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First-order logic
• First-order logic (FOL) models the world in terms of 
• Objects, which are things with individual identities
• Properties of objects that distinguish them from others
• Relations that hold among sets of objects
• Functions, a subset of relations where there is only one 
“value” for any given “input”

• Examples: 
• Objects: students, lectures, companies, cars ... 
• Relations: brother-of, bigger-than, outside, part-of, has-

color, occurs-after, owns, visits, precedes, ... 
• Properties: blue, oval, even, large, ... 
• Functions: father-of, best-friend, more-than ... 
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Quantifiers: " and $
• Universal quantification 
• ("x)P(X) means P holds for all values of X 

in the domain associated with variable1

• E.g., ("X) dolphin(X) ® mammal(X) 
• Existential quantification 
• ($x)P(X) means P holds for some value of 

X in domain associated with variable
• E.g., ($X) mammal(X) Ù lays_eggs(X)
• This lets us make statements about an 

object without identifying it
1 a variable’s domain is often not explicitly stated and is assumed by the context 3



Universal Quantifier: "

• Universal quantifiers typically used with 
implies to form rules:
Logic: ("X) student(X) ® smart(X)
Means: All students are smart

• Universal quantification rarely used without 
implies: 
Logic: ("X) student(X) Ù smart(X)
Means: Everything is a student and is smart
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Existential Quantifier: $ 

• Existential quantifiers usually used with and to 
specify a list of properties about an individual

Logic: ($ X) student(X) Ù smart(X)
Meaning: There is a student who is smart

• Common mistake: represent this in FOL as:
Logic: ($ X) student(X) ® smart(X) 
Meaning: ?
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Existential Quantifier: $ 

• Existential quantifiers usually used with and to 
specify a list of properties about an individual

Logic: ($ X) student(X) Ù smart(X)
Meaning: There is a student who is smart

• Common mistake: represent this in FOL as:
Logic: ($ X) student(X) ® smart(X) 
P ® Q = ~P v Q
$ X student(X) ® smart(X) = $ X ~student(X) v smart(X)
Meaning: There’s something that is either not a 
student or is smart
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Quantifier Scope
• FOL sentences have structure, like programs
• In particular, variables in a sentence have a scope
• Suppose we want to say “everyone who is alive loves 

someone”
("X) alive(X) ® ($ Y) loves(X, Y) 

• Here’s how we scope the variables

("X) alive(X) ® ($Y) loves(X, Y)

Scope of x
Scope of y
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Quantifier Scope
• Switching order of universal quantifiers does not 

change the meaning
• ("X)("Y)P(X,Y) ↔ ("Y)("X) P(X,Y)
• Dogs hate cats (i.e., all dogs hate all cats)

• You can switch order of existential quantifiers
• ($X)($Y)P(X,Y) ↔ ($Y)($X) P(X,Y) 
• A cat killed a dog

• Switching order of universal and existential 
quantifiers does change meaning: 
• Everyone likes someone: ("X)($Y) likes(X,Y) 
• Someone is liked by everyone: ($Y)("X) likes(X,Y)
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Procedural example 1
(Illustrative only!)

def verify1():
    # Everyone likes someone: ("x)($y) likes(x,y) 
    for p1 in people():
        foundLike = False
        for p2 in people():
            if likes(p1, p2):
                 foundLike = True
                 break
        if not foundLike:
            print(p1, ‘does not like anyone L’)
            return False
    return True  

Every person has at
least one individual that
they like.
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Procedural example 2 
(Illustrative only!)def verify2():

    # Someone is liked by everyone: ($y)("x) likes(x,y) 
    for p2 in people():
        foundHater = False
        for p1 in people():
            if not likes(p1, p2):
                foundHater = True
                break
        if not foundHater
            print(p2, ‘is liked by everyone J’)
            return True
    return False

There is a person who is
liked by every person in
the universe.
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Connections between " and $
•We can relate sentences involving " and $ 

using extensions to  De Morgan’s laws:
1. ("x) P(x) ↔ ¬($x) ¬ P(x)
2. ¬("x) P(x) ↔ ($x) ¬P(x)
3. ($ x) P(x) ↔ ¬ (" x) ¬P(x)
4. ¬($x) P(x) ↔ ("x) ¬P(x)

