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A General Searching Algorithm
Core ideas:
1. Maintain a list of 

frontier (fringe) nodes
1. Nodes coming 

into the frontier 
have been 
explored

2. Nodes going out 
of the frontier 
have not been 
explored

2. Iteratively select 
nodes from the 
frontier and explore 
unexplored nodes 
from the frontier

3. Stop when you reach 
your goal

Figure 3.3



Uniform Cost Search
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g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue 
sorted by g(n)
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Informed (Heuristic) Search

• Heuristic search
• Best-first search
–Greedy search
–Beam search
–A* Search

• Memory-conserving variations of A*
• Heuristic functions

Mobile User



Best-first search

• Search algorithm that improves depth-
first search by expanding most promising 
node chosen according to heuristic rule

• Order nodes on Fringe list by increasing 
value of an evaluation function, f(n), 
incorporating domain-specific information

http://en.wikipedia.org/wiki/Best_first_search
Mobile User



Best-first search

• Search algorithm that improves depth-
first search by expanding most promising 
node chosen according to heuristic rule

• Order nodes on Fringe list by increasing 
value of an evaluation function, f(n), 
incorporating domain-specific information

• This is a generic way of referring to the 
class of informed methods

http://en.wikipedia.org/wiki/Best_first_search


Greedy best first search
• A greedy algorithm makes locally optimal choices in hope of 

finding a global optimum
• Uses evaluation function f(n) = h(n), sorting nodes by 

increasing values of f
• Selects node to expand appearing closest to goal (i.e., node 

with smallest f value) 
• Not complete 
• Not admissible, as in example
– Assume arc costs = 1, greedy search finds goal g, with solution cost 

of 5
–Optimal solution is path to goal with cost 3

 

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Admissible_decision_rule
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Greedy best first search example

• Proof of non-admissibility
– Assume arc costs = 1, greedy 

search finds goal g, with 
solution cost of 5

– Optimal solution is path to 
goal with cost 3
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Greedy best first search example

• Makes locally optimal choices at each step based on the current 
information and do not reconsider past decisions.

• Once a greedy algorithm makes a choice and moves to the next 
step, it does not go back to reconsider or explore alternative 
paths. In some cases, they can get stuck in local optima or 
suboptimal solutions. 

• If fails to find a path to the goal, then the chosen path based on 
the heuristic did not lead to a solution. In such cases, the 
algorithm may terminate without finding a solution or may need 
to be modified to explore alternative paths, possibly 
incorporating backtracking, to improve its search capabilities.
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Beam search
• Instead of picking one child per iteration, it expands k 

number of children, in parallel.
• Use evaluation function f(n), but maximum size of the 

nodes list is k, a fixed constant 
• Only keep k best nodes as candidates for expansion, 

discard rest 
• k is the beam width
• More space efficient than greedy search, but may 

discard nodes on a solution path 
• As k increases, approaches best first search
• Complete?
• Admissible?

http://en.wikipedia.org/wiki/Beam_search
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Beam search
• Instead of picking one child per iteration, it expands k 

number of children, in parallel.
• Use evaluation function f(n), but maximum size of the 

nodes list is k, a fixed constant 
• Only keep k best nodes as candidates for expansion, 

discard rest 
• k is the beam width
• More space efficient than greedy search, but may 

discard nodes on a solution path 
• As k increases, approaches best first search
• Not complete 
• Not admissible

http://en.wikipedia.org/wiki/Beam_search


We’ve got to be able to do 
better, right?

Let’s think about car trips…



A* Search
Use an evaluation function

f(n) = g(n) + h(n)

minimal-cost path from 
the start state to state n

cost estimate from state n 
to the goal

estimated total cost from 
start to goal via state n
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A* Search
•Use as an evaluation function

f(n) = g(n) + h(n)
•g(n) = minimal-cost path from

the start state to state n
•Ranks nodes on search frontier by 

estimated cost of solution from 
start node via given node to goal
•Combining UCS and Greedy
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A* Pseudo-code
1 Put the start node S on the nodes list, called OPEN 
2 If OPEN is empty, exit with failure 
3 Select node in OPEN with minimal f(n) and place on CLOSED
4 If n is a goal node, collect path back to start and stop
5 Expand n, generating all its successors and attach to them 

pointers back to n.  For each successor n' of n 
1 If n’ not already on OPEN or CLOSED
• put n' on OPEN
• compute h(n'),  g(n')=g(n)+ c(n, n'),  f(n')=g(n')+h(n')

2 If n’ already on OPEN or CLOSED and if g(n') is lower for new 
version of n', then:
• Redirect pointers backward from n’ on path with lower g(n’)
• Put n' on OPEN



GREEDY VS A*
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Greedy search

f(n) = h(n) 
node expanded    nodes list
               { S(8) }

what’s next???
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Greedy search

f(n) = h(n) 
node expanded    nodes list
               { S(8) }
     S         { C(3) B(4) A(8) }
     C         { G(0) B(4) A(8) }
     G         { B(4) A(8) }

