
CMSC 471
Artificial Intelligence

Search

KMA Solaiman – ksolaima@umbc.edu

Slide adoption courtesy: Tim Finin, Frank Ferraro (UMBC),
Charles R. Dyer (UW-Madison), Dan Klein and Pieter Abbeel (CS188, UC Berkeley)

mailto:ksolaima@umbc.edu

A General Searching Algorithm
Core ideas:
1. Maintain a list of

frontier (fringe) nodes
1. Nodes coming

into the frontier
have been
explored

2. Nodes going out
of the frontier
have not been
explored

2. Iteratively select
nodes from the
frontier and explore
unexplored nodes
from the frontier

3. Stop when you reach
your goal

Figure 3.3

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

22

Mobile User

Informed (Heuristic) Search

• Heuristic search
• Best-first search
–Greedy search
–Beam search
–A* Search

• Memory-conserving variations of A*
• Heuristic functions

Mobile User

Best-first search

• Search algorithm that improves depth-
first search by expanding most promising
node chosen according to heuristic rule

• Order nodes on Fringe list by increasing
value of an evaluation function, f(n),
incorporating domain-specific information

http://en.wikipedia.org/wiki/Best_first_search
Mobile User

Best-first search

• Search algorithm that improves depth-
first search by expanding most promising
node chosen according to heuristic rule

• Order nodes on Fringe list by increasing
value of an evaluation function, f(n),
incorporating domain-specific information

• This is a generic way of referring to the
class of informed methods

http://en.wikipedia.org/wiki/Best_first_search

Greedy best first search
• A greedy algorithm makes locally optimal choices in hope of

finding a global optimum
• Uses evaluation function f(n) = h(n), sorting nodes by

increasing values of f
• Selects node to expand appearing closest to goal (i.e., node

with smallest f value)
• Not complete
• Not admissible, as in example
– Assume arc costs = 1, greedy search finds goal g, with solution cost

of 5
–Optimal solution is path to goal with cost 3

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Admissible_decision_rule
Mobile User

Greedy best first search example

• Proof of non-admissibility
– Assume arc costs = 1, greedy

search finds goal g, with
solution cost of 5

– Optimal solution is path to
goal with cost 3

a

hb

c

d

e

g

i

g2

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0

Mobile User

Greedy best first search example

• Makes locally optimal choices at each step based on the current
information and do not reconsider past decisions.

• Once a greedy algorithm makes a choice and moves to the next
step, it does not go back to reconsider or explore alternative
paths. In some cases, they can get stuck in local optima or
suboptimal solutions.

• If fails to find a path to the goal, then the chosen path based on
the heuristic did not lead to a solution. In such cases, the
algorithm may terminate without finding a solution or may need
to be modified to explore alternative paths, possibly
incorporating backtracking, to improve its search capabilities.

Mobile User

Beam search
• Instead of picking one child per iteration, it expands k

number of children, in parallel.
• Use evaluation function f(n), but maximum size of the

nodes list is k, a fixed constant
• Only keep k best nodes as candidates for expansion,

discard rest
• k is the beam width
• More space efficient than greedy search, but may

discard nodes on a solution path
• As k increases, approaches best first search
• Complete?
• Admissible?

http://en.wikipedia.org/wiki/Beam_search
Mobile User

Beam search
• Instead of picking one child per iteration, it expands k

number of children, in parallel.
• Use evaluation function f(n), but maximum size of the

nodes list is k, a fixed constant
• Only keep k best nodes as candidates for expansion,

discard rest
• k is the beam width
• More space efficient than greedy search, but may

discard nodes on a solution path
• As k increases, approaches best first search
• Not complete
• Not admissible

http://en.wikipedia.org/wiki/Beam_search

We’ve got to be able to do
better, right?

