
CMSC 471: Games
MCTS

Some materials adopted from slides by Dan Klein and Pieter Abbeel, Stuart Russell and Dawn Song at UC Berkeley
[http://ai.berkeley.edu]

1

KMA Solaiman
ksolaima@purdue.edu

Zero-Sum Games

• Zero-Sum Games
– Agents have opposite utilities

(values on outcomes)
– Lets us think of a single value

that one maximizes and the
other minimizes

– Adversarial, pure competition

• General Games
– Agents have independent

utilities (values on outcomes)
– Cooperation, indifference,

competition, and more are all
possible

– More later on non-zero-sum
games

Chance outcomes in trees

10 10 9 100

Tictactoe, chess
Minimax

Chance outcomes in trees

10 10 9 10010 10 9 100

Tictactoe, chess
Minimax

Tetris, investing
Expectimax

Chance outcomes in trees

10 10 9 10010 10 9 100

9 10 9 1010 100
Tictactoe, chess
Minimax

Tetris, investing
Expectimax

Backgammon, Monopoly
Expectiminimax

Expectimax Search
• Why wouldn’t we know what the result of an action will

be?
– Explicit randomness: rolling dice
– Unpredictable opponents: the ghosts respond

randomly
– Actions can fail: when moving a robot, wheels might

slip

• Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

10 4 5 7

max

chance

10 10 9 100

Expectimax Search
• Why wouldn’t we know what the result of an action will

be?
– Explicit randomness: rolling dice
– Unpredictable opponents: the ghosts respond

randomly
– Actions can fail: when moving a robot, wheels might

slip

• Values should now reflect average-case (expectimax)
outcomes, not worst-case (minimax) outcomes

• Expectimax search: compute the average score under
optimal play
– Max nodes as in minimax search
– Chance nodes are like min nodes but the outcome is

uncertain
– Calculate their expected utilities
– I.e. take weighted average (expectation) of children

• Later, we’ll learn how to formalize the underlying
uncertain-result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100

Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:
 p = probability(successor)

v += p * value(successor)
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

MiniMax trees with Chance Nodes

56

High-Performance Game Programs
• Many programs based on alpha-beta + iterative

deepening + extended/singular search +
transposition tables + huge databases + …

• Chinook searched all checkers configurations
with ≤ 8 pieces to create endgame database of
444 billion board configurations

• Methods general, but implementations
improved via many specifically tuned-up
enhancements (e.g., the evaluation functions)

62

Other Issues
• Multi-player games, no alliances
– E.g., many card games, like Hearts
• Multi-player games with alliances
–E.g., Risk
–More on this when we discuss game theory
–Good model for a social animal like humans,

where we must balance cooperation and
competition

63

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

• Generalization of minimax:
– Terminals have utility tuples
– Node values are also utility tuples
– Each player maximizes its own component
– Can give rise to cooperation and
 competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

• Generalization of minimax:
– Terminals have utility tuples
– Node values are also utility tuples
– Each player maximizes its own component
– Can give rise to cooperation and
 competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

• Generalization of minimax:
– Terminals have utility tuples
– Node values are also utility tuples
– Each player maximizes its own component
– Can give rise to cooperation and
 competition dynamically…

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5

AI and video Games
• Many games include agents run by

the game program as
–Adversaries, in first person shooter games
–Collaborators, in a virtual reality game
–E.g.: AI bots in Fortnite Chapter 2
• Some games used as AI/ML challenges or

learning environments
–MineRL: train bots to play Minecraft
–MarioAI: train bots for Super
Mario Bros

64

AlphaGO
• Developed by Google’s DeepMind
• Beat top-ranked human grandmasters in 2016
• Used Monte Carlo tree search over game tree

expands search tree via random sampling of search
space

• Science Breakthrough of the year runner-up
Mastering the game of Go with deep neural networks
and tree search, Silver et al., Nature, 529:484–489, 2016

• Match with grandmaster Lee Sedol in 2016 was
subject of award-winning 2017 AlphaGo

68

Go - the game

captureliberties

• Played on 19x19 board; black vs. white stones
• Huge state space O(bd): chess:~3580, go: ~250150

• Rule: Stones on board must have an adjacent open
point ("liberty") or be part of connected group with a
liberty. Groups of stones losing their last liberty are
removed from the board.

