CMSC 471: Games MCTS

KMA Solaiman

ksolaima@purdue.edu

Some materials adopted from slides by Dan Klein and Pieter Abbeel, Stuart Russell and Dawn Song at UC Berkeley [http://ai.berkeley.edu]

Zero-Sum Games

- Zero-Sum Games
 - Agents have opposite utilities (values on outcomes)
 - Lets us think of a single value that one maximizes and the other minimizes
 - Adversarial, pure competition

- General Games
 - Agents have independent utilities (values on outcomes)
 - Cooperation, indifference, competition, and more are all possible
 - More later on non-zero-sum games

Chance outcomes in trees

Tictactoe, chess *Minimax*

Chance outcomes in trees

Tictactoe, chess *Minimax*

Tetris, investing *Expectimax*

Chance outcomes in trees

Tictactoe, chess *Minimax*

Tetris, investing *Expectimax*

Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes

Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes

Expectimax Pseudocode

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)

Expectimax Pseudocode

MiniMax trees with Chance Nodes

High-Performance Game Programs

- Many programs based on alpha-beta + iterative deepening + extended/singular search + transposition tables + huge databases + ...
- <u>Chinook</u> searched all checkers configurations with ≤ 8 pieces to create endgame database of 444 billion board configurations
- Methods general, but implementations improved via many specifically tuned-up enhancements (e.g., the evaluation functions)

Other Issues

- Multi-player games, no alliances
 - E.g., many card games, like Hearts
- Multi-player games with alliances
 - –E.g., Risk
 - -More on this when we discuss game theory
 - -Good model for a social animal like humans, where we must balance cooperation and competition

Multi-Agent Utilities

- What if the game is not zero-sum, or has multiple players?
- Generalization of minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own component
 - Can give rise to cooperation and competition dynamically...

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

1,<mark>6</mark>,6

7,1,2

<mark>6,1,</mark>2

7,2,1

<mark>5,1,</mark>7

1,5,2

<mark>5,2,</mark>5

7,7,1

- Generalization of minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own component
 - Can give rise to cooperation and competition dynamically...

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

1,<mark>6</mark>,6

7,1,2

<mark>6,1,</mark>2

7,2,1

<mark>5,1</mark>,7

1,5,2

<mark>5,2,</mark>5

7,7,1

- Generalization of minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own component
 - Can give rise to cooperation and competition dynamically...

Al and video Games

- Many games include agents run by the game program as
 - Adversaries, in first person shooter games
 - -Collaborators, in a virtual reality game
 - -E.g.: Al bots in Fortnite Chapter 2
- Some games used as AI/ML challenges or learning environments
 - -MineRL: train bots to play Minecraft
 - —<u>MarioAI</u>: train bots for Super Mario Bros

<u>AlphaGO</u>

- Developed by Google's <u>DeepMind</u>
- Beat top-ranked human grandmasters in 2016
- Used <u>Monte Carlo tree search</u> over game tree expands search tree via random sampling of search space
- Science Breakthrough of the year runner-up
 <u>Mastering the game of Go with deep neural networks</u> and tree search, Silver et al., Nature, 529:484–489, 2016
- Match with grandmaster Lee Sedol in 2016 was subject of award-winning 2017 <u>AlphaGo</u>

Go - the game

- Played on 19x19 board; black vs. white stones
- Huge state space O(b^d): chess:~35⁸⁰, go: ~250¹⁵⁰
- Rule: Stones on board must have an adjacent open point ("liberty") or be part of connected group with a liberty. Groups of stones losing their last liberty are removed from the board.

Monte Carlo Tree Search

- Methods based on alpha-beta search assume a fixed horizon
 - Pretty hopeless for Go, with b > 300
- MCTS combines two important ideas:
 - Evaluation by rollouts play multiple games to termination from a state s (using a simple, fast rollout policy) and count wins and losses
 - Selective search explore parts of the tree that will help improve the decision at the root, regardless of depth

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result
- Fraction of wins correlates with the true value of the position!

