
CMSC 471: Games

Slides courtesy Tim Finin and Frank Ferarro. Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer,
Some materials adopted from slides by Dan Klein and Pieter Abbeel at UC Berkeley [http://ai.berkeley.edu]

1

KMA Solaiman
ksolaima@purdue.edu

mailto:ksolaima@purdue.edu

Overview

• Game playing
– State of the art and resources
– Framework

• Game trees
–Minimax
– Alpha-beta pruning
– Adding randomness

2

Why study games?
• Interesting, hard problems requiring minimal
“initial structure”

• Clear criteria for success
• Study problems involving {hostile, adversarial,

competing} agents and uncertainty of interacting
with the natural world

• People have used them to assess their intelligence
• Fun, good, easy to understand, PR potential
• Games often define very large search spaces, e.g.

chess 35100 nodes in search tree, 1040 legal states
3

Game Playing State-of-the-Art

Backgammon

Game Playing State-of-the-Art

§ Checkers: 1950: First computer player.
1994: First computer champion:
Chinook ended 40-year-reign of human
champion Marion Tinsley using
complete 8-piece endgame. 2007:
Checkers solved!

Backgammon

Game Playing State-of-the-Art

§ Checkers: 1950: First computer player.
1994: First computer champion:
Chinook ended 40-year-reign of human
champion Marion Tinsley using
complete 8-piece endgame. 2007:
Checkers solved!

Backgammon

Game Playing State-of-the-Art

§ Checkers: 1950: First computer player.
1994: First computer champion:
Chinook ended 40-year-reign of human
champion Marion Tinsley using
complete 8-piece endgame. 2007:
Checkers solved!

§ Chess: 1997: Deep Blue defeats human
champion Gary Kasparov in a six-game
match. Deep Blue examined 200M
positions per second, used very
sophisticated evaluation and
undisclosed methods for extending
some lines of search up to 40 ply.
Current programs are even better, if
less historic.

Backgammon

Game Playing State-of-the-Art

§ Checkers: 1950: First computer player.
1994: First computer champion:
Chinook ended 40-year-reign of human
champion Marion Tinsley using
complete 8-piece endgame. 2007:
Checkers solved!

§ Chess: 1997: Deep Blue defeats human
champion Gary Kasparov in a six-game
match. Deep Blue examined 200M
positions per second, used very
sophisticated evaluation and
undisclosed methods for extending
some lines of search up to 40 ply.
Current programs are even better, if
less historic.

Backgammon

Game Playing State-of-the-Art

§ Checkers: 1950: First computer player.
1994: First computer champion:
Chinook ended 40-year-reign of human
champion Marion Tinsley using
complete 8-piece endgame. 2007:
Checkers solved!

§ Chess: 1997: Deep Blue defeats human
champion Gary Kasparov in a six-game
match. Deep Blue examined 200M
positions per second, used very
sophisticated evaluation and
undisclosed methods for extending
some lines of search up to 40 ply.
Current programs are even better, if
less historic.

§ Go: Human champions are now starting
to be challenged by machines, though
the best humans still beat the best
machines. In go, b > 300! Classic
programs use pattern knowledge bases,
but big recent advances use Monte
Carlo (randomized) expansion methods.

Backgammon

Game Playing State-of-the-Art

§ Checkers: 1950: First computer player.
1994: First computer champion:
Chinook ended 40-year-reign of human
champion Marion Tinsley using
complete 8-piece endgame. 2007:
Checkers solved!

§ Chess: 1997: Deep Blue defeats human
champion Gary Kasparov in a six-game
match. Deep Blue examined 200M
positions per second, used very
sophisticated evaluation and
undisclosed methods for extending
some lines of search up to 40 ply.
Current programs are even better, if
less historic.

§ Go: Human champions are now starting
to be challenged by machines, though
the best humans still beat the best
machines. In go, b > 300! Classic
programs use pattern knowledge bases,
but big recent advances use Monte
Carlo (randomized) expansion methods.

Backgammon

Game Playing State-of-the-Art

§ Checkers: 1950: First computer player.
1994: First computer champion:
Chinook ended 40-year-reign of human
champion Marion Tinsley using
complete 8-piece endgame. 2007:
Checkers solved!

