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A General Searching Algorithm
Core ideas:
1. Maintain a list of 

frontier (fringe) nodes
1. Nodes coming 

into the frontier 
have been 
explored

2. Nodes going out 
of the frontier 
have not been 
explored

2. Iteratively select 
nodes from the 
frontier and explore 
unexplored nodes 
from the frontier

3. Stop when you reach 
your goal

Figure 3.3



Uniform Cost Search
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g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue 
sorted by g(n)
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Uniform-Cost Search 
 Expanded node  Nodes list

    { S0 }
   S0 { B1 A3 C8 }
   B1 { A3 C8 G21 }
   A3 { D6 C8 E10 G18 G21 } 
   D6 { C8 E10 G18 G21 }
   C8 { E10 G13 G18 G21 }       
   E10 { G13 G18 G21 }
   G13 { G18 G21 }                             
    Solution path found is S C G, cost 13
    Number of nodes expanded (including goal node) = 7

priority queue

https://en.wikipedia.org/wiki/Priority_queue


…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest 

solution!
– If that solution costs C* and arcs cost at least e , 

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective 

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes!  (Proof next lecture via A*)

b

C*/e  “tiers”
g £ 3

g £ 2
g £ 1
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Depth-First Iterative Deepening (DFID)
• Do DFS to depth 0, then (if no solution) DFS to 

depth 1, etc.
• Usually used with a tree search
• Complete 
• Optimal/Admissible if all operators have unit 

cost, else finds shortest solution (like BFS)
• Time complexity a bit worse than BFS or DFS

Nodes near top of search tree generated many times, 
but since almost all nodes are near tree bottom, 
worst case time complexity still exponential, O(bd) 



• If branching factor is b and solution is at depth d, 
then nodes at depth d are generated once, nodes 
at depth d-1 are generated twice, etc. 
–Hence bd + 2b(d-1) + ... + db <= bd / (1 - 1/b)2 = O(bd). 
– If b=4, worst case is 1.78 * 4d, i.e., 78% more nodes 

searched than exist at depth d (in worst case)
• Linear space complexity, O(bd), like DFS 
• Has advantages of BFS (completeness) and DFS 

(i.e., limited space, finds longer paths quickly) 
• Preferred for large state spaces where solution 

depth is unknown

Depth-First Iterative Deepening (DFID)



How they perform
• Depth-First Search: 

– 4 Expanded nodes: S A D E G 
– Solution found: S A G (cost 18)

• Breadth-First Search: 
– 7 Expanded nodes: S A B C D E G 
– Solution found: S A G (cost 18)

• Uniform-Cost Search: 
– 7 Expanded nodes: S A D B C E G 
– Solution found: S C G (cost 13)
Only uninformed search that worries about costs

• Iterative-Deepening Search: 
– 10 nodes expanded: S S A B C S A D E G 
– Solution found: S A G (cost 18)



Searching Backward from Goal

• Usually a successor function is reversible
– i.e., can generate a node’s predecessors in graph

• If we know a single goal (rather than a goal’s  
properties), we could search backward to the 
initial state

• It might be more efficient
– Depends on whether the graph fans in or out



Bi-directional search

•Alternate searching from the start state toward the goal 
and from the goal state toward the start
• Stop when the frontiers intersect
•Works well only when there are unique start & goal states
• Requires ability to generate “predecessor” states
• Can (sometimes) lead to finding a solution more quickly



Comparing Search Strategies 



Summary

• Search in a problem space is at the heart of 
many AI systems

• Formalizing the search in terms of states, 
actions, and goals is key

• The simple “uninformed” algorithms we 
examined can be augmented to heuristics to 
improve them in various ways

• But for some problems, a simple algorithm is 
best



Informed (Heuristic) Search

• Heuristic search
• Best-first search
–Greedy search
–Beam search
–A* Search

• Memory-conserving variations of A*
• Heuristic functions



Big idea: heuristic
Merriam-Webster's Online Dictionary

Heuristic (pron. \hyu-’ris-tik\):  adj. [from Greek heuriskein to discover] 
involving or serving as an aid to learning, discovery, or problem-solving 
by experimental and especially trial-and-error methods 

The Free On-line Dictionary of Computing (15Feb98) 
heuristic  1. <programming> A rule of thumb, simplification or educated 
guess that reduces or limits the search for solutions in domains that are 
difficult and poorly understood. Unlike algorithms, heuristics do not 
guarantee feasible solutions and are often used with no theoretical 
guarantee. 2. <algorithm> approximation algorithm. 