Let’s think about car trips…

A* Search
Use an evaluation function

f(n) = g(n) + h(n)

minimal-cost path from
the start state to state n

cost estimate from state n
to the goal

estimated total cost from
start to goal via state n

Mobile User

A* Search
•Use as an evaluation function

f(n) = g(n) + h(n)
•g(n) = minimal-cost path from

the start state to state n
•Ranks nodes on search frontier by

estimated cost of solution from
start node via given node to goal
•Combining UCS and Greedy

S

BA

D
G

1 5 8

3

0

1

5

C

1

9

4

5
8

9

g(d)=4
h(d)=9
f(d)=13

C is chosen next to expand

E

7

8

g(b)=5
h(b)=5
f(d)=10

g(c)=8
h(c)=1
f(c)=9

A* Pseudo-code
1 Put the start node S on the nodes list, called OPEN
2 If OPEN is empty, exit with failure
3 Select node in OPEN with minimal f(n) and place on CLOSED
4 If n is a goal node, collect path back to start and stop
5 Expand n, generating all its successors and attach to them

pointers back to n. For each successor n' of n
1 If n’ not already on OPEN or CLOSED
• put n' on OPEN
• compute h(n'), g(n')=g(n)+ c(n, n'), f(n')=g(n')+h(n')

2 If n’ already on OPEN or CLOSED and if g(n') is lower for new
version of n', then:
• Redirect pointers backward from n’ on path with lower g(n’)
• Put n' on OPEN

GREEDY VS A*

S

CBA

D GE

1 5 8

9 4 5
3
7

8

8 4 3

¥¥ 0

start state

goal state

arc cost

h value

0

1

4 8 9

85

g value (current)

Mobile User

Greedy search

f(n) = h(n)
node expanded nodes list
 { S(8) }

what’s next???

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

Greedy search

f(n) = h(n)
node expanded nodes list
 { S(8) }
 S { C(3) B(4) A(8) }
 C { G(0) B(4) A(8) }
 G { B(4) A(8) }

• Solution path found is S C G, 3 nodes expanded.
• See how fast the search is!! But it is NOT optimal.

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

A* search
f(n) = g(n) + h(n)

node exp. nodes list
 { S(8) }

What’s next?

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

A* search
f(n) = g(n) + h(n)

node exp. nodes list
 { S(8) }

 S { A(9) B(9) C(11) }
 What’s next?

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

h(S)=8
h(A)=8
h(B)=4
h(C)=3
h(D)=inf
h(E)=inf
h(G)=0

h(n)

A* search
f(n) = g(n) + h(n)

node exp. nodes list
 { S(8) }

 S { A(9) B(9) C(11) }
 A { B(9) G(10) C(11) D(inf) E(inf) }

 What’s next?

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

A* search
f(n) = g(n) + h(n)

node exp. nodes list
 { S(8) }

 S { A(9) B(9) C(11) }
 A { B(9) G(10) C(11) D(inf) E(inf) }

 B { G(9) G(10) C(11) D(inf) E(inf) }

 What’s next?

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

Mobile User

A* search
f(n) = g(n) + h(n)

node exp. nodes list
 { S(8) }
 S { A(9) B(9) C(11) }
 A { B(9) G(10) C(11) D(inf) E(inf) }
 B { G(9) G(10) C(11) D(inf) E(inf) }
 G { C(11) D(inf) E(inf) }

• Solution path found is S B G, 4 nodes expanded..
• Still pretty fast. And optimal, too.

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

Mobile User

When should A* terminate?

• Should we stop when we enqueue a goal?

• No: only stop when we dequeue a goal

Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

ℎ(𝑛) is admissible iff ℎ 𝑛 ≤ the lowest actual
cost from 𝑛-to-goal

ℎ(𝑛) is consistent iff
ℎ 𝑛 ≤ lowestcost 𝑛, 𝑛′ + ℎ(𝑛!)

IS A HEURISTIC ADMISSIBLE?