69

17

Monte Carlo Tree Search

• Methods based on alpha-beta search assume
a fixed horizon
– Pretty hopeless for Go, with b > 300

• MCTS combines two important ideas:
– Evaluation by rollouts – play multiple games to

termination from a state s (using a simple, fast
rollout policy) and count wins and losses

– Selective search – explore parts of the tree that
will help improve the decision at the root,
regardless of depth

18

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move
according to a fixed,
fast rollout policy

– Record the result

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move according
to a fixed, fast rollout
policy

– Record the result
• Fraction of wins

correlates with the true
value of the position!

19

“Move 37”

Rollouts

• For each rollout:
– Repeat until terminal:

• Play a move according
to a fixed, fast rollout
policy

– Record the result
• Fraction of wins

correlates with the true
value of the position!

• Having a “better” rollout
policy helps

19

“Move 37”

MCTS Version 0

• Do N rollouts from each child of the root, record fraction of wins
• Pick the move that gives the best outcome by this metric

20

57/100 65/10039/100

MCTS Version 0

• Do N rollouts from each child of the root, record fraction of wins
• Pick the move that gives the best outcome by this metric

21

57/100 59/1000/100

MCTS Version 0.9

• Allocate rollouts to more promising nodes

22

77/140 90/1500/10

MCTS Version 0.9

• Allocate rollouts to more promising nodes

23

61/100 48/1006/10

MCTS Version 1.0

• Allocate rollouts to more promising nodes
• Allocate rollouts to more uncertain nodes

24

61/100 48/1006/10

Upper Confidence Bounds (UCB) heuristics

§ UCB1 formula combines “promising” and “uncertain”:
§ C is a parameter we choose to trade off between two terms

§ N(n) = number of rollouts from node n
§ U(n) = total utility of rollouts (# wins) for player of Parent(n)

§ Keep track of both N and U for each node

!"#1 % = !(%)
)(%) 	+ "×

log)(Parent %)
)(%) 	

Upper Confidence Bounds (UCB) heuristics

§ UCB1 formula combines “promising” and “uncertain”:
§ C is a parameter we choose to trade off between two terms

§ N(n) = number of rollouts from node n
§ U(n) = total utility of rollouts (# wins) for player of Parent(n)

§ Keep track of both N and U for each node

!"#1 % = !(%)
)(%) 	+ "×

log)(Parent %)
)(%) 	 • High for small N

• Low for large N

MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

6/8

2/6 0/1 0/1

0/12/3 2/2

N(n) = # of rollouts from node

U(n) = # of wins
for opposite player

MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

6/8

2/6 0/1 0/1

0/12/3 2/2

N(n) = # of rollouts from node

U(n) = # of wins
for opposite player

!"#1 % = !(%)
)(%) 	+ "×

log)(Parent %)
)(%) 	 2

6	+
log	8
6 	 0

1 	+
log	8
1 	 0

1 	+
log	8
1 	

For 3 red nodes above the UCB values (with C=1) are:

KMA Solaiman

MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

6/8

2/6 0/1 0/1

0/12/3 2/2

N(n) = # of rollouts from node

U(n) = # of wins
for opposite player

!"#1 % = !(%)
)(%) 	+ "×

log)(Parent %)
)(%) 	 2

6	+
log	8
6 	 0

1 	+
log	8
1 	 0

1 	+
log	8
1 	

For 3 red nodes above the UCB values (with C=1) are:

n

MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

6/8

2/6 0/1 0/1

0/12/3 2/2

N(n) = # of rollouts from node

U(n) = # of wins
for opposite player

n

c

MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

6/8

2/6 0/1 0/1

0/12/3 2/2

N(n) = # of rollouts from node

U(n) = # of wins
for opposite player

n

c

red wins

1/1

MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

6/8

2/6 0/1 0/1

0/12/3 2/2

N(n) = # of rollouts from node

U(n) = # of wins
for opposite player

n

c

red wins

1/1

KMA Solaiman
U(n) is #opposite win

MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

6/8

2/6 0/1 0/1

0/12/3 2/2

N(n) = # of rollouts from node

U(n) = # of wins
for opposite player

n

c
1/1

MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

6/8

2/6 0/1 0/1

0/12/3 2/2

N(n) = # of rollouts from node

U(n) = # of wins
for opposite player

n

c
1/1

0/2

7/9

1/2

MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

§ Choose the action leading to
the child with highest N

6/8

2/6 0/1 0/1

0/12/3 2/2

N(n) = # of rollouts from node

U(n) = # of wins
for opposite player

1/1

0/2

7/9

1/2

MCTS Algorithm

§ Repeat until out of time:
§ Selection: recursively apply UCB to

choose a path down to a leaf node n
§ Expansion: add a new child c to n
§ Simulation: run a rollout from c
§ Backpropagation: update U and N