- For each rollout:
 - Repeat until terminal:
 - Play a move according to a fixed, fast rollout policy
 - Record the result
- Fraction of wins correlates with the true value of the position!
- Having a "better" rollout policy helps

MCTS Version 0

- Do N rollouts from each child of the root, record fraction of wins
- Pick the move that gives the best outcome by this metric

MCTS Version 0

- Do N rollouts from each child of the root, record fraction of wins
- Pick the move that gives the best outcome by this metric

MCTS Version 0.9

• Allocate rollouts to more promising nodes

MCTS Version 0.9

• Allocate rollouts to more promising nodes

MCTS Version 1.0

- Allocate rollouts to more promising nodes
- Allocate rollouts to more uncertain nodes

Upper Confidence Bounds (UCB) heuristics

- UCB1 formula combines "promising" and "uncertain":
 - C is a parameter we choose to trade off between two terms

$$UCB1(n) = \frac{U(n)}{N(n)} + C \times \sqrt{\frac{\log N(\operatorname{Parent}(n))}{N(n)}}$$

- N(n) = number of rollouts from node n
- U(n) = total utility of rollouts (# wins) for player of Parent(n)
 - $\hfill\blacksquare$ Keep track of both $N \, {\rm and} \, U \, {\rm for \ each \ node}$

Upper Confidence Bounds (UCB) heuristics

- UCB1 formula combines "promising" and "uncertain":
 - C is a parameter we choose to trade off between two terms

$$UCB1(n) = \frac{U(n)}{N(n)} + \left(C \times \sqrt{\frac{\log N(\operatorname{Parent}(n))}{N(n)}}\right) + \operatorname{High}_{\bullet}$$
 High

- High for small N
- Low for large N

- N(n) = number of rollouts from node n
- U(n) = total utility of rollouts (# wins) for player of Parent(n)
 - $\hfill\blacksquare$ Keep track of both $N \, {\rm and} \, U \, {\rm for \ each \ node}$

- Selection: recursively apply UCB to choose a path down to a leaf node n
- Expansion: add a new child *c* to *n*
- Simulation: run a rollout from c
- Backpropagation: update U and N counts from c back up to the root

- <u>Selection</u>: recursively apply UCB to choose a path down to a leaf node n
- Expansion: add a new child *c* to *n*
- Simulation: run a rollout from c
- Backpropagation: update U and N counts from c back up to the root

$$UCB1(n) = \frac{U(n)}{N(n)} + C \times \sqrt{\frac{\log N(\operatorname{Parent}(n))}{N(n)}}$$

- <u>Selection</u>: recursively apply UCB to choose a path down to a leaf node n
- Expansion: add a new child *c* to *n*
- Simulation: run a rollout from c
- Backpropagation: update U and N counts from c back up to the root

$$UCB1(n) = \frac{U(n)}{N(n)} + C \times \sqrt{\frac{\log N(\operatorname{Parent}(n))}{N(n)}}$$

- Selection: recursively apply UCB to choose a path down to a leaf node n
- Expansion: add a new child c to n
- Simulation: run a rollout from c
- Backpropagation: update U and N counts from c back up to the root

- Selection: recursively apply UCB to choose a path down to a leaf node n
- Expansion: add a new child *c* to *n*
- Simulation: run a rollout from c
- Backpropagation: update U and N counts from c back up to the root

- Selection: recursively apply UCB to choose a path down to a leaf node n
- Expansion: add a new child c to n
- Simulation: run a rollout from c
- Backpropagation: update U and N counts from c back up to the root

- Selection: recursively apply UCB to choose a path down to a leaf node n
- Expansion: add a new child c to n
- Simulation: run a rollout from c
- Backpropagation: update U and N counts from c back up to the root

- Selection: recursively apply UCB to choose a path down to a leaf node n
- Expansion: add a new child c to n
- Simulation: run a rollout from c
- Backpropagation: update U and N counts from c back up to the root

