
CMSC 471
Artificial Intelligence

Search

KMA Solaiman – ksolaima@umbc.edu

Slide adoption courtesy: Tim Finin, Frank Ferraro (UMBC),
Charles R. Dyer (UW-Madison), Dan Klein and Pieter Abbeel (CS188, UC Berkeley)

mailto:ksolaima@umbc.edu

A General Searching Algorithm
Core ideas:
1. Maintain a list of

frontier (fringe) nodes
1. Nodes coming

into the frontier
have been
explored

2. Nodes going out
of the frontier
have not been
explored

2. Iteratively select
nodes from the
frontier and explore
unexplored nodes
from the frontier

3. Stop when you reach
your goal

Figure 3.3

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform-Cost Search
 Expanded node Nodes list

 { S0 }
 S0 { B1 A3 C8 }
 B1 { A3 C8 G21 }
 A3 { D6 C8 E10 G18 G21 }
 D6 { C8 E10 G18 G21 }
 C8 { E10 G13 G18 G21 }
 E10 { G13 G18 G21 }
 G13 { G18 G21 }
 Solution path found is S C G, cost 13
 Number of nodes expanded (including goal node) = 7

priority queue

https://en.wikipedia.org/wiki/Priority_queue

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

Depth-First Iterative Deepening (DFID)
• Do DFS to depth 0, then (if no solution) DFS to

depth 1, etc.
• Usually used with a tree search
• Complete
• Optimal/Admissible if all operators have unit

cost, else finds shortest solution (like BFS)
• Time complexity a bit worse than BFS or DFS

Nodes near top of search tree generated many times,
but since almost all nodes are near tree bottom,
worst case time complexity still exponential, O(bd)

• If branching factor is b and solution is at depth d,
then nodes at depth d are generated once, nodes
at depth d-1 are generated twice, etc.
–Hence bd + 2b(d-1) + ... + db <= bd / (1 - 1/b)2 = O(bd).
– If b=4, worst case is 1.78 * 4d, i.e., 78% more nodes

searched than exist at depth d (in worst case)
• Linear space complexity, O(bd), like DFS
• Has advantages of BFS (completeness) and DFS

(i.e., limited space, finds longer paths quickly)
• Preferred for large state spaces where solution

depth is unknown

Depth-First Iterative Deepening (DFID)

How they perform
• Depth-First Search:

– 4 Expanded nodes: S A D E G
– Solution