§ Chess: 1997: Deep Blue defeats human
champion Gary Kasparov in a six-game
match. Deep Blue examined 200M
positions per second, used very
sophisticated evaluation and
undisclosed methods for extending
some lines of search up to 40 ply.
Current programs are even better, if
less historic.

§ Go: Human champions are now starting
to be challenged by machines, though
the best humans still beat the best
machines. In go, b > 300! Classic
programs use pattern knowledge bases,
but big recent advances use Monte
Carlo (randomized) expansion methods.

Bridge
Backgammon

Classical vs. Statistical/Neural
Approaches

• We’ll look first at the classical approach used
from the 1940s to 2010

• Then at newer statistical approached of
which AlphaGo is an example

• These share some techniques

6

Adversarial Games

Types of Games
• 1-person, 2-person game, with alternating moves,

or more players

• Zero-sum: one player’s loss is the other’s gain / not

• Perfect information: both players have access to
complete information about state of game. No
information hidden from either player.

• Chance (e.g., using dice) vs No chance involved
7

Types of Games
• 2-person game, with alternating moves
• Zero-sum: one player’s loss is the other’s gain

– A zero-sum game is defined as one where the total payoff to all players is the same
for every instance of the game.

– Chess is zero-sum because every game has payoff 0+1, 1+0, or 1⁄2 + 1⁄2.

• Perfect information: both players’ve access to complete
information about state of game (chess, checkers). No
information hidden from either player (poker).

• No chance involved
• Examples: Tic-Tac-Toe, Checkers, Chess, Go, Nim,

Othello
• But not: Bridge, Solitaire, Backgammon, Poker, Rock-

Paper-Scissors, ...

8

Can we use …

Want algorithms for calculating a strategy (policy)
which recommends a move from each state

• Uninformed search?
• Heuristic search?
• Local search?
• Constraint based search?

None of these model the fact that we have an
adversary …

9

How to play a game
• A way to play such a game is to:
– Consider all the legal moves you can make
– Compute new position resulting from each move
– Evaluate each to determine which is best
–Make that move
–Wait for your opponent to move and repeat

• Key problems are:
– Representing the “board” (i.e., game state)
– Generating all legal next boards
– Evaluating a position

10

Deterministic Games

• Many possible formalizations, one is:
– States: S (start at s0)
– Players: P={1...N} (usually take turns)
– Actions: A (may depend on player / state)
– Transition Function: SxA ® S
– Terminal Test: S ® {t,f}
– Terminal Utilities: SxP ® R

• Solution for a player is a policy: S ® A

Zero-Sum Games

• Zero-Sum Games
– Agents have opposite utilities

(values on outcomes)
– Lets us think of a single value

that one maximizes and the
other minimizes

– Adversarial, pure competition

• General Games
– Agents have independent

utilities (values on outcomes)
– Cooperation, indifference,

competition, and more are all
possible

– More later on non-zero-sum
games

Adversarial Search

• We can easily generate a
complete game tree for
Tic-Tac-Toe
• Taking board symmetries

into account, there are
138 terminal positions
• 91 wins for X, 44 for O

and 3 draws
18

Game trees
• Problem spaces for typical games are trees
• Root node is current board configuration; player

must decide best single move to make next
• Static evaluator function rates board position

f(board):real, > 0 for me; < 0 for opponent
• Arcs represent possible legal moves for a player
• If my turn to move, then root is labeled a "MAX"

node; otherwise it’s a "MIN" node
• Each tree level’s nodes are all MAX or all MIN;

nodes at level i are of opposite kind from those at
level i+1

19

Game Tree for Tic-Tac-Toe

MAX’s play ®

MIN’s play ®

Terminal state
(win for MAX) ®

Here, symmetries are used to
reduce branching factor

20

Game Tree for Tic-Tac-Toe

MAX’s play ®

MIN’s play ®

Terminal state
(win for MAX) ®

Here, symmetries are used to
reduce branching factor

MAX nodes

20

Game Tree for Tic-Tac-Toe

MAX’s play ®

MIN’s play ®

Terminal state
(win for MAX) ®

Here, symmetries are used to
reduce branching factor

MIN nodes

MAX nodes

20

Single-Agent Trees

Single-Agent Trees

Single-Agent Trees

Single-Agent Trees

Single-Agent Trees

8

Single-Agent Trees

8

2 0 2 6 4 6… …

Value of a State

8

2 0 2 6 4 6… …

Value of a State

8

2 0 2 6 4 6… …

Value of a state:
The best

achievable
outcome (utility)
from that state

Value of a State

8

2 0 2 6 4 6… … Terminal States:

Value of a state:
The best

achievable
outcome (utility)
from that state

Value of a State

Non-Terminal
States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state:
The best

achievable
outcome (utility)
from that state

Adversarial Game Trees

Adversarial Game Trees

Adversarial Game Trees

Adversarial Game Trees

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Minimax Values

+8-10-5-8

Minimax Values

+8-10-5-8

Terminal States:

Minimax Values

+8-10-5-8

Terminal States:

States Under Opponent’s Control:

Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

Tic-Tac-Toe Game Tree

Adversarial Search (Minimax)

• Deterministic, zero-sum games:
– Tic-tac-toe, chess, checkers
– One player maximizes result
– The other minimizes result

• Minimax search:
– A state-space search tree
– Players alternate turns
– Compute each node’s minimax

value: the best achievable
utility against a rational
(optimal) adversary

8 2 5 6

max

min

Adversarial Search (Minimax)

• Deterministic, zero-sum games:
– Tic-tac-toe, chess, checkers
– One player maximizes result
– The other minimizes result

• Minimax search:
– A state-space search tree
– Players alternate turns
– Compute each node’s minimax

value: the best achievable
utility against a rational
(optimal) adversary

8 2 5 6

max

min

Terminal values:
part of the game

Adversarial Search (Minimax)

• Deterministic, zero-sum games:
– Tic-tac-toe, chess, checkers
– One player maximizes result
– The other minimizes result

• Minimax search:
– A state-space search tree
– Players alternate turns
– Compute each node’s minimax

value: the best achievable
utility against a rational
(optimal) adversary

8 2 5 6

max

min

Terminal values:
part of the game

Minimax values:
computed recursively

Adversarial Search (Minimax)

• Deterministic, zero-sum games:
– Tic-tac-toe, chess, checkers
– One player maximizes result
– The other minimizes result

• Minimax search:
– A state-space search tree
– Players alternate turns
– Compute each node’s minimax

value: the best achievable
utility against a rational
(optimal) adversary

8 2 5 6

max

min2 5

Terminal values:
part of the game

Minimax values:
computed recursively

Adversarial Search (Minimax)

• Deterministic, zero-sum games:
– Tic-tac-toe, chess, checkers
– One player maximizes result
– The other minimizes result

• Minimax search:
– A state-space search tree
– Players alternate turns
– Compute each node’s minimax

value: the best achievable
utility against a rational
(optimal) adversary

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

Minimax values:
computed recursively

Minimax Algorithm
1. Create MAX node with current board configuration
2. Expand nodes to some depth (a.k.a. plys) of

lookahead in game
3. Apply evaluation function at each leaf node
4. Back up values for each non-leaf node until value is

computed for the root node
– At MIN nodes: value is minimum of children’s values
– At MAX nodes: value is maximum of children’s values

5. Choose move to child node whose backed-up value
determined value at root

25

Minimax Implementation

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

Minimax Implementation (Dispatch)

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

Minimax Example

Minimax Example

Minimax Example

3

Minimax Example

123

Minimax Example

12 83

Minimax Example

12 83

Minimax Example

12 83 2

Minimax Example

12 83 2 4

Minimax Example

12 83 2 4 6

Minimax Example

12 83 2 4 6

Minimax Example

12 83 2 144 6

Minimax Example

12 8 53 2 144 6

Minimax Example

12 8 5 23 2 144 6

Minimax Efficiency

• How efficient is minimax?
– Just like (exhaustive) DFS
– Time: O(bm)
– Space: O(bm)

• Example: For chess, b » 35,
m » 100
– Exact solution is completely

infeasible
– But, do we need to explore

the whole tree?

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

Resource Limits

Resource Limits

• Problem: In realistic games, cannot search to
leaves!

? ? ? ?

min

max

Resource Limits

• Problem: In realistic games, cannot search to
leaves!

