
CMSC 471
Constraint Satisfaction Problems

Instructor: KMA Solaiman
These slides were created by Dan Klein and Pieter Abbeel at UC Berkeley. [ai.berkeley.edu]

Constraint Satisfaction Problems

§ Standard search problems:
§ State is a “black box”: arbitrary data structure
§ Goal test can be any function over states
§ Successor function can also be anything

§ Constraint satisfaction problems (CSPs):
§ A special subset of search problems
§ State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
§ Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

§ Simple example of a formal representation language

§ Allows useful general-purpose algorithms with more
power than standard search algorithms

CSP Examples

Example: Map Coloring

§ Variables:

§ Domains:

§ Constraints: adjacent regions must have different
colors

§ Solutions are assignments satisfying all
constraints, e.g.:

Implicit:

Explicit:

Solving CSPs

Backtracking Search

§ Backtracking search is the basic uninformed algorithm for solving CSPs

§ Idea 1: One variable at a time
§ Variable assignments are commutative, so fix ordering
§ I.e., [WA = red then NT = green] same as [NT = green then WA = red]
§ Only need to consider assignments to a single variable at each step

§ Idea 2: Check constraints as you go
§ I.e. consider only values which do not conflict previous assignments
§ Might have to do some computation to check the constraints
§ “Incremental goal test”

§ Depth-first search with these two improvements
 is called backtracking search (not the best name)

Backtracking Example

Improving Backtracking

§ General-purpose ideas give huge gains in speed

§ Ordering:
§ Which variable should be assigned next?
§ In what order should its values be tried?

§ Filtering: Can we detect inevitable failure early?

§ Structure: Can we exploit the problem structure?

Filtering

Filtering

Keeping track of domains for unassigned variables and cross off bad options

§ Filtering: Keep track of domains for unassigned variables and cross off bad options
§ Forward checking: Cross off values that violate a constraint when added to the existing

assignment

Filtering: Forward Checking

WA
SA
NT Q

NSW
V

[Demo: coloring -- forward checking]

§ Filtering: Keep track of domains for unassigned variables and cross off bad options
§ Forward checking: Cross off values that violate a constraint when added to the existing

assignment

Filtering: Forward Checking

WA
SA
NT Q

NSW
V

[Demo: coloring -- forward checking]

§ Filtering: Keep track of domains for unassigned variables and cross off bad options
§ Forward checking: Cross off values that violate a constraint when added to the existing

assignment

Filtering: Forward Checking

WA
SA
NT Q

NSW
V

[Demo: coloring -- forward checking]

§ Filtering: Keep track of domains for unassigned variables and cross off bad options
§ Forward checking: Cross off values that violate a constraint when added to the existing

assignment

Filtering: Forward Checking

WA
SA
NT Q

NSW
V

[Demo: coloring -- forward checking]

§ Filtering: Keep track of domains for unassigned variables and cross off bad options
§ Forward checking: Cross off values that violate a constraint when added to the existing

assignment

Filtering: Forward Checking

WA
SA
NT Q

NSW
V

[Demo: coloring -- forward checking]

§ Filtering: Keep track of domains for unassigned variables and cross off bad options
§ Forward checking: Cross off values that violate a constraint when added to the existing

assignment

Filtering: Forward Checking

WA
SA
NT Q

NSW
V

[Demo: coloring -- forward checking]

§ Filtering: Keep track of domains for unassigned variables and cross off bad options
§ Forward checking: Cross off values that violate a constraint when added to the existing

assignment

Filtering: Forward Checking

WA
SA
NT Q

NSW
V

[Demo: coloring -- forward checking]

Video of Demo Coloring – Backtracking with Forward Checking

Filtering: Constraint Propagation

§ Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA SA

NT Q

NSW

V

Filtering: Constraint Propagation

§ Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

§ NT and SA cannot both be blue!

WA SA

NT Q

NSW

V

Filtering: Constraint Propagation

§ Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

§ NT and SA cannot both be blue!
§ Why didn’t we detect this yet?