• Solution path found is S C G, 3 nodes expanded. 
• See how fast the search is!! But it is NOT optimal. 
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A* search
f(n) = g(n) + h(n) 

node exp.     nodes list
           { S(8) }

What’s next?
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A* search
f(n) = g(n) + h(n) 

node exp.     nodes list
           { S(8) }

 S         { A(9) B(9) C(11) }
 What’s next?
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A* search
f(n) = g(n) + h(n) 

node exp.     nodes list
           { S(8) }

 S         { A(9) B(9) C(11) }
 A         { B(9) G(10) C(11) D(inf) E(inf) }

 What’s next?
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A* search
f(n) = g(n) + h(n) 

node exp.     nodes list
           { S(8) }

 S         { A(9) B(9) C(11) }
 A         { B(9) G(10) C(11) D(inf) E(inf) }

 B         { G(9) G(10) C(11) D(inf) E(inf) }     

 What’s next?
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A* search
f(n) = g(n) + h(n) 

node exp.     nodes list
           { S(8) }
 S         { A(9) B(9) C(11) }
 A         { B(9) G(10) C(11) D(inf) E(inf) }
 B         { G(9) G(10) C(11) D(inf) E(inf) }     
 G         { C(11) D(inf) E(inf) }

• Solution path found is S B G, 4 nodes expanded..  
• Still pretty fast. And optimal, too.
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When should A* terminate?

• Should we stop when we enqueue a goal?

• No: only stop when we dequeue a goal



Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛 
to an estimated cost from 𝑛-to-goal

ℎ(𝑛) is admissible iff ℎ 𝑛 ≤ the lowest actual 
cost from 𝑛-to-goal

ℎ(𝑛) is consistent iff 
ℎ 𝑛 ≤ lowestcost 𝑛, 𝑛′ + ℎ(𝑛!)



IS A HEURISTIC ADMISSIBLE?



Example search space
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Example search space
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Example search space
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Example search space
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Example search space
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Example search space
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Example

n  g(n)  h(n)  f(n)       h*(n)
S  0  8  8   9

• h*(n) is (hypothetical) perfect heuristic (an oracle)
• Since h(n) <= h*(n) for all n, h is admissible (optimal)
• Optimal path = S B G with cost 9
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Example

n  g(n)  h(n)  f(n)       h*(n)
S  0  8  8   9
A  1  8  9   9
B  5  4  9   4
C  8  3  11   5
D  4  inf  inf   inf
E  8  inf  inf   inf
G  9  0  9   0

• h*(n) is (hypothetical) perfect heuristic (an oracle)
• Since h(n) <= h*(n) for all n, h is admissible (optimal)
• Optimal path = S B G with cost 9
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The table and graph show 
values for the entire space, 
but we must discover or 
compute them during the 
search



Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an 

optimal solution path expanded; no extra work is done



Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an 

optimal solution path expanded; no extra work is done
• Null heuristic: If h(n) = 0 for all n, then it is an admissible 

heuristic and A* acts like uniform-cost search



Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an 

optimal solution path expanded; no extra work is done
• Null heuristic: If h(n) = 0 for all n, then it is an admissible 

heuristic and A* acts like uniform-cost search
• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal 

nodes, then h2 is a better heuristic than h1 



Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an 

optimal solution path expanded; no extra work is done
• Null heuristic: If h(n) = 0 for all n, then it is an admissible 

heuristic and A* acts like uniform-cost search
• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal 

nodes, then h2 is a better heuristic than h1 
– If A1* uses h1, and A2* uses h2, then every node 

expanded by A2* is also expanded by A1* 
 i.e., A1 expands at least as many nodes as A2*
–We say that A2* is better informed than A1*



Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an 

optimal solution path expanded; no extra work is done
• Null heuristic: If h(n) = 0 for all n, then it is an admissible 

heuristic and A* acts like uniform-cost search
• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal 

nodes, then h2 is a better heuristic than h1 
– If A1* uses h1, and A2* uses h2, then every node 

expanded by A2* is also expanded by A1* 
 i.e., A1 expands at least as many nodes as A2*
–We say that A2* is better informed than A1*
• The closer h to h*, the fewer extra nodes expanded 



Is A* optimal?



Is A* optimal?

• What went wrong? 
• Actual bad goal cost < estimated good goal cost 
• We need estimates to be less than actual costs!



A*
• Pronounced “a star” 
• h is admissible when h(n) <= h*(n) holds
–h*(n) = true cost of minimal cost path from n to a goal

• Using an admissible heuristic guarantees that 1st 
solution found will be an optimal one
–With an admissible heuristic, A* is cost-optimal

• A* is complete whenever branching factor is finite 
and every action has fixed, positive cost 
• A* is admissible 

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of 
Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2): 100–107.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers


Proof of the optimality of A*

• Assume: 
– A is an optimal goal node 
– B is a suboptimal goal node 
– h is admissible 

• Claim: 
– A will exit the fringe before B



Proof of the optimality of A*
• Proof: 
– Imagine B is on the fringe 
–Some ancestor n of A is on 

the fringe, too (maybe A!) 
–Claim: 

n will be expanded before B 
1. f(n) is less or equal to f(A)

f(n) = g(n) + h(n) Definition of f-cost
f(n) <= g(A) Admissibility of h
f(A) = g(A) h is 0 at goal, h(A)=0

