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Overview

• Game playing
– State of the art and resources
– Framework

• Game trees
–Minimax
– Alpha-beta pruning
– Adding randomness
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Why study games?
• Interesting, hard problems requiring minimal 
“initial structure”

• Clear criteria for success
• Study problems involving {hostile, adversarial, 

competing} agents and uncertainty of interacting 
with the natural world

• People have used them to assess their intelligence
• Fun, good, easy to understand, PR potential
• Games often define very large search spaces, e.g.

chess 35100 nodes in search tree, 1040 legal states
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Game Playing State-of-the-Art

§ Checkers: 1950: First computer player.  
1994: First computer champion: 
Chinook ended 40-year-reign of human 
champion Marion Tinsley using 
complete 8-piece endgame. 2007: 
Checkers solved!
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some lines of search up to 40 ply.  
Current programs are even better, if 
less historic.
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§ Checkers: 1950: First computer player.  
1994: First computer champion: 
Chinook ended 40-year-reign of human 
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Classical vs. Statistical/Neural 
Approaches

• We’ll look first at the classical approach used 
from the 1940s to 2010

• Then at newer statistical approached of 
which AlphaGo is an example

• These share some techniques
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Adversarial Games



Types of Games
• 1-person, 2-person game, with alternating moves, 

or more players

• Zero-sum: one player’s loss is the other’s gain / not

• Perfect information: both players have access to 
complete information about state of game.  No 
information hidden from either player.

• Chance (e.g., using dice) vs No chance involved 
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Types of Games
• 2-person game, with alternating moves 
• Zero-sum: one player’s loss is the other’s gain

– A zero-sum game is defined as one where the total payoff  to all players is the same 
for every instance of  the game. 

– Chess is zero-sum because every game has payoff  0+1, 1+0, or 1⁄2 + 1⁄2. 

• Perfect information: both players’ve access to complete 
information about state of game (chess, checkers).  No 
information hidden from either player (poker).

• No chance involved 
• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,  

Othello
• But not: Bridge,  Solitaire, Backgammon, Poker, Rock-

Paper-Scissors, ...

8



Can we use …

Want algorithms for calculating a strategy (policy) 
which recommends a move from each state

• Uninformed search?
• Heuristic search?
• Local search?
• Constraint based search?

None of these model the fact that we have an 
adversary …
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How to play a game
• A way to play such a game is to:
– Consider all the legal moves you can make
– Compute new position resulting from each move
– Evaluate each to determine which is best
–Make that move
–Wait for your opponent to move and repeat

• Key problems are:
– Representing the “board” (i.e., game state)
– Generating all legal next boards
– Evaluating a position
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Deterministic Games

• Many possible formalizations, one is:
– States: S (start at s0)
– Players: P={1...N} (usually take turns)
– Actions: A (may depend on player / state)
– Transition Function: SxA ® S
– Terminal Test: S ® {t,f}
– Terminal Utilities: SxP ® R

• Solution for a player is a policy: S ® A



Zero-Sum Games

• Zero-Sum Games
– Agents have opposite utilities 

(values on outcomes)
– Lets us think of a single value 

that one maximizes and the 
other minimizes

– Adversarial, pure competition

• General Games
– Agents have independent 

utilities (values on outcomes)
– Cooperation, indifference, 

competition, and more are all 
possible

– More later on non-zero-sum 
games



Adversarial Search



• We can easily generate a 
complete game tree for 
Tic-Tac-Toe
• Taking board symmetries 

into account, there are 
138 terminal positions
• 91 wins for X, 44 for O 

and 3 draws
18



Game trees
• Problem spaces for typical games are trees
• Root node is current board configuration; player 

must decide best single move to make next
• Static evaluator function rates board position 

f(board):real,  > 0 for me; < 0 for opponent
• Arcs represent possible legal moves for a player 
• If my turn to move, then root is labeled a "MAX" 

node; otherwise it’s a "MIN" node 
• Each tree level’s nodes are all MAX or all MIN; 

nodes at level i are of opposite kind from those at 
level i+1 
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Game Tree for Tic-Tac-Toe