WA SA

NT Q

NSW

V

Filtering: Constraint Propagation

§ Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

§ NT and SA cannot both be blue!
§ Why didn’t we detect this yet?
§ Constraint propagation: reason from constraint to constraint

WA SA

NT Q

NSW

V

Consistency of A Single Arc

§ An arc X ® Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

WA SA

NT Q

NSW

V

Consistency of A Single Arc

§ An arc X ® Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

WA SA

NT Q

NSW

V

Consistency of A Single Arc

§ An arc X ® Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

WA SA

NT Q

NSW

V

Consistency of A Single Arc

§ An arc X ® Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

WA SA

NT Q

NSW

V

Consistency of A Single Arc

§ An arc X ® Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

Delete from the tail!

WA SA

NT Q

NSW

V

Consistency of A Single Arc

§ An arc X ® Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

§ Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

§ Important: If X loses a value, neighbors of X need to be rechecked!
§ Arc consistency detects failure earlier than forward checking
§ Can be run as a preprocessor or after each assignment
§ What’s the downside of enforcing arc consistency?

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

§ Runtime: O(n2d3), can be reduced to O(n2d2)
§ … but detecting all possible future problems is NP-hard – why?

Video of Demo Coloring – Backtracking with Forward Checking –
Complex Graph

Video of Demo Coloring – Backtracking with Arc Consistency –
Complex Graph

Limitations of Arc Consistency

§ After enforcing arc
consistency:
§ Can have one solution left
§ Can have multiple solutions left
§ Can have no solutions left (and

not know it)

What went
wrong here?

[Demo: coloring -- arc consistency]
[Demo: coloring -- forward checking]

Limitations of Arc Consistency

§ After enforcing arc
consistency:
§ Can have one solution left
§ Can have multiple solutions left
§ Can have no solutions left (and

not know it)

§ Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- arc consistency]
[Demo: coloring -- forward checking]

K-Consistency

K-Consistency
§ Increasing degrees of consistency

§ 1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

§ 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

§ K-Consistency: For each k nodes, any consistent assignment to k-1
can be extended to the kth node.

§ Higher k more expensive to compute

§ (You need to know the k=2 case: arc consistency)

Ordering

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain

WA
SA
NT Q

NSW
V

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain

WA
SA
NT Q

NSW
V

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain

WA
SA
NT Q

NSW
V

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain

WA
SA
NT Q

NSW
V

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain

§ Why min rather than max?

WA
SA
NT Q

NSW
V

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain

§ Why min rather than max?

WA
SA
NT Q

NSW
V

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain

§ Why min rather than max?
§ Also called “most constrained variable”
§ “Fail-fast” ordering

WA
SA
NT Q

NSW
V

Ordering: Least Constraining Value

§ Value Ordering: Least Constraining Value
§ Given a choice of variable, choose the least

constraining value
§ I.e., the one that rules out the fewest values in

the remaining variables
§ Note that it may take some computation to

determine this! (E.g., rerunning filtering)

WA
SA
NT Q

NSW
V

Ordering: Least Constraining Value

§ Value Ordering: Least Constraining Value
§ Given a choice of variable, choose the least

constraining value
§ I.e., the one that rules out the fewest values in

the remaining variables
§ Note that it may take some computation to

determine this! (E.g., rerunning filtering)

§ Why least rather than most?

WA
SA
NT Q

NSW
V

Ordering: Least Constraining Value

§ Value Ordering: Least Constraining Value
§ Given a choice of variable, choose the least

constraining value
§ I.e., the one that rules out the fewest values in

the remaining variables
§ Note that it may take some computation to

determine this! (E.g., rerunning filtering)

§ Why least rather than most?

WA
SA
NT Q

NSW
V

Ordering: Least Constraining Value

§ Value Ordering: Least Constraining Value
§ Given a choice of variable, choose the least

constraining value
§ I.e., the one that rules out the fewest values in

the remaining variables
§ Note that it may take some computation to

determine this! (E.g., rerunning filtering)

§ Why least rather than most?

§ Combining these ordering ideas makes
 1000 queens feasible

WA
SA
NT Q

NSW
V

Demo: Coloring -- Backtracking + Forward Checking + Ordering

