitions (e.g., triangle) and some don’t

(e.g., person)
26

More on definitions
Example: define father(x, y) by parent(x, y) and
male(x)
• parent(x, y) is a necessary (but not sufficient)

description of father(x, y)
 father(x, y) ® parent(x, y)
• parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not

necessary) description of father(x, y):
 father(x, y) ¬ parent(x, y) ^ male(x) ^ age(x, 35)
• parent(x, y) ^ male(x) is a necessary and sufficient

description of father(x, y)
 parent(x, y) ^ male(x) ↔ father(x, y)

27

Higher-order logic

• FOL only lets us quantify over variables, and
variables can only range over objects
• HOL allows us to quantify over relations, e.g.
“two functions are equal iff they produce the same

value for all arguments”
"f "g (f = g) « ("x f(x) = g(x))

• E.g.: (quantify over predicates)
"r transitive(r) ® ("xyz) r(x,y) Ù r(y,z) ® r(x,z))

•More expressive, but reasoning is undecide-
able, in general

29

Expressing uniqueness
• Often want to say that there is a single, unique

object that satisfies a condition
• There exists a unique x such that king(x) is true
• $x king(x) Ù "y (king(y) ® x=y)
• $x king(x) Ù ¬$y (king(y) Ù x¹y)
• $! x king(x)

• Every country has exactly one ruler
• "c country(c) ® $! r ruler(c,r)

• Iota operator: i x P(x) means “the unique x such
that p(x) is true”
• The unique ruler of Freedonia is dead
• dead(i x ruler(freedonia,x))

syntactic
sugar

30

http://en.wikipedia.org/wiki/Syntactic_sugar
http://en.wikipedia.org/wiki/Syntactic_sugar

Examples of FOL in use
• Semantics of W3C’s Semantic Web stack

(RDF, RDFS, OWL) is defined in FOL
• OWL Full is equivalent to FOL
• Other OWL profiles support a subset of FOL

and are more efficient
• The semantics of schema.org is only defined

in natural language text
•Wikidata’s knowledge graph (and Google’s)

has a richer schema

31

https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Web_Ontology_Language
http://schema.org/
https://www.wikidata.org/

Examples of FOL in
use

Many practical approaches embrace the
approach that “some data is better than none”

• The semantics of schema.org is only defined in
natural language text
•Wikidata’s knowledge graph has a rich schema
• Many constraint/logical violations are flagged with

warnings
• However, not all, see this Wikidata query that

finds people who are their own grandfather

33

http://schema.org/
https://www.wikidata.org/
https://w.wiki/4FdS

Virtual assistants and Infoboxes
• Web search engines and virtual assistants like

Alexa use custom knowledge graphs to
• help understand queries and content of web pages &

documents
• Answer questions
• Show infoboxes

• Wikidata shares roots
with these
• All draw on the similar

knowledge, like the
~300 Wikipedia &
Wikimedia sites

Virtual assistants & search engines
question

answer
Infobox

FOL Summary
• First order logic (FOL) introduces predicates,

functions and quantifiers
•More expressive, but reasoning more complex
• Reasoning in propositional logic is NP hard, FOL is

semi-decidable
• Common AI knowledge representation language
• Other KR languages (e.g., OWL) are often defined by

mapping them to FOL
• FOL variables range over objects
• HOL variables range over functions, predicates or

sentences
32

http://en.wikipedia.org/wiki/Web_Ontology_Language

Logical Inference: Overview
• Model checking for propositional logic
• Rule based reasoning in first-order logic
• Inference rules and generalized modes ponens
• Forward chaining
• Backward chaining

• Resolution-based reasoning in first-order logic
• Clausal form
• Unification
• Resolution as search

37

Model Checking using the
AIMA Code
python> python
Python ...
>>> from logic import *
>>> expr('P & P==>Q & ~P==>R')
((P & (P >> Q)) & (~P >> R))

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R'))
{R: True, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~R'))
{R: False, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~Q'))
False

>>>
50

Model Checking using the
AIMA Code
python> python
Python ...
>>> from logic import *
>>> expr('P & P==>Q & ~P==>R')
((P & (P >> Q)) & (~P >> R))

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R'))
{R: True, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~R'))
{R: False, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~Q'))
False

>>>

expr parses a string, and
returns a logical expression

50

Model Checking using the
AIMA Code
python> python
Python ...
>>> from logic import *
>>> expr('P & P==>Q & ~P==>R')
((P & (P >> Q)) & (~P >> R))

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R'))
{R: True, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~R'))
{R: False, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~Q'))
False

>>>

expr parses a string, and
returns a logical expression

dpll_satisfiable returns a
model if satisfiable else False

50

Model Checking using the
AIMA Code
python> python
Python ...
>>> from logic import *
>>> expr('P & P==>Q & ~P==>R')
((P & (P >> Q)) & (~P >> R))

