CMSC 471

Constraint Satisfaction Problems

Instructor: KMA Solaiman

These slides were created by Dan Klein and Pieter Abbeel at UC Berkeley. [ai.berkeley.edu]

Constraint Satisfaction Problems

Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

Constraint satisfaction problems (CSPs):
= A special subset of search problems

= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

= Goal testis a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T

Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA = NT

Explicit: (WA,NT) € {(red,green), (red, blue), ...}

Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}

Solving CSPs

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assignments are commutative, so fix ordering
= |.e., [WA=redthen NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

ldea 2: Check constraints as you go
= |.e. consider only values which do not conflict previous assignments
= Might have to do some computation to check the constraint
= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Backtracking Example

e

A

- ¢ &
—
"o

&S

oo

Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
= Which variable should be assigned next?
" |n what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

Filtering

Filtering

Keeping track of domains for unassigned variables and cross off bad options

Filtering: Forward Checking

" Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
WA NT| Q
SA NSW.
Vv

WA NT Q NSW Vv SA

[Demo: coloring -- forward checking]

Filtering: Forward Checking

" Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
wa LA,
SA NSW.
Vv

WA NT Q NSW Vv SA

[Demo: coloring -- forward checking]

Filtering: Forward Checking

" Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
wa LA,
SA NSW.
Vv

WA NT Q NSW VvV SA
(ErE[ErE[ErE[ErE[E e .
— 1 MM Ireiren i I

[Demo: coloring -- forward checking]

Filtering: Forward Checking

" Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
NT| || ‘
WA\—L’:—-—‘ >
SA NSW. l
V A S

WA NT Q NSW VvV SA
(ErE[ErE[ErE[ErE[E e .
— 1 MM Ireiren i I

[Demo: coloring -- forward checking]

Filtering: Forward Checking

" Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
NT| || ‘
WA\—L’:—-—‘ >
SA NSW. l
V A S

WA NT Q NSW VvV SA
(ErE[ErE[ErE[ErE[E e .
— 1 MM Ireiren i I
— 1 1 [m E[E T E]]

[Demo: coloring -- forward checking]

Filtering: Forward Checking

" Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
WA%_"\ 'f: "'“\ l,: "‘_L[:

WA NT Q NSW VvV SA
(ErE[ErE[ErE[ErE[E e .
— 1 MM Ireiren i I
— 1 1 [m E[E T E]]

[Demo: coloring -- forward checking]

Filtering: Forward Checking

" Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
WA%_"\ 'f: "'“\ l,: "‘_L[:

WA NT Q NSW VvV SA
(ErE[ErE[ErE[ErE[E e .
— 1 MM Ireiren i I
— 1 1 [m E[E T E]]
— 1 1 C 1

[Demo: coloring -- forward checking]

Video of Demo Coloring — Backtracking with Forward Checking

Filtering: Constraint Propagation

= Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q NSW \'} SA
NT i ErEErEErE e rEerE[Er .
‘ A T]| 'EECEECEECE] I E
D I Tl 1L I

Filtering: Constraint Propagation

= Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q NSW Vv SA
NT i T Ir I IrE IrE I
‘ A]| 'EECEECEECE] UE
b I Tl 1L I

= NT and SA cannot both be blue!

Filtering: Constraint Propagation

= Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q NSW Vv SA
NT i T Ir I IrE IrE I
‘ A]| 'EECEECEECE] UE
b I Tl 1L I

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?

Filtering: Constraint Propagation

= Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q NSW Vv SA
NT i T Ir I IrE IrE I
‘ A]| 'EECEECEECE] UE
b I Tl 1L I

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
" Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

L

NT WA NT Q NSW v SA
Q

3 I I T T I 1

NSW
\Y

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

L

NT WA NT Q NSW v SA
Q

3 I I T T I 1

NSW

\ v

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

L

NT WA NT Q NSW v SA
Q

G T T T I 1
—_ -

V

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

L

NT WA NT Q NSW v SA
Q

3 I I T T I 1

NSW
\Y

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

L

NT WA NT Q NSW v SA
Q

3 I 1T T ITE IrE 1

NSW
\Y

Delete from the tail!

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

L

NT WA NT Q NSW v SA
Q

3 I 1 NI I 1

NSW
\Y

Delete from the tail!

= Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

¢

NT
SA

Q

NSW
\Y

WA

NT

NSW Vv

SA

Remember: Delete
from the tail!

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

¢

NT
SA

Q

NSW
\Y

WA

NT

NSW Vv

SA

<~

Remember: Delete
from the tail!

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [H E[ETN] 1

V _/

Remember: Delete
from the tail!

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [H E[ETN] 1

~ _/V

Remember: Delete
from the tail!

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [m _[mrN] 1

~ _/V

Remember: Delete
from the tail!

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

¢

NT
SA

Q

NSW
\Y

WA

NT

NSW Vv

SA

<~

Remember: Delete
from the tail!