MAX’s play ®

MIN’s play ®

Terminal state
(win for MAX) ®

Here, symmetries are used to 
reduce branching factor
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Single-Agent Trees
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Single-Agent Trees
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Single-Agent Trees
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Value of a State

Non-Terminal 
States:
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Adversarial Game Trees
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Minimax Values
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States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:



Tic-Tac-Toe Game Tree



Adversarial Search (Minimax)

• Deterministic, zero-sum games:
– Tic-tac-toe, chess, checkers
– One player maximizes result
– The other minimizes result

• Minimax search:
– A state-space search tree
– Players alternate turns
– Compute each node’s minimax 

value: the best achievable 
utility against a rational 
(optimal) adversary
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Minimax Algorithm
1. Create MAX node with current board configuration 
2. Expand nodes to some depth (a.k.a. plys) of 

lookahead in game
3. Apply evaluation function at each leaf node 
4. Back up values for each non-leaf node until value is 

computed for the root node
– At MIN nodes: value is minimum of children’s values
– At MAX nodes: value is maximum of children’s values

5. Choose move to child node whose backed-up value 
determined value at root 
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Minimax Implementation

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v
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Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)



Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v
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Minimax Example
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Minimax Example
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Minimax Example
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Minimax Example

12 8 5 23 2 144 6



Minimax Efficiency

• How efficient is minimax?
– Just like (exhaustive) DFS
– Time: O(bm)
– Space: O(bm)

• Example: For chess, b » 35, 
m » 100
– Exact solution is completely 

infeasible
– But, do we need to explore 

the whole tree?



Minimax Properties

Optimal against a perfect player.  Otherwise?
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Resource Limits

• Problem: In realistic games, cannot search to 
leaves!

• Solution: Depth-limited search
– Instead, search only to a limited depth in the tree
– Replace terminal utilities with an evaluation function 

for non-terminal positions
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Evaluation function
• Evaluation function or static evaluator used to 

evaluate the “goodness” of a game position
Contrast with heuristic search, where evaluation function  
estimates cost from start node to goal passing through given node

• Zero-sum assumption permits single function to 
describe goodness of board for both players
– f(n)  >> 0: position n good for me; bad for you
– f(n) << 0:  position n bad for me; good for you
– f(n) near 0: position n is a neutral position
– f(n) = +infinity: win for  me
– f(n) = -infinity: win for you  
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Evaluation function examples

• For Tic-Tac-Toe 
f(n) = [# my open 3lengths] - [# your open 3lengths] 

Where 3length is complete row, column or diagonal 
that has no opponent marks 

• Alan Turing’s function for chess
– f(n) = w(n)/b(n) where w(n) = sum of point value 

of white’s pieces and b(n) = sum of black’s
– Traditional piece values: pawn:1; knight:3; 

bishop:3; rook:5; queen:9
14



Evaluation function examples

• Most evaluation functions specified as a 
weighted sum of positive features
f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n) 

• Example chess features are piece count, piece 
values, piece placement, squares controlled, 
etc. 

• IBM’s chess program Deep Blue (circa 1996) 
had >8K features in its evaluation function

15
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But, that’s not how people play
• People also use look ahead

i.e., enumerate actions, consider opponent’s 
possible responses, REPEAT

• Producing a complete game tree is only 
possible for simple games

• So, generate a partial game tree for some 
number of plys
–Move = each player takes a turn
– Ply = one player’s turn

• What do we do with the game tree?
16
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Resource Limits

• Problem: In realistic games, cannot search to 
leaves!

• Solution: Depth-limited search
– Instead, search only to a limited depth in the tree
– Replace terminal utilities with an evaluation function 
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Resource Limits

• Problem: In realistic games, cannot search to 
leaves!

• Solution: Depth-limited search
– Instead, search only to a limited depth in the tree
– Replace terminal utilities with an evaluation function 

for non-terminal positions

• Example:
– Suppose we have 100 seconds, can explore 10K 

nodes / sec
– So can check 1M nodes per move
– a-b reaches about depth 8 – decent chess program
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Resource Limits

• Problem: In realistic games, cannot search to 
leaves!