Example search space

S

CBA

D GE

Example search space

S

CBA

D GE

start state

goal state

Example search space

S

CBA

D GE

start state

1 5 8

9 4 5
3
7

arc cost

goal state

Example search space

S

CBA

D GE

start state

1 5 8

9 4 5
3
7

arc cost

goal state

0

1 85

4 8 9
g value (current)

Example search space

S

CBA

D GE

1 5 8

9 4 5
3
7

8

8 4 3

¥¥ 0

start state

goal state

arc cost

h value

0

1

4 8 9

85

g value (current)

Example search space

S

CBA

D GE

1 5 8

9 4 5
3
7

8

8 4 3

¥¥ 0

start state

goal state

arc cost

h value

parent pointer
(current) 0

1

4 8 9

85

g value (current)

Example

n g(n) h(n) f(n) h*(n)
S 0 8 8 9

• h*(n) is (hypothetical) perfect heuristic (an oracle)
• Since h(n) <= h*(n) for all n, h is admissible (optimal)
• Optimal path = S B G with cost 9

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

Example

n g(n) h(n) f(n) h*(n)
S 0 8 8 9
A 1 8 9 9
B 5 4 9 4
C 8 3 11 5
D 4 inf inf inf
E 8 inf inf inf
G 9 0 9 0

• h*(n) is (hypothetical) perfect heuristic (an oracle)
• Since h(n) <= h*(n) for all n, h is admissible (optimal)
• Optimal path = S B G with cost 9

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

The table and graph show
values for the entire space,
but we must discover or
compute them during the
search

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done
• Null heuristic: If h(n) = 0 for all n, then it is an admissible

heuristic and A* acts like uniform-cost search

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done
• Null heuristic: If h(n) = 0 for all n, then it is an admissible

heuristic and A* acts like uniform-cost search
• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal

nodes, then h2 is a better heuristic than h1

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done
• Null heuristic: If h(n) = 0 for all n, then it is an admissible

heuristic and A* acts like uniform-cost search
• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal

nodes, then h2 is a better heuristic than h1
– If A1* uses h1, and A2* uses h2, then every node

expanded by A2* is also expanded by A1*
 i.e., A1 expands at least as many nodes as A2*
–We say that A2* is better informed than A1*

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done
• Null heuristic: If h(n) = 0 for all n, then it is an admissible

heuristic and A* acts like uniform-cost search
• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal

nodes, then h2 is a better heuristic than h1
– If A1* uses h1, and A2* uses h2, then every node

expanded by A2* is also expanded by A1*
 i.e., A1 expands at least as many nodes as A2*
–We say that A2* is better informed than A1*
• The closer h to h*, the fewer extra nodes expanded

Is A* optimal?

Is A* optimal?

• What went wrong?
• Actual bad goal cost < estimated good goal cost
• We need estimates to be less than actual costs!

A*
• Pronounced “a star”
• h is admissible when h(n) <= h*(n) holds
–h*(n) = true cost of minimal cost path from n to a goal

• Using an admissible heuristic guarantees that 1st
solution found will be an optimal one
–With an admissible heuristic, A* is cost-optimal

• A* is complete whenever branching factor is finite
and every action has fixed, positive cost
• A* is admissible

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of
Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2): 100–107.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers

Proof of the optimality of A*

• Assume:
– A is an optimal goal node
– B is a suboptimal goal node
– h is admissible

• Claim:
– A will exit the fringe before B

Proof of the optimality of A*
• Proof:
– Imagine B is on the fringe
–Some ancestor n of A is on

the fringe, too (maybe A!)
–Claim:

n will be expanded before B
1. f(n) is less or equal to f(A)

f(n) = g(n) + h(n) Definition of f-cost
f(n) <= g(A) Admissibility of h
f(A) = g(A) h is 0 at goal, h(A)=0

We would not take the step if f(n) > g(A),
and that is condition of admissibility

Proof of the optimality of A*
• Proof:
– Imagine B is on the fringe
–Some ancestor n of A is on

the fringe, too (maybe A!)
–Claim:

n will be expanded before B
1. f(n) is less or equal to f(A)
2. f(A) < f(B)

g(A) < g(B) as B is suboptimal
f(A) < f(B) h is 0 at goal,
 h(A)=h(B)=0

Proof of the optimality of A*
• Proof:
– Imagine B is on the fringe
–Some ancestor n of A is on

the fringe, too (maybe A!)
–Claim:

n will be expanded before B
1. f(n) <= f(A)
2. f(A) < f(B)

f(n) <= f(A) < f(B)
So n expands before B

Proof of the optimality of A*
• Proof:
– Imagine B is on the fringe
– Some ancestor n of A is on the

fringe, too (maybe A!)
– Claim: n will be expanded before B

1. f(n) <= f(A)
2. f(A) < f(B)
3. n expands before B

– All ancestors of A expand before B
– A expands before B
– So A* search is optimal