From WordNet (r) 1.6 
heuristic adj 1: (CS) relating to or using a heuristic rule 2: of or relating to 
a general formulation that serves to guide investigation [ant: algorithmic] 
n : a commonsense rule (or set of rules) intended to increase the 
probability of solving some problem [syn: heuristic rule, heuristic 
program] 

https://en.wikipedia.org/wiki/Heuristic


Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛 
to an estimated cost from 𝑛-to-goal
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Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛 
to an estimated cost from 𝑛-to-goal

ℎ(𝑛) is admissible iff ℎ 𝑛 ≤ the lowest actual 
cost from 𝑛-to-goal

ℎ(𝑛) is consistent iff 
ℎ 𝑛 ≤ lowestcost 𝑛, 𝑛′ + ℎ(𝑛!)



Informed methods add 
domain-specific information

• Select best path along which to continue 
searching

• h(n): estimates goodness of node n
• h(n) = estimated cost (or distance) of 

minimal cost path from n to a goal state. 
• Based on domain-specific information and 

computable from current state description 
that estimates how close we are to a goal



Heuristics
• All domain knowledge used in search is encoded 

in the heuristic function, h(<node>)
• Examples:
–8-puzzle: number of tiles out of place 
–8-puzzle: sum of distances each tile is from its goal
–Missionaries & Cannibals: # people on starting river 

bank
• In general
– ℎ 𝑛 ≥ 0	for all nodes n 
– ℎ(𝑛) = 0 implies that n is a goal node 
– ℎ 𝑛 = ∞ implies n is a dead-end that can’t lead to 

goal



Heuristics for 8-puzzle 

Misplaced 
Tiles
Heuristic

• Three tiles are misplaced (the 3, 8, and 1) 
so heuristic function evaluates to 3

• Heuristic says that it thinks a solution may 
be available in 3 or more moves

• Very rough estimate, but easy to calculate

3 2 8
4 5 6
7 1

1 2 3
4 5 6
7 8

Goal 
State

Current 
State

h = 3 

(not including 
the blank)

3 2 8
4 5 6
7 1

3 tiles are not 
where they need 
to be



Heuristics for 8-puzzle 

Manhattan 
Distance (not 
including the 
blank)

• The 3, 8 and 1 tiles are misplaced (by 2, 3, 
and 3 steps)  so the heuristic function 
evaluates to 8

• Heuristic says that it thinks a solution may 
be available in just 8 more moves.

• The misplaced heuristic’s value is 3

3 2 8
4 5 6
7 1

1 2 3
4 5 6
7 8

Goal 
State

Current 
State

3 3

8

8

1

1

2 spaces

3 spaces

3 spaces

Total 8



5

6 4

3

4 2

1 3 3

0 2

We can use heuristics 
to guide search

Manhattan Distance 
heuristic helps us 
quickly find a 
solution to the 8-
puzzle

h(n)

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal



Best-first search

• Search algorithm that improves depth-
first search by expanding most promising 
node chosen according to heuristic rule

• Order nodes on Fringe list by increasing 
value of an evaluation function, f(n), 
incorporating domain-specific information

http://en.wikipedia.org/wiki/Best_first_search


Best-first search

• Search algorithm that improves depth-
first search by expanding most promising 
node chosen according to heuristic rule

• Order nodes on Fringe list by increasing 
value of an evaluation function, f(n), 
incorporating domain-specific information

• This is a generic way of referring to the 
class of informed methods

http://en.wikipedia.org/wiki/Best_first_search


Greedy best first search
• A greedy algorithm makes locally optimal choices in hope of finding 

a global optimum
• Uses evaluation function f(n) = h(n), sorting nodes by increasing 

values of f
• Selects node to expand appearing closest to goal (i.e., node with 

smallest f value) 
• Not complete as can end up in dead end when solution not found
• Not admissible, as in example
– Assume arc costs = 1, greedy search finds goal g, with solution cost of 5
– Optimal solution is path to goal with cost 3

 

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Admissible_decision_rule


Greedy best first search example

• Proof of non-admissibility
– Assume arc costs = 1, greedy 

search finds goal g, with 
solution cost of 5

– Optimal solution is path to 
goal with cost 3

 

a

hb

c

d

e

g

i

g2

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0



Greedy best first search example

• Makes locally optimal choices at each step based on the current 
information and do not reconsider past decisions.