• Examples
1.  All dogs don’t like cats ↔ No dog likes cats
2.  Not all dogs bark ↔ There is a dog that doesn’t bark
3.  All dogs sleep ↔ There is no dog that doesn’t sleep
4.  There is a dog that talks ↔ Not all dogs can’t talk
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Notational differences
• Different symbols for and, or, not, implies, ...
• "  $  Þ  Û  Ù  Ú  ¬  •  É
• p v (q ^ r) 
• p + (q * r)

• Prolog
cat(X) :- furry(X), meows (X), has(X, claws)

• Lisp notations
(forall ?x (implies (and (furry ?x) 
                                      (meows ?x) 
                                      (has ?x claws))
                               (cat ?x)))
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Translating English to FOL

Every gardener likes the sun
  

All purple mushrooms are poisonous
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English to FOL: Counting

Use = predicate to identify different individuals

• There are at least two purple mushrooms
$x $y mushroom(x) Ù purple(x) Ù mushroom(y) Ù 
purple(y) Ù ¬(x=y)

• There are exactly two purple mushrooms
$x $y mushroom(x) Ù purple(x) Ù mushroom(y) Ù 
purple(y) Ù ¬(x=y) Ù
"z (mushroom(z) Ù purple(z)) ® ((x=z) Ú (y=z)) 

Saying there are 802 different Pokemon will be 
hard!
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Translating English to FOL
What do these mean?

• You can fool some of the people all of the time
$x "t  person(x) Ù time(t) ® can-fool(x, t)
"t $x  person(x) Ù time(t) ® can-fool(x, t)

• You can fool all of the people some of the time
$t "x time(t) Ù person(x) ® can-fool(x, t)
"x $t person(x) Ù time(t) ® can-fool(x, t)
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Translating English to FOL
What do these mean?

Both English statements are ambiguous
• You can fool some of the people all of the time

There is a nonempty subset of people so easily 
fooled that you can fool that subset every time*

For any given time, there is a non-empty subset at 
that time that you can fool

• You can fool all of the people some of the time
There are one or more times when it’s possible to 

fool everyone*
Everybody can be fooled at some point in time

* Most common interpretation, I think 16



Some terms we will need

• person(x): True iff x is a person

• time(t): True iff t is a point in time

• canFool(x, t): True iff x can be fooled at time t

Note: iff  =  if and only if  =  ↔
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Translating English to FOL
You can fool some of the people all of the time

There is a nonempty group of people so easily fooled 
that you can fool that group every time*

≡ There’s (at least) one person you can fool every time
$x "t  person(x) Ù time(t) ® canFool(x, t)

For any given time, there is a non-empty group at that 
time that you can fool

≡ For every time, there’s a person at that time that you 
can fool

"t $x  person(x) Ù time(t) ® canFool(x, t)

* Most common interpretation, I think 18



Translating English to FOL

You can fool all of the people some of the time
There’s at least one time when you can fool everyone*
$t "x time(t) Ù person(x) ® canFool(x, t)

Everybody can be fooled at some point in time
"x $t person(x) Ù time(t) ® canFool(x, t)

* Most common interpretation, I think 19



Limits of classical logic
• Note that there’s no easy, natural way to talk about a few, many, most, 

almost all …

• This is natural in human languages
• There are many people you can fool most of the time
• There are a few people you can fool almost every time

• We also can’t have exceptions naturally as in human languages
• All birds can fly, except for penguins, ostriches and a few other species
• This can be represented in FOL, but it may be challenging – lot of new relations, 

paraphrasing, and conditions needed.

• "For all entities x, if x is a bird and x is not a penguin, not an ostrich, and not one of the 
specified other species, then x can fly."

• There are non-classical logic systems that can handle these problems

20



Limits of classical logic
• Note that there’s no easy, natural way to talk about a few, many, most, 

almost all …

• This is natural in human languages
• There are many people you can fool most of the time
• There are a few people you can fool almost every time

• We also can’t have exceptions naturally as in human languages
• All birds can fly, except for penguins, ostriches and a few other species
• This can be represented in FOL, but it may be challenging – lot of new relations, 

paraphrasing, and conditions needed.

• "For all entities x, if x is a bird and x is not a penguin, not an ostrich, and not one of the 
specified other species, then x can fly."