- Selection: recursively apply UCB to choose a path down to a leaf node n
- Expansion: add a new child c to n
- Simulation: run a rollout from c
- Backpropagation: update U and N counts from c back up to the root
- Choose the action leading to the child with highest N

- Selection: recursively apply UCB to choose a path down to a leaf node n
- Expansion: add a new child c to n
- Simulation: run a rollout from c
- Backpropagation: update U and N counts from c back up to the root
- Choose the action leading to the child with highest N

MCTS Summary

- MCTS is currently the most common tool for solving hard search problems
- Why?
 - Time complexity independent of b and m
 - No need to design evaluation functions (general-purpose & easy to use)
- Solution quality depends on number of rollouts N
 - Theorem: as $N \rightarrow \infty$ UCT selects the minimax move
- Example of using random sampling in an algorithm
 - Broadly called *Monte Carlo* methods
- MCTS can be improved further with machine learning

"Value" of a node, U(n)/N(n), is a weighted sum of child values!

- "Value" of a node, U(n)/N(n), is a weighted sum of child values!
- Idea: as N→∞, the vast majority of rollouts are concentrated in the best child(ren), so weighted average → max/min

- "Value" of a node, U(n)/N(n), is a weighted sum of child values!
- Idea: as N→∞, the vast majority of rollouts are concentrated in the best child(ren), so weighted average → max/min
- Theorem: as $N \rightarrow \infty$ UCT selects the minimax move

- "Value" of a node, U(n)/N(n), is a weighted sum of child values!
- Idea: as N→∞, the vast majority of rollouts are concentrated in the best child(ren), so weighted average → max/min
- Theorem: as $N \rightarrow \infty$ UCT selects the minimax move
 - (but N never approaches infinity!)

AlphaGo implementation

- Trained deep neural networks (13 layers) to learn value function and policy function
- Performs Monte Carlo game search

-explore state space like minimax

- -random "rollouts"
- –simulate probable plays by opponent according to policy function

AlphaGo implementation

- Hardware: 1920 CPUs, 280 GPUs
- Neural networks trained in two phases over 4-6 weeks
- Phase 1: supervised learning from database of 30 million moves in games between two good human players
- **Phase 2:** play against versions of self using <u>reinforcement learning</u> to improve performance

MCTS + Machine Learning: AlphaGo

- Monte Carlo Tree Search with additions including:
 - Rollout policy is a neural network trained with reinforcement learning and expert human moves
 - In combination with rollout outcomes, use a trained value function to better predict node's utility

[Mastering the game of Go with deep neural networks and tree search. Silver et al. Nature. 2016]

- Games require decisions when optimality is impossible
 - Bounded-depth search and approximate evaluation functions

- Games require decisions when optimality is impossible
 - Bounded-depth search and approximate evaluation functions
- Games force efficient use of computation
 - Alpha-beta pruning, MCTS

- Games require decisions when optimality is impossible
 - Bounded-depth search and approximate evaluation functions
- Games force efficient use of computation
 - Alpha-beta pruning, MCTS
- Game playing has produced important research ideas
 - Reinforcement learning (checkers)
 - Iterative deepening (chess)
 - Rational metareasoning (Othello)
 - Monte Carlo tree search (chess, Go)
 - Solution methods for partial-information games in economics (poker)

- Games require decisions when optimality is impossible
 - Bounded-depth search and approximate evaluation functions
- Games force efficient use of computation
 - Alpha-beta pruning, MCTS
- Game playing has produced important research ideas
 - Reinforcement learning (checkers)
 - Iterative deepening (chess)
 - Rational metareasoning (Othello)
 - Monte Carlo tree search (chess, Go)
 - Solution methods for partial-information games in economics (poker)
- Video games present much greater challenges lots to do!

 $- b = 10^{500}$, $|S| = 10^{4000}$, m = 10,000, partially observable, often > 2 players