We would not take the step if f(n) > g(A), 
and that is condition of admissibility



Proof of the optimality of A*
• Proof: 
– Imagine B is on the fringe 
–Some ancestor n of A is on 

the fringe, too (maybe A!) 
–Claim: 

n will be expanded before B 
1. f(n) is less or equal to f(A)
2. f(A) < f(B)

g(A) < g(B) as B is suboptimal
f(A) < f(B)  h is 0 at goal, 
  h(A)=h(B)=0



Proof of the optimality of A*
• Proof: 
– Imagine B is on the fringe 
–Some ancestor n of A is on 

the fringe, too (maybe A!) 
–Claim: 

n will be expanded before B 
1. f(n) <= f(A)
2. f(A) < f(B)

f(n) <= f(A) < f(B)
So n expands before B



Proof of the optimality of A*
• Proof: 
– Imagine B is on the fringe 
– Some ancestor n of A is on the 

fringe, too (maybe A!) 
– Claim: n will be expanded before B 

1. f(n) <= f(A)
2. f(A) < f(B)
3. n expands before B

– All ancestors of A expand before B 
– A expands before B 
– So A* search is optimal



Proof of the optimality of A*
• Proof: 
– Imagine B is on the fringe 
– Some ancestor n of A is on the 

fringe, too (maybe A!) 
– Claim: n will be expanded before B 

1. f(n) <= f(A)
2. f(A) < f(B)
3. n expands before B

– All ancestors of A expand before B 
– A expands before B 
– So A* search is optimal

Other ways to do it is 
Proof by contradiction



How to find good heuristics
Some options (mix-and-match):
• If h1(n) < h2(n) <= h*(n) for all n, h2 is better than h1

– h2 dominates h1
• Relaxing problem: remove constraints for easier 

problem; use its solution cost as heuristic function
• Max of two admissible heuristics is a Combining 

heuristics: admissible heuristic, and it’s better!
• Use statistical estimates to compute h; may lose 

admissibility
• Identify good features, then use machine learning to 

find heuristic function; also may lose admissibility



Pruning: 
Dealing with Large Search Spaces

Cycle pruning

Don’t add a node to the fringe 
if you’ve already expanded it 
(it’s already on a path you’ve 
considered/are considering)

Q: What type of search-space 
would this be approach be 

applicable for?

Multiple-path pruning



Pruning: 
Dealing with Large Search Spaces

Cycle pruning

Don’t add a node to the fringe 
if you’ve already expanded it 
(it’s already on a path you’ve 
considered/are considering)

Q: What type of search-space 
would this be approach be 

applicable for?

Multiple-path pruning

Core idea: there may be 
multiple possible solutions, 

but you only need one

Maintain an “explored” 
(sometimes called “closed”) 
set of nodes at the ends of 

paths; discard a path if a path 
node appears in this set

Q: Does this return an optimal 
solution?



Optimality with Multiple-Path Pruning

Some options to find the optimal solution 
(pulled from PM 3.7.2)
• Make sure that the first path found to any 

node is a lowest-cost path to that node, then 
prune all subsequent paths found to that 
node. OR



Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled 
from Ch 3.7.2)
• Make sure that the first path found to any node is 

a lowest-cost path to that node, then prune all 
subsequent paths found to that node. OR

• If the search algorithm finds a lower-cost path to 
a node than one already found, it could remove 
all paths that used the higher-cost path to the 
node. OR



Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled from Ch 
3.7.2)
• Make sure that the first path found to any node is a lowest-

cost path to that node, then prune all subsequent paths 
found to that node. OR

• If the search algorithm finds a lower-cost path to a node 
than one already found, it could remove all paths that used 
the higher-cost path to the node. OR

• Whenever the search finds a lower-cost path to a node 
than a path to that node already found, it could incorporate 
a new initial section on the paths that have extended the 
initial path.



A* and Multiple-Path Pruning

If ℎ 𝑛  is consistent, A* with multiple-path 
pruning will find an optimal solution

Core Idea: Why?
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Dealing with hard problems
• For large problems, A* may require too much

space
• Variations conserving memory: IDA* and SMA*
• IDA*, iterative deepening A*, uses successive

iteration with growing limits on f, e.g.
– A* but don’t consider a node n where f(n) >10
– A* but don’t consider a node n where f(n) >20
– A* but don’t consider a node n where f(n) >30, ...

• SMA* -- Simplified Memory-Bounded A*
– Uses queue of restricted size to limit memory use





Summary: Informed search
•Best-first search is general search where minimum-cost 

nodes (w.r.t. some measure) are expanded first
•Greedy search uses minimal estimated cost h(n) to goal 

state as measure; reduces search time, but is neither 
complete nor optimal
•A* search combines uniform-cost search & greedy 

search: f(n) = g(n) + h(n).  Handles state repetitions & 
h(n) never overestimates
–A* is complete & optimal, but space complexity high
–Time complexity depends on quality of heuristic function
–IDA* and SMA* reduce the memory requirements of A* 



Summary (Fig 3.11)




