CMSC 471

Constraint Satisfaction Problems Il|

Instructor: KMA Solaiman

These slides were modified from Dan Klein and Pieter Abbeel at UC Berkeley [ai.berkeley.edu].

Today

= Efficient Solution of CSPs

® | ocal Search

Reminder: CSPs

o CSPS: @
= \/ariables
= Domains
= Constraints

-

i
H

= Implicit (provide code to compute)
= Explicit (provide a list of the legal tuples)
= Unary/ Binary / N-ary

" Goals:

= Here: find any solution
= Also: find all, find best, etc.

Backtracking Example

e

A

- ¢ &
—
"o

&S

oo

Improving Backtracking

General-purpose ideas give huge gains in speed
= .. butit’sall still NP-hard

Filtering: Can we detect inevitable failure early?

Ordering:
= Which variable should be assigned next? (MRV)
= |n what order should its values be tried? (LCV)

Structure: Can we exploit the problem structure?

Arc Consistency and Beyond

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [m _ [T H] —|
Vv \ /

= |mportant: If X loses a value, neighbors of X need to be rechecked!

" Arc consistency detects failure earlier than forward checking
. Remember: Delete
®= Can be run as a preprocessor or after each assignment from the taill

= What's the downside of enforcing arc consistency?

Ordering

Ordering: Minimum Remaining Values

» Variable Ordering: Minimum remaining values (MRV):

" Choose the variable with the fewest legal left values in its domain
= Aka most constrained variables

SSI SSE SSEA oS

= Why min rather than max?

= Also called “most constrained variable”
= “Fail-fast” ordering

= Tie-breaker among Minimum remaining values

" Choose variable involved in largest # of constraints
on remaining variables

O

e After assigning SA to be blue, WA, NT, Q, NSW and V all have
just two values left.
e But WA and V have only one constraint (WA has constraint

with NT, and V with NSW) on remaining variables and T none,
so choose one of NT, Q & NSW (each of which has 2 cons. left)

Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value *
= Given a choice of variable, choose the least ‘_L,;«
constraining value
= |.e., the one that rules out the fewest values in ‘_Lb <
the remaining variables ‘_L%
= Note that it may take some computation to

determine this! (E.g., rerunning filtering)

= Why least rather than most?

= Combining these ordering ideas makes
1000 queens feasible

Structure

Problem Structure

Extreme case: independent subproblems
= Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only c variables:

= Worst-case solution cost is O((n/c)(d®)), linear in n

= Eg,n=80,d=2,c=20

= 280 =4 billion years at 10 million nodes/sec

= (4)(2%°) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

= Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
= Compare to general CSPs, where worst-case time is O(d")

*= This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

j>

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

j>

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

2

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

> T

= Remove backward: Fori=n:2, apply Removelnconsistent(Parent(X),X)

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

2

= Remove backward: Fori=n:2, apply Removelnconsistent(Parent(X),X)

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

2

= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X;),X;)
= Assign forward: Fori=1:n, assign X; consistently with Parent(X)

Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

2

= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X;),X;)
= Assign forward: Fori=1:n, assign X; consistently with Parent(X)

= Runtime: O(n d?) (why?)

Tree-Structured CSPs

Tree-Structured CSPs

= Claim 1: After backward pass, all root-to-leaf arcs are consistent

Tree-Structured CSPs

= Claim 1: After backward pass, all root-to-leaf arcs are consistent

" Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Tree-Structured CSPs

= Claim 1: After backward pass, all root-to-leaf arcs are consistent

= Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

= Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack

Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

@“b"’ C
g &
® ®

= Conditioning: instantiate a variable, prune its neighbors' domains

= Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

= Cutset size c gives runtime O((d¢) (n-c) d?), very fast for small c

Cutset Conditioning

Cutset Conditioning

a1

(@)
B

Cutset Conditioning

()
Choose a cutset @"

(@)
B

Cutset Conditioning

()
Choose a cutset @"

(@)
B

Instantiate the cutset
(all possible ways)

[Choose a cutset J

Instantiate the cutset
(all possible ways)