counts from c back up to the root

§ Choose the action leading to
the child with highest N

6/8

2/6 0/1 0/1

0/12/3 2/2

N(n) = # of rollouts from node

U(n) = # of wins
for opposite player

1/1

0/2

7/9

1/2

MCTS Summary

§ MCTS is currently the most common tool for solving hard search
problems

§ Why?
§ Time complexity independent of b and m
§ No need to design evaluation functions (general-purpose & easy to use)

§ Solution quality depends on number of rollouts N
§ Theorem: as N ® ¥ UCT selects the minimax move

§ Example of using random sampling in an algorithm
§ Broadly called Monte Carlo methods

§ MCTS can be improved further with machine learning

Why is there no min or max?????

• “Value” of a node, U(n)/N(n), is a weighted
sum of child values!

28

Why is there no min or max?????

• “Value” of a node, U(n)/N(n), is a weighted
sum of child values!

• Idea: as N ® ¥ , the vast majority of rollouts
are concentrated in the best child(ren), so
weighted average ® max/min

28

Why is there no min or max?????

• “Value” of a node, U(n)/N(n), is a weighted
sum of child values!

• Idea: as N ® ¥ , the vast majority of rollouts
are concentrated in the best child(ren), so
weighted average ® max/min

• Theorem: as N ® ¥ UCT selects the minimax
move

28

Why is there no min or max?????

• “Value” of a node, U(n)/N(n), is a weighted
sum of child values!

• Idea: as N ® ¥ , the vast majority of rollouts
are concentrated in the best child(ren), so
weighted average ® max/min

• Theorem: as N ® ¥ UCT selects the minimax
move
– (but N never approaches infinity!)

28

AlphaGo implementation
• Trained deep neural networks (13 layers) to

learn value function and policy function
• Performs Monte Carlo game search
–explore state space like minimax
–random "rollouts"
–simulate probable plays by opponent according

to policy function

70

AlphaGo implementation

• Hardware: 1920 CPUs, 28O GPUs
• Neural networks trained in two phases over 4-6

weeks
• Phase 1: supervised learning from database of

30 million moves in games between two good
human players
• Phase 2: play against versions of self using

reinforcement learning to improve performance

71

MCTS + Machine Learning: AlphaGo
§ Monte Carlo Tree Search with additions including:

§ Rollout policy is a neural network trained with reinforcement learning
and expert human moves

§ In combination with rollout outcomes, use a trained value function to
better predict node’s utility

[Mastering the game of Go with deep neural networks and tree search. Silver et al. Nature. 2016]

Summary
• Games require decisions when optimality is impossible

– Bounded-depth search and approximate evaluation functions

Summary
• Games require decisions when optimality is impossible

– Bounded-depth search and approximate evaluation functions
• Games force efficient use of computation

– Alpha-beta pruning, MCTS

Summary
• Games require decisions when optimality is impossible

– Bounded-depth search and approximate evaluation functions
• Games force efficient use of computation

– Alpha-beta pruning, MCTS
• Game playing has produced important research ideas

– Reinforcement learning (checkers)
– Iterative deepening (chess)
– Rational metareasoning (Othello)
– Monte Carlo tree search (chess, Go)
– Solution methods for partial-information games in economics (poker)

Summary
• Games require decisions when optimality is impossible

– Bounded-depth search and approximate evaluation functions
• Games force efficient use of computation

– Alpha-beta pruning, MCTS
• Game playing has produced important research ideas

– Reinforcement learning (checkers)
– Iterative deepening (chess)
– Rational metareasoning (Othello)
– Monte Carlo tree search (chess, Go)
– Solution methods for partial-information games in economics (poker)

• Video games present much greater challenges – lots to do!
– b = 10500, |S| = 104000, m = 10,000, partially observable, often > 2 players