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R'))
{R: True, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~R'))
{R: False, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~Q'))
False

>>>

expr parses a string, and
returns a logical expression

dpll_satisfiable returns a
model if satisfiable else False

The KB entails Q but does not
entail R 50

Checking Validity

• Use the functions in aima's logic.py to see which of the
following are valid, i.e., true in every model.
• convert these sentences to the appropriate string form

that the python code uses
• use the expr() function in logic.py to turn each into

an Expr object
• use the tt_true() function to check for validity.
• tt_true() checks an expression object to see if it is

valid, i.e., true in all possible models.
• A valid sentence is true for all possible assignments of

true and false to its variables, i.e., P ∨ ¬P

51

https://github.com/aimacode/aima-python/blob/master/logic.py

AIMA KB Class>>> kb1 = PropKB()
>>> kb1.clauses

[]
>>> kb1.tell(expr('P==>Q & ~P==>R'))

>>> kb1.clauses
[(Q | ~P), (R | P)]

>>> kb1.ask(expr('Q'))

False
>>> kb1.tell(expr('P'))
>>> kb1.clauses

[(Q | ~P), (R | P), P]
>>> kb1.ask(expr('Q'))

{}
>>> kb1.retract(expr('P'))

>>> kb1.clauses

[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False

52

AIMA KB Class>>> kb1 = PropKB()
>>> kb1.clauses

[]
>>> kb1.tell(expr('P==>Q & ~P==>R'))

>>> kb1.clauses
[(Q | ~P), (R | P)]

>>> kb1.ask(expr('Q'))

False
>>> kb1.tell(expr('P'))
>>> kb1.clauses

[(Q | ~P), (R | P), P]
>>> kb1.ask(expr('Q'))

{}
>>> kb1.retract(expr('P'))

>>> kb1.clauses

[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False

PropKB is a subclass

52

AIMA KB Class>>> kb1 = PropKB()
>>> kb1.clauses

[]
>>> kb1.tell(expr('P==>Q & ~P==>R'))

>>> kb1.clauses
[(Q | ~P), (R | P)]

>>> kb1.ask(expr('Q'))

False
>>> kb1.tell(expr('P'))
>>> kb1.clauses

[(Q | ~P), (R | P), P]
>>> kb1.ask(expr('Q'))

{}
>>> kb1.retract(expr('P'))

>>> kb1.clauses

[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False

PropKB is a subclass

A sentence is converted to
CNF and the clauses added

52

AIMA KB Class>>> kb1 = PropKB()
>>> kb1.clauses

[]
>>> kb1.tell(expr('P==>Q & ~P==>R'))

>>> kb1.clauses
[(Q | ~P), (R | P)]

>>> kb1.ask(expr('Q'))

False
>>> kb1.tell(expr('P'))
>>> kb1.clauses

[(Q | ~P), (R | P), P]
>>> kb1.ask(expr('Q'))

{}
>>> kb1.retract(expr('P'))

>>> kb1.clauses

[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False

PropKB is a subclass

A sentence is converted to
CNF and the clauses added

The KB does not entail Q

52

AIMA KB Class>>> kb1 = PropKB()
>>> kb1.clauses

[]
>>> kb1.tell(expr('P==>Q & ~P==>R'))

>>> kb1.clauses
[(Q | ~P), (R | P)]

>>> kb1.ask(expr('Q'))

False
>>> kb1.tell(expr('P'))
>>> kb1.clauses

[(Q | ~P), (R | P), P]
>>> kb1.ask(expr('Q'))

{}
>>> kb1.retract(expr('P'))

>>> kb1.clauses

[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False

PropKB is a subclass

A sentence is converted to
CNF and the clauses added

The KB does not entail Q

After adding P the KB does
entail Q

52

AIMA KB Class>>> kb1 = PropKB()
>>> kb1.clauses

[]
>>> kb1.tell(expr('P==>Q & ~P==>R'))

>>> kb1.clauses
[(Q | ~P), (R | P)]

>>> kb1.ask(expr('Q'))

False
>>> kb1.tell(expr('P'))
>>> kb1.clauses

[(Q | ~P), (R | P), P]
>>> kb1.ask(expr('Q'))

{}
>>> kb1.retract(expr('P'))

>>> kb1.clauses

[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False

PropKB is a subclass

A sentence is converted to
CNF and the clauses added

The KB does not entail Q

After adding P the KB does
entail Q

Retracting P removes it and
the KB no longer entails Q

52

Logic Summary
• Propositional logic
• Problems with propositional logic

• First-order logic
• Properties, relations, functions, quantifiers, …
• Terms, sentences, wffs, axioms, theories, proofs, …
• Variations and extensions to first-order logic

• Logical agents
• Reflex agents
• Representing change: situation calculus, frame problem
• Preferences on actions
• Goal-based agents

53