Cutset Conditioning

SOt
..
— - \
ol <

Cutset Conditioning

[Choose a cutset]
Instantiate the cutset / l - \
[| o L o 1% oL %

(all possible ways)
“ B @
O O O

1y

Compute residual CSP
for each assignment

[Choose a cutset J

[

Instantiate the cutset
(all possible ways)

[

Compute residual CSP
for each assignment

Cutset Conditioning

e L
i
w‘e»'é:@ @‘@é:@

l

/‘“} g

4—

A

@"@9

:‘@

Cutset Conditioning

N

Choose a cutset

/

4

[J

Instantiate the cutset /
[(all possible ways) J - ‘W"e
[J
[J

o

9‘:‘9

&
O

l

g

Compute residual CSP
for each assignment

4_
4_

Solve the residual CSPs
(tree structured)

Cutset Quiz

" Find the smallest cutset for the graph below.

Iterative Improvement

Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

@

Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

= To apply to CSPs:
= Take an assignment with unsatisfied constraints
= Qperators reassign variable values
= No fringe! Live on the edge.

@

Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

= To apply to CSPs:
= Take an assignment with unsatisfied constraints
= Qperators reassign variable values
= No fringe! Live on the edge.

0 00

Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

= To apply to CSPs:

= Take an assignment with unsatisfied constraints
= Qperators reassign variable values

= No fringe! Live on the edge.

0 00

= Algorithm: While not solved,

= Variable selection: randomly select any conflicted variable
= Value selection: min-conflicts heuristic:

= Choose a value that violates the fewest constraints

= |.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

= States: 4 queens in 4 columns (4% = 256 states)
= QOperators: move queen in column

= Goal test: no attacks

= Evaluation: c(n) = number of attacks

Example: 4-Queens

= States: 4 queens in 4 columns (4% = 256 states)
= QOperators: move queen in column

= Goal test: no attacks

= Evaluation: c(n) = number of attacks

Example: 4-Queens

= States: 4 queens in 4 columns (4% = 256 states)
= QOperators: move queen in column

= Goal test: no attacks

= Evaluation: c(n) = number of attacks

Basic Local Search Algorithm

Assign one domain value d. to each variable v.
while no solution & not stuck & not timed out:
bestCost <— oo; bestList < [];

for each variable v, where Cost(Value(v,)) >0
for each domain value d. of v,
if Cost(d.) < bestCost
bestCost <— Cost(d))
bestList «— [d/]
else if Cost(d,) = bestCost
bestList < bestList U d.
Take a randomly selected move fromebestList

Eight Queens using Local Search

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move

Eight Queens using Local Search

Take least cost
move then try

another
Queen

Eight Queens using Local Search

Take least cost
move then try

another
Queen

Eight Queens using Local Search

Take least cost
move then try

another
Queen

...and so on, until....

Eight Queens using Local Search

Answer Found

Video of Demo lterative Improvement — Coloring

Time in seconds

5000

4000

3000

2000

1000

Backtracking Performance

———

4 8 12 16 20
Number of Queens

24

Slide

28

32

Time in seconds

2500

2000

1500

1000

500

Local Search Performance

5000

10000
Number of Queens

15000

Slide

20000

Performance of Min-Conflicts

" Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n =10,000,000)

Performance of Min-Conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n =10,000,000)

The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

o number of constraints
number of variables

CPU
time

|
critical
ratio

Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n =10,000,000)

= The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

R = number of constraints =T —
number of variables V
CPU
time

|
critical
ratio

Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n =10,000,000)

= The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

__humber of constraints e

“WN
R = _ V
number of variables

CPU
time

|
critical
ratio

Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n =10,000,000)

= The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

R number of constraints i
number of variables
CPU
time

|
critical
ratio

Summary: CSPs

" CSPs are a special kind of search problem:
= States are partial assignments
" Goal test defined by constrai

w [™V F
S
= Basic solution: backtracking sea
= Speed-ups:
= Ordering —
= Filtering

= Structure

" |terative min-conflicts is often effective in practice

