CMSC 471

Constraint Satisfaction Problems Il|

Instructor: KMA Solaiman

These slides were modified from Dan Klein and Pieter Abbeel at UC Berkeley [ai.berkeley.edu].



Today

= Efficient Solution of CSPs

® | ocal Search




Reminder: CSPs

o CSPS: @
= \/ariables
= Domains
= Constraints
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= Implicit (provide code to compute)
= Explicit (provide a list of the legal tuples)
= Unary/ Binary / N-ary

" Goals:

= Here: find any solution
= Also: find all, find best, etc.




Backtracking Example
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Improving Backtracking

General-purpose ideas give huge gains in speed
= .. butit’sall still NP-hard

Filtering: Can we detect inevitable failure early?

Ordering:
= Which variable should be assigned next? (MRV)
= |n what order should its values be tried? (LCV)

Structure: Can we exploit the problem structure?




Arc Consistency and Beyond




Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [m _ [T H] —|
Vv \ /

= |mportant: If X loses a value, neighbors of X need to be rechecked!

" Arc consistency detects failure earlier than forward checking
. Remember: Delete
®= Can be run as a preprocessor or after each assignment from the taill

= What's the downside of enforcing arc consistency?



Ordering




Ordering: Minimum Remaining Values

» Variable Ordering: Minimum remaining values (MRV):

" Choose the variable with the fewest legal left values in its domain
= Aka most constrained variables

SSI SSE SSEA oS

= Why min rather than max?

= Also called “most constrained variable”
= “Fail-fast” ordering




= Tie-breaker among Minimum remaining values

" Choose variable involved in largest # of constraints
on remaining variables

O

e After assigning SA to be blue, WA, NT, Q, NSW and V all have
just two values left.
e But WA and V have only one constraint (WA has constraint

with NT, and V with NSW) on remaining variables and T none,
so choose one of NT, Q & NSW (each of which has 2 cons. left)




Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value *
= Given a choice of variable, choose the least ‘\_L,;«
constraining value
= |.e., the one that rules out the fewest values in ‘\_Lb <
the remaining variables ‘\_L%
= Note that it may take some computation to

determine this! (E.g., rerunning filtering)

= Why least rather than most?

= Combining these ordering ideas makes
1000 queens feasible




Structure




Problem Structure

Extreme case: independent subproblems
= Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only c variables:

= Worst-case solution cost is O((n/c)(d®)), linear in n

= Eg,n=80,d=2,c=20

= 280 =4 billion years at 10 million nodes/sec

= (4)(2%°) = 0.4 seconds at 10 million nodes/sec




Tree-Structured CSPs

= Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
= Compare to general CSPs, where worst-case time is O(d")

*= This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning



Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children
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Tree-Structured CSPs
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= Remove backward: Fori=n:2, apply Removelnconsistent(Parent(X),X)
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Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children
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= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X;),X;)
= Assign forward: Fori=1:n, assign X; consistently with Parent(X)




Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

2

= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X;),X;)
= Assign forward: Fori=1:n, assign X; consistently with Parent(X)

= Runtime: O(n d?) (why?)




Tree-Structured CSPs



Tree-Structured CSPs

= Claim 1: After backward pass, all root-to-leaf arcs are consistent
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" Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)
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Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets



Improving Structure




Nearly Tree-Structured CSPs
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= Conditioning: instantiate a variable, prune its neighbors' domains

= Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

= Cutset size c gives runtime O( (d¢) (n-c) d?), very fast for small c



Cutset Conditioning
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Cutset Conditioning
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Instantiate the cutset
(all possible ways)




[ Choose a cutset J

Instantiate the cutset
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Cutset Conditioning
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Compute residual CSP
for each assignment
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Cutset Conditioning
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Compute residual CSP
for each assignment
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Solve the residual CSPs
(tree structured)




Cutset Quiz

" Find the smallest cutset for the graph below.




Iterative Improvement




Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned
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" Local search methods typically work with “complete” states, i.e., all variables assigned

= To apply to CSPs:
= Take an assignment with unsatisfied constraints
= Qperators reassign variable values
= No fringe! Live on the edge.
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Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

= To apply to CSPs:

= Take an assignment with unsatisfied constraints
= Qperators reassign variable values

= No fringe! Live on the edge.
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= Algorithm: While not solved,

= Variable selection: randomly select any conflicted variable
= Value selection: min-conflicts heuristic:

= Choose a value that violates the fewest constraints

= |.e., hill climb with h(n) = total number of violated constraints



Example: 4-Queens

= States: 4 queens in 4 columns (4% = 256 states)
= QOperators: move queen in column

= Goal test: no attacks

= Evaluation: c(n) = number of attacks
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= States: 4 queens in 4 columns (4% = 256 states)
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Basic Local Search Algorithm

Assign one domain value d. to each variable v.
while no solution & not stuck & not timed out:
bestCost <— oo; bestList < [];

for each variable v, where Cost(Value(v,)) >0
for each domain value d. of v,
if Cost(d.) < bestCost
bestCost <— Cost(d))
bestList «— [d/]
else if Cost(d,) = bestCost
bestList < bestList U d.
Take a randomly selected move fromebestList



Eight Queens using Local Search

Place 8 Queens
randomly on
the board




Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move




Eight Queens using Local Search

Take least cost
move then try

another
Queen
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Eight Queens using Local Search

Take least cost
move then try

another
Queen

...and so on, until....




Eight Queens using Local Search

Answer Found




Video of Demo lterative Improvement — Coloring
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Performance of Min-Conflicts

" Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n =10,000,000)
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Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n =10,000,000)

= The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio
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Summary: CSPs

" CSPs are a special kind of search problem:
= States are partial assignments
" Goal test defined by constrai
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= Basic solution: backtracking sea
= Speed-ups:
= Ordering —
= Filtering

= Structure

" |terative min-conflicts is often effective in practice