Proof of the optimality of A*
• Proof:
– Imagine B is on the fringe
– Some ancestor n of A is on the

fringe, too (maybe A!)
– Claim: n will be expanded before B

1. f(n) <= f(A)
2. f(A) < f(B)
3. n expands before B

– All ancestors of A expand before B
– A expands before B
– So A* search is optimal

Other ways to do it is
Proof by contradiction

How to find good heuristics
Some options (mix-and-match):
• If h1(n) < h2(n) <= h*(n) for all n, h2 is better than h1

– h2 dominates h1
• Relaxing problem: remove constraints for easier

problem; use its solution cost as heuristic function
• Max of two admissible heuristics is a Combining

heuristics: admissible heuristic, and it’s better!
• Use statistical estimates to compute h; may lose

admissibility
• Identify good features, then use machine learning to

find heuristic function; also may lose admissibility

Pruning:
Dealing with Large Search Spaces

Cycle pruning

Don’t add a node to the fringe
if you’ve already expanded it
(it’s already on a path you’ve
considered/are considering)

Q: What type of search-space
would this be approach be

applicable for?

Multiple-path pruning

Pruning:
Dealing with Large Search Spaces

Cycle pruning

Don’t add a node to the fringe
if you’ve already expanded it
(it’s already on a path you’ve
considered/are considering)

Q: What type of search-space
would this be approach be

applicable for?

Multiple-path pruning

Core idea: there may be
multiple possible solutions,

but you only need one

Maintain an “explored”
(sometimes called “closed”)
set of nodes at the ends of

paths; discard a path if a path
node appears in this set

Q: Does this return an optimal
solution?

Optimality with Multiple-Path Pruning

Some options to find the optimal solution
(pulled from PM 3.7.2)
• Make sure that the first path found to any

node is a lowest-cost path to that node, then
prune all subsequent paths found to that
node. OR

Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled
from Ch 3.7.2)
• Make sure that the first path found to any node is

a lowest-cost path to that node, then prune all
subsequent paths found to that node. OR

• If the search algorithm finds a lower-cost path to
a node than one already found, it could remove
all paths that used the higher-cost path to the
node. OR

Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled from Ch
3.7.2)
• Make sure that the first path found to any node is a lowest-

cost path to that node, then prune all subsequent paths
found to that node. OR

• If the search algorithm finds a lower-cost path to a node
than one already found, it could remove all paths that used
the higher-cost path to the node. OR

• Whenever the search finds a lower-cost path to a node
than a path to that node already found, it could incorporate
a new initial section on the paths that have extended the
initial path.

A* and Multiple-Path Pruning

If ℎ 𝑛 is consistent, A* with multiple-path
pruning will find an optimal solution

Core Idea: Why?

Mobile User

Dealing with hard problems
• For large problems, A* may require too much

space
• Variations conserving memory: IDA* and SMA*
• IDA*, iterative deepening A*, uses successive

iteration with growing limits on f, e.g.
– A* but don’t consider a node n where f(n) >10
– A* but don’t consider a node n where f(n) >20
– A* but don’t consider a node n where f(n) >30, ...

• SMA* -- Simplified Memory-Bounded A*
– Uses queue of restricted size to limit memory use

Summary: Informed search
•Best-first search is general search where minimum-cost

nodes (w.r.t. some measure) are expanded first
•Greedy search uses minimal estimated cost h(n) to goal

state as measure; reduces search time, but is neither
complete nor optimal
•A* search combines uniform-cost search & greedy

search: f(n) = g(n) + h(n). Handles state repetitions &
h(n) never overestimates
–A* is complete & optimal, but space complexity high
–Time complexity depends on quality of heuristic function
–IDA* and SMA* reduce the memory requirements of A*

Summary (Fig 3.11)