• There are non-classical logic systems that can handle these problems

20



Representation Design
• Many options for representing even a simple fact, 

e.g., something’s color as red, green or blue, e.g.:
• green(kermit)
• color(kermit, green)
• hasProperty(kermit, color, green)

• Choice can influence how easy it is to use
• Last option of representing properties & relations 

as triples used by modern knowledge graphs
• Easy to ask: What color is Kermit? What are Kermit’s 

properties?, What green things are there? Tell me 
everything you know, …
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Simple genealogy KB in FOL

Design a knowledge base using FOL that

• Has facts of immediate family relations, e.g., 
spouses, parents, etc.
• Defines more complex relations (ancestors, 
relatives)
• Detect conflicts, e.g., you are your own parent
• Infers relations, e.g., grandparent from parent
• Answers queries about relationships between 
people
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How do we approach this?
• Design an initial ontology of types, e.g.
• e.g., person, man, woman, male, female

• Extend ontology by defining simple two 
argument relations, e.g.
•  spouse, has_child, has_parent

• Add general constraints to relations, e.g.
• spouse(X,Y) => ~ X = Y
• spouse(X,Y) => person(X), person(Y)

• Add FOL sentences for inference, e.g.
• spouse(X,Y) ó spouse(Y,X)
• man(X) ó person(X) ∧male(X)

• Add instance data
• e.g., spouse(djt, mt)
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Example: A simple genealogy KB by FOL
Predicates:
• parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
• spouse(x, y), husband(x, y), wife(x,y)
• ancestor(x, y), descendant(x, y)
• male(x), female(y)
• relative(x, y)

Facts:
• husband(Joe, Mary), son(Fred, Joe)
• spouse(John, Nancy), male(John), son(Mark, Nancy)
• father(Jack, Nancy), daughter(Linda, Jack)
• daughter(Liz, Linda)
• etc.
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Example Axioms
("x,y) parent(x, y) ↔ child (y, x)

("x,y) father(x, y) ↔ parent(x, y) Ù male(x) ;similar for mother(x, y)

("x,y) daughter(x, y) ↔ child(x, y) Ù female(x) ;similar for son(x, y)

("x,y) husband(x, y) ↔ spouse(x, y) Ù male(x) ;similar for wife(x, y)

("x,y) spouse(x, y) ↔ spouse(y, x)  ;spouse relation is symmetric

("x,y) parent(x, y) ® ancestor(x, y) 

("x,y)($z) parent(x, z) Ù ancestor(z, y) ® ancestor(x, y) 

("x,y) descendant(x, y) ↔ ancestor(y, x) 

("x,y)($z) ancestor(z, x) Ù ancestor(z, y) ® relative(x, y)

("x,y) spouse(x, y) ® relative(x, y)  ;related by marriage

("x,y)($z) relative(z, x) Ù relative(z, y) ® relative(x, y)  ;transitive

("x,y) relative(x, y) ↔ relative(y, x) ;symmetric
25



Axioms, definitions and theorems
• Axioms: facts and rules that capture (important) facts & 

concepts in a domain; axioms are used to prove 
theorems
• Mathematicians dislike unnecessary (dependent) axioms, i.e. 

ones that can be derived from others
• Dependent axioms can make reasoning faster, however
• Choosing a good set of axioms is a design problem
• A definition of a predicate is of the form “p(X) ↔ …” 

and can be decomposed into two parts
• Necessary description: “p(x) ® …” 
• Sufficient description “p(x) ¬ …”
• Some concepts have definitions (e.g., triangle) and some don’t 

(e.g., person)
26



More on definitions
Example: define father(x, y) by parent(x, y) and 
male(x)
• parent(x, y) is a necessary (but not sufficient) 

description of father(x, y)
     father(x, y) ® parent(x, y)
• parent(x, y) ^ male(x) ^ age(x, 35) is a sufficient (but not 

necessary) description of father(x, y):
     father(x, y) ¬ parent(x, y) ^ male(x) ^ age(x, 35) 
• parent(x, y) ^ male(x) is a necessary and sufficient 

description of father(x, y) 
     parent(x, y) ^ male(x) ↔ father(x, y)
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Higher-order logic

• FOL only lets us quantify over variables, and 
variables can only range over objects 
• HOL allows us to quantify over relations, e.g.
“two functions are equal iff they produce the same 

value for all arguments”
"f "g (f = g) « ("x f(x) = g(x))

• E.g.: (quantify over predicates)
"r transitive( r ) ® ("xyz) r(x,y) Ù r(y,z) ® r(x,z)) 