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

¢

NT
SA

Q

NSW
\Y

WA

NT

NSW Vv

SA

<~

Remember: Delete
from the tail!

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [m _ [T H] 1
Vv \ /

Remember: Delete
from the tail!

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [m _ [T H] —|
Vv \ /

= |mportant: If X loses a value, neighbors of X need to be rechecked!

" Arc consistency detects failure earlier than forward checking
. Remember: Delete
®= Can be run as a preprocessor or after each assignment from the taill

= What's the downside of enforcing arc consistency?

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xy, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;, X;) then
for each X} in NEIGHBORS[.X] do
add (X, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed < false
for each z in DoMAIN[X;] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete 2 from DOMAIN[X;]; removed — true
return removed

= Runtime: O(n%d3), can be reduced to O(n?%d?)
= ... but detecting all possible future problems is NP-hard — why?

Video of Demo Coloring — Backtracking with Forward Checking —
Complex Graph

Video of Demo Coloring — Backtracking with Arc Consistency —
Complex Graph

Limitations of Arc Consistency

= After enforcing arc
consistency:

= Can have one solution left

" Can have multiple solutions left

" Can have no solutions left (and

not know it)

What went
wrong here?

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]

Limitations of Arc Consistency

= After enforcing arc
consistency:

= Can
= Can
= Can

nave one solution left

nave multiple solutions left

nave no solutions left (and

not know it)

= Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]

K-Consistency

K-Consistency

" |ncreasing degrees of consistency

= 1-Consistency (Node Consistency): Each single node’s domain has a Q
value which meets that node’s unary constraints

= 2-Consistency (Arc Consistency): For each pair of nodes, any Q =) O
consistent assignment to one can be extended to the other

= K-Consistency: For each k nodes, any consistent assignment to k-1 @
can be extended to the k" node.

= Higher k more expensive to compute

= (You need to know the k=2 case: arc consistency) m

Ordering

Ordering: Minimum Remaining Values

» Variable Ordering: Minimum remaining values (MRV):

" Choose the variable with the fewest legal left values in its domain

WA NT| Q
SA NSW.
\

Ordering: Minimum Remaining Values

» Variable Ordering: Minimum remaining values (MRV):

" Choose the variable with the fewest legal left values in its domain

WA NT| Q
SA NSW
Vv

Ordering: Minimum Remaining Values

» Variable Ordering: Minimum remaining values (MRV):

" Choose the variable with the fewest legal left values in its domain

SSE Sl SS
WA\NS_;L’;;\W

Ordering: Minimum Remaining Values

» Variable Ordering: Minimum remaining values (MRV):

" Choose the variable with the fewest legal left values in its domain

SSI SSE SSEA oS
WA\NS_;L’;;\W

Ordering: Minimum Remaining Values

» Variable Ordering: Minimum remaining values (MRV):

" Choose the variable with the fewest legal left values in its domain

g, Crp— IR

= Why min rather than max?

Ordering: Minimum Remaining Values

» Variable Ordering: Minimum remaining values (MRV):

" Choose the variable with the fewest legal left values in its domain

g, Crp— IR

= Why min rather than max?

Ordering: Minimum Remaining Values

» Variable Ordering: Minimum remaining values (MRV):

" Choose the variable with the fewest legal left values in its domain

g, Crp— IR

= Why min rather than max?

= Also called “most constrained variable”

= “Fail-fast” ordering

Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value *
= Given a choice of variable, choose the least ‘_L,;«
constraining value
= |.e., the one that rules out the fewest values in ‘_Lt <
the remaining variables ‘_L%
= Note that it may take some computation to

determine this! (E.g., rerunning filtering)

WA NT Q
SA NSW
V

Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value *
= Given a choice of variable, choose the least ‘_L,;«
constraining value
= |.e., the one that rules out the fewest values in ‘_Lt <
the remaining variables ‘_L%
= Note that it may take some computation to

determine this! (E.g., rerunning filtering)

= Why least rather than most?

WA NT| Q
SA NSW
V

Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value *
= Given a choice of variable, choose the least ‘_L,;«
constraining value
= |.e., the one that rules out the fewest values in ‘_Lb <
the remaining variables ‘_L%
= Note that it may take some computation to

determine this! (E.g., rerunning filtering)

= Why least rather than most?

WA NT Q
SA NSW
V

W\—L;Q: Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value *
= Given a choice of variable, choose the least ‘_L,;«
constraining value
= |.e., the one that rules out the fewest values in ‘_Lb <
the remaining variables ‘_L%
= Note that it may take some computation to

determine this! (E.g., rerunning filtering)

= Why least rather than most?

= Combining these ordering ideas makes
1000 queens feasible

Demo: Coloring -- Backtracking + Forward Checking + Ordering