• Solution: Depth-limited search
– Instead, search only to a limited depth in the tree
– Replace terminal utilities with an evaluation function 

for non-terminal positions

• Example:
– Suppose we have 100 seconds, can explore 10K 

nodes / sec
– So can check 1M nodes per move
– a-b reaches about depth 8 – decent chess program

• Guarantee of optimal play is gone

• More plies makes a BIG difference

• Use iterative deepening for an anytime 
algorithm

? ? ? ?

-1 -2 4 9

4

min

max

-2 4



Depth Matters

• Evaluation functions are 
always imperfect

• The deeper in the tree the 
evaluation function is 
buried, the less the quality 
of the evaluation function 
matters

• An important example of 
the tradeoff between 
complexity of features and 
complexity of computation



Is that all
there is to simple 

games?
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Alpha-beta pruning
• Improve performance of the minimax 

algorithm through alpha-beta pruning
• “If you have an idea that is surely bad, don't take 

the time to see how truly awful it is” -Pat Winston 
(MIT) 

2 7 1

b: =2

a: ≥2 

b: ≤1

?

• We don’t need to compute 
the value at this node

• No matter what it is, it can’t 
affect value of the root node

MAX

MAX

MIN
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Alpha-beta pruning
• Traverse search tree in depth-first order 
• At MAX node n, alpha(n) = max value found so far

Alpha values start at -∞ and only increase
• At MIN node n, beta(n) = min value found so far

Beta values start at +∞ and only decrease
• Beta cutoff: stop search below MAX node N (i.e., 

don’t examine more descendants) if alpha(N) >= 
beta(i) for some MIN node ancestor i of N

• Alpha cutoff: stop search below MIN node N if 
beta(N)<=alpha(i) for a MAX node anceastor i of N
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Alpha-Beta Tic-Tac-Toe Example
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Alpha-Beta Tic-Tac-Toe Example

2
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Alpha-Beta Tic-Tac-Toe Example

b: 2

2
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Alpha-Beta Tic-Tac-Toe Example

b: 2

2
Beta value of a MIN
node is upper bound on
final backed-up value;
it can never increase
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Alpha-Beta Tic-Tac-Toe Example

1

b: 1

2
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Alpha-Beta Tic-Tac-Toe Example

1

b: 1

2
Beta value of a MIN
node is upper bound on
final backed-up value;
it can never increase
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Alpha-Beta Tic-Tac-Toe Example

a: 1

Alpha value of MAX
node is lower bound on
final backed-up value;
it can never decrease

1

b: 1

2
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Alpha-Beta Tic-Tac-Toe Example

a: 1

1

b = 1

2 -1

b: -1 
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Alpha-Beta Tic-Tac-Toe Example

a = 1

1

b = 1

2 -1

b = -1 

Discontinue search below a MIN node whose beta 
value ≤ alpha value of one of its MAX ancestors 48



Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root



Alpha-Beta Pruning Properties
• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong
– Important: children of the root may have the wrong value
– So the most naïve version won’t let you do action selection
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Alpha-Beta Pruning Properties
• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong
– Important: children of the root may have the wrong value
– So the most naïve version won’t let you do action selection

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
– Time complexity drops to O(bm/2)
– Doubles solvable depth!
– Full search of, e.g. chess, is still hopeless…

• This is a simple example of metareasoning (computing about what to 
compute)

10 10 0

max

min



Alpha-Beta Quiz



Alpha-Beta Quiz 2



Another alpha-beta example
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3

MIN

MAX

72



Another alpha-beta example
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Another alpha-beta example
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MAX a=3
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prune!
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prune!
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Another alpha-beta example

3 12 8 2 14 1
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prune!
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Alpha-Beta Tic-Tac-Toe Example 2

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
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With alpha-beta we avoided computing a static 
evaluation metric for 14 of the 25 leaf nodes
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Many other improvements
§ Adaptive horizon + iterative deepening
§ Extended search: retain k>1 best paths (not 

just one) extend tree at greater depth below 
their leaf nodes to help dealing with “horizon 
effect”

§ Singular extension: If move is obviously 
better than others in node at horizon h, 
expand it

§ Use transposition tables to deal with 
repeated states
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https://en.wikipedia.org/wiki/Transposition_table