• Once a greedy algorithm makes a choice and moves to the next 
step, it does not go back to reconsider or explore alternative 
paths. In some cases, they can get stuck in local optima or 
suboptimal solutions. 

• If fails to find a path to the goal, then the chosen path based on 
the heuristic did not lead to a solution. In such cases, the 
algorithm may terminate without finding a solution or may need 
to be modified to explore alternative paths, possibly 
incorporating backtracking, to improve its search capabilities.



Beam search
• Instead of picking one child per iteration, it expands k 

number of children, in parallel.
• Use evaluation function f(n), but maximum size of the 

nodes list is k, a fixed constant 
• Only keep k best nodes as candidates for expansion, 

discard rest 
• k is the beam width
• More space efficient than greedy search, but may 

discard nodes on a solution path 
• As k increases, approaches best first search
• Complete?
• Admissible?

http://en.wikipedia.org/wiki/Beam_search


Beam search
• Instead of picking one child per iteration, it expands k 

number of children, in parallel.
• Use evaluation function f(n), but maximum size of the 

nodes list is k, a fixed constant 
• Only keep k best nodes as candidates for expansion, 

discard rest 
• k is the beam width
• More space efficient than greedy search, but may 

discard nodes on a solution path 
• As k increases, approaches best first search
• Not complete 
• Not admissible

http://en.wikipedia.org/wiki/Beam_search


We’ve got to be able to do 
better, right?

Let’s think about car trips…



A* Search
Use an evaluation function

f(n) = g(n) + h(n)

minimal-cost path from 
the start state to state n

cost estimate from state n 
to the goal

estimated total cost from 
start to goal via state n



A* Search
•Use as an evaluation function

f(n) = g(n) + h(n)
•g(n) = minimal-cost path from

the start state to state n
•g(n) adds “breadth-first”term 

to evaluation function
•Ranks nodes on search frontier by 

estimated cost of solution from 
start node via given node to goal

S

BA

D
G

1 5 8

3

0

1

5

C

1

9

4

5
8

9

g(d)=4
h(d)=9
f(d)=13

E

7

8

g(b)=5
h(b)=5
f(d)=10

g(c)=8
h(c)=1
f(c)=9
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S

BA

D
G

1 5 8

3

0

1

5

C

1

9

4

5
8

9

g(d)=4
h(d)=9
f(d)=13

C is chosen next to expand

E

7

8

g(b)=5
h(b)=5
f(d)=10

g(c)=8
h(c)=1
f(c)=9



A* Search
•Use an evaluation function

f(n) = g(n) + h(n)

•g(n) term adds “breadth-first” component to evaluation 
function
•Ranks nodes on search frontier by estimated cost of solution 

from start node via given node to goal
•Not complete if h(n) can = ∞
• Is it admissible?

minimal-cost path from 
the start state to state n

cost estimate from state n 
to the goal

estimated total cost from 
start to goal via state n



A*
• Pronounced “a star” 
• h is admissible when h(n) <= h*(n) holds
–h*(n) = true cost of minimal cost path from n to a goal

• Using an admissible heuristic guarantees that 1st 
solution found will be an optimal one
–With an admissible heuristic, A* is cost-optimal

• A* is complete whenever branching factor is finite 
and every action has fixed, positive cost 
• A* is admissible 

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of 
Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2): 100–107.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers


Implementing A*

Q: Can this be an 
instance of our 
general search 

algorithm?

Figure 
3.3



Implementing A*

Q: Can this be an 
instance of our 
general search 

algorithm?

Figure 
3.3

A: Yup! Just make the 
fringe a priority 

queue ordered by 
𝑓(𝑛)



Alternative A* Pseudo-code
1 Put the start node S on the nodes list, called OPEN 
2 If OPEN is empty, exit with failure 
3 Select node in OPEN with minimal f(n) and place on CLOSED
4 If n is a goal node, collect path back to start and stop
5 Expand n, generating all its successors and attach to them 

pointers back to n.  For each successor n' of n 
1 If n’ not already on OPEN or CLOSED
• put n' on OPEN
• compute h(n'),  g(n')=g(n)+ c(n, n'),  f(n')=g(n')+h(n')

2 If n’ already on OPEN or CLOSED and if g(n') is lower for new 
version of n', then:
• Redirect pointers backward from n’ on path with lower g(n’)
• Put n' on OPEN



IS A HEURISTIC ADMISSIBLE?
Next class