•More expressive, but reasoning is  undecide-
able, in general
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Expressing uniqueness
• Often want to say that there is a single, unique 

object that satisfies a condition
• There exists a unique x such that king(x) is true 
• $x king(x) Ù "y (king(y) ® x=y)
• $x king(x) Ù ¬$y (king(y) Ù x¹y)
• $! x king(x) 

• Every country has exactly one ruler
• "c country(c) ® $! r ruler(c,r) 

• Iota operator: i x P(x) means “the unique x such 
that p(x) is true”
• The unique ruler of Freedonia is dead
• dead(i x ruler(freedonia,x))

syntactic
sugar
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Examples of FOL in use
• Semantics of W3C’s Semantic Web stack 

(RDF, RDFS, OWL) is defined in FOL
• OWL Full is equivalent to FOL
• Other OWL profiles support a subset of FOL 

and are more efficient
• The semantics of schema.org is only defined 

in natural language text
•Wikidata’s knowledge graph (and Google’s) 

has a richer schema
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Examples of FOL in 
use

Many practical approaches embrace the 
approach that “some data is better than none”

• The semantics of schema.org is only defined in 
natural language text
•Wikidata’s knowledge graph has a rich schema
• Many constraint/logical violations are flagged with 

warnings
• However, not all, see this Wikidata query that 

finds people who are their own grandfather
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Virtual assistants and Infoboxes
• Web search engines and virtual assistants like

Alexa use custom knowledge graphs to 
• help understand queries and content of web pages & 

documents
• Answer questions
• Show infoboxes

• Wikidata shares roots
with these
• All draw on the similar

knowledge, like the 
~300 Wikipedia &
Wikimedia sites



Virtual assistants & search engines
question

answer
Infobox



FOL Summary
• First order logic (FOL) introduces predicates, 

functions and quantifiers
•More expressive, but reasoning more complex
• Reasoning in propositional logic is NP hard, FOL is 

semi-decidable
• Common AI knowledge representation language
• Other KR languages (e.g., OWL) are often defined by 

mapping them to FOL
• FOL variables range over objects
• HOL variables range over functions, predicates or 

sentences
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Logical Inference: Overview
• Model checking for propositional logic
• Rule based reasoning in first-order logic
• Inference rules and generalized modes ponens
• Forward chaining
• Backward chaining

• Resolution-based reasoning in first-order logic
• Clausal form
• Unification
• Resolution as search
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Model Checking using the 
AIMA Code
python> python
Python ...
>>> from logic import *
>>> expr('P & P==>Q & ~P==>R')
((P & (P >> Q)) & (~P >> R))

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R'))
{R: True, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~R'))
{R: False, P: True, Q: True}

>>> dpll_satisfiable(expr('P & P==>Q & ~P==>R & ~Q'))
False

>>> 
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Checking Validity

• Use the functions in aima's logic.py to see which of the 
following are valid, i.e., true in every model.
• convert these sentences to the appropriate string form 

that the python code uses
• use the expr() function in logic.py to turn each into 

an Expr object
• use the tt_true() function to check for validity.
• tt_true() checks an expression object to see if it is 

valid, i.e., true in all possible models. 
• A valid sentence is true for all possible assignments of 

true and false to its variables, i.e., P ∨ ¬P
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AIMA KB Class>>> kb1 = PropKB()
>>> kb1.clauses

[]
>>> kb1.tell(expr('P==>Q & ~P==>R'))

>>> kb1.clauses
[(Q | ~P), (R | P)]

>>> kb1.ask(expr('Q'))

False
>>> kb1.tell(expr('P'))
>>> kb1.clauses

[(Q | ~P), (R | P), P]
>>> kb1.ask(expr('Q'))

{}
>>> kb1.retract(expr('P'))

>>> kb1.clauses

[(Q | ~P), (R | P)]
>>> kb1.ask(expr('Q'))
False
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the KB no longer entails Q
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Logic Summary
• Propositional logic
• Problems with propositional logic

• First-order logic
• Properties, relations, functions, quantifiers, …
• Terms, sentences, wffs, axioms, theories, proofs, …
• Variations and extensions to first-order logic

• Logical agents
• Reflex agents
• Representing change: situation calculus, frame problem
• Preferences on actions
• Goal-based agents
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