• Solution: Depth-limited search
– Instead, search only to a limited depth in the tree
– Replace terminal utilities with an evaluation function

for non-terminal positions

? ? ? ?

min

max

Evaluation function
• Evaluation function or static evaluator used to

evaluate the “goodness” of a game position
Contrast with heuristic search, where evaluation function
estimates cost from start node to goal passing through given node

• Zero-sum assumption permits single function to
describe goodness of board for both players
– f(n) >> 0: position n good for me; bad for you
– f(n) << 0: position n bad for me; good for you
– f(n) near 0: position n is a neutral position
– f(n) = +infinity: win for me
– f(n) = -infinity: win for you

13

https://en.wikipedia.org/wiki/Zero-sum_game

Evaluation function examples

• For Tic-Tac-Toe
f(n) = [# my open 3lengths] - [# your open 3lengths]

Where 3length is complete row, column or diagonal
that has no opponent marks

• Alan Turing’s function for chess
– f(n) = w(n)/b(n) where w(n) = sum of point value

of white’s pieces and b(n) = sum of black’s
– Traditional piece values: pawn:1; knight:3;

bishop:3; rook:5; queen:9
14

Evaluation function examples

• Most evaluation functions specified as a
weighted sum of positive features
f(n) = w1*feat1(n) + w2*feat2(n) + ... + wn*featk(n)

• Example chess features are piece count, piece
values, piece placement, squares controlled,
etc.

• IBM’s chess program Deep Blue (circa 1996)
had >8K features in its evaluation function

15

https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)

But, that’s not how people play
• People also use look ahead

i.e., enumerate actions, consider opponent’s
possible responses, REPEAT

• Producing a complete game tree is only
possible for simple games

• So, generate a partial game tree for some
number of plys
–Move = each player takes a turn
– Ply = one player’s turn

• What do we do with the game tree?
16

http://en.wikipedia.org/wiki/Game_tree
https://en.wikipedia.org/wiki/Ply_(game_theory)

Resource Limits

• Problem: In realistic games, cannot search to
leaves!

• Solution: Depth-limited search
– Instead, search only to a limited depth in the tree
– Replace terminal utilities with an evaluation function

for non-terminal positions

? ? ? ?

-1 -2 4 9

min

max

Resource Limits

• Problem: In realistic games, cannot search to
leaves!

• Solution: Depth-limited search
– Instead, search only to a limited depth in the tree
– Replace terminal utilities with an evaluation function

for non-terminal positions

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Resource Limits

• Problem: In realistic games, cannot search to
leaves!

• Solution: Depth-limited search
– Instead, search only to a limited depth in the tree
– Replace terminal utilities with an evaluation function

for non-terminal positions

• Example:
– Suppose we have 100 seconds, can explore 10K

nodes / sec
– So can check 1M nodes per move
– a-b reaches about depth 8 – decent chess program

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Resource Limits

• Problem: In realistic games, cannot search to
leaves!

• Solution: Depth-limited search
– Instead, search only to a limited depth in the tree
– Replace terminal utilities with an evaluation function

for non-terminal positions

• Example:
– Suppose we have 100 seconds, can explore 10K

nodes / sec
– So can check 1M nodes per move
– a-b reaches about depth 8 – decent chess program

• Guarantee of optimal play is gone

• More plies makes a BIG difference

• Use iterative deepening for an anytime
algorithm

? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Depth Matters

• Evaluation functions are
always imperfect

• The deeper in the tree the
evaluation function is
buried, the less the quality
of the evaluation function
matters

• An important example of
the tradeoff between
complexity of features and
complexity of computation

Is that all
there is to simple

games?

40

Alpha-beta pruning
• Improve performance of the minimax

algorithm through alpha-beta pruning
• “If you have an idea that is surely bad, don't take

the time to see how truly awful it is” -Pat Winston
(MIT)

2 7 1

b: =2

a: ≥2

b: ≤1

?

• We don’t need to compute
the value at this node

• No matter what it is, it can’t
affect value of the root node

MAX

MAX

MIN

41

https://en.wikipedia.org/wiki/Alpha%E2%80%93beta_pruning

Alpha-beta pruning
• Traverse search tree in depth-first order
• At MAX node n, alpha(n) = max value found so far

Alpha values start at -∞ and only increase
• At MIN node n, beta(n) = min value found so far

Beta values start at +∞ and only decrease
• Beta cutoff: stop search below MAX node N (i.e.,

don’t examine more descendants) if alpha(N) >=
beta(i) for some MIN node ancestor i of N

• Alpha cutoff: stop search below MIN node N if
beta(N)<=alpha(i) for a MAX node anceastor i of N

42

Alpha-Beta Tic-Tac-Toe Example

43

Alpha-Beta Tic-Tac-Toe Example

43

Alpha-Beta Tic-Tac-Toe Example

2

44

Alpha-Beta Tic-Tac-Toe Example

b: 2

2

44

Alpha-Beta Tic-Tac-Toe Example

b: 2

2
Beta value of a MIN
node is upper bound on
final backed-up value;
it can never increase

44

Alpha-Beta Tic-Tac-Toe Example

1

b: 1

2

45

Alpha-Beta Tic-Tac-Toe Example

1

b: 1

2
Beta value of a MIN
node is upper bound on
final backed-up value;
it can never increase

45

Alpha-Beta Tic-Tac-Toe Example

a: 1

Alpha value of MAX
node is lower bound on
final backed-up value;
it can never decrease

1

b: 1

2

46

Alpha-Beta Tic-Tac-Toe Example

a: 1

1

b = 1

2 -1

b: -1

47

Alpha-Beta Tic-Tac-Toe Example

a = 1

1

b = 1

2 -1

b = -1

Discontinue search below a MIN node whose beta
value ≤ alpha value of one of its MAX ancestors 48

Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Alpha-Beta Pruning Properties
• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong
– Important: children of the root may have the wrong value
– So the most naïve version won’t let you do action selection

10 10 0

max

min

Alpha-Beta Pruning Properties
• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong
– Important: children of the root may have the wrong value
– So the most naïve version won’t let you do action selection

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
– Time complexity drops to O(bm/2)
– Doubles solvable depth!
– Full search of, e.g. chess, is still hopeless…

• This is a simple example of metareasoning (computing about what to
compute)

10 10 0

max

min

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Another alpha-beta example

MIN

MAX

72

Another alpha-beta example

MIN

MAX

72

Another alpha-beta example

3

MIN

MAX

72

Another alpha-beta example

3

b=3MIN

MAX

72

Another alpha-beta example

3 12

b=3MIN

MAX

72

Another alpha-beta example

3 12 8

b=3MIN

MAX

72

Another alpha-beta example

3 12 8

b=3MIN

MAX a=3

72

Another alpha-beta example

3 12 8 2

b=3MIN

MAX a=3

72

Another alpha-beta example

3 12 8 2

b=3MIN

MAX a=3

b=2
prune!

72

Another alpha-beta example

3 12 8 2 14

b=3MIN

MAX a=3

b=2
prune!

72

Another alpha-beta example

3 12 8 2 14

b=3MIN

MAX a=3

b=2
prune!

b=14

72

Another alpha-beta example

3 12 8 2 14 1

b=3MIN

MAX a=3

b=2
prune!

b=14

72

Another alpha-beta example

3 12 8 2 14 1

b=3MIN

MAX a=3

b=2
prune!

72

Another alpha-beta example

3 12 8 2 14 1

b=3MIN

MAX a=3

b=2
prune!

b=1
prune!

72

Another alpha-beta example

3 12 8 2 14 1

b=3MIN

MAX a=3

b=2
prune!

b=1
prune!

72

Another alpha-beta example

3 12 8 2 14 1

b=3MIN

MAX a=3

b=2
prune!

72

Alpha-Beta Tic-Tac-Toe Example 2

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35
73

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

74

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

75

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0 -3

76

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0 -3

77

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3

78

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3 3

3

79

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0 -3 3

3

80

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

81

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

5

82

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

83

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

84

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

85

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

86

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

0

87

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

5

0

88

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

0

89

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

90

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

0

91

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

0

92

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

93

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

0

94

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

95

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

0

96

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

1

97

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

2

2

2

2

1

1

98

0 5 -3 25-2 32-3 033 -501 -350 1-55 3 2-35

0

0

0

0 -3 3

3

0

2

2

2

2

1

1

-3

1

1

-5

-5

-5

1

2

2

2

2

1

With alpha-beta we avoided computing a static
evaluation metric for 14 of the 25 leaf nodes

99

Many other improvements
§ Adaptive horizon + iterative deepening
§ Extended search: retain k>1 best paths (not

just one) extend tree at greater depth below
their leaf nodes to help dealing with “horizon
effect”

§ Singular extension: If move is obviously
better than others in node at horizon h,
expand it

§ Use transposition tables to deal with
repeated states

102

https://en.wikipedia.org/wiki/Transposition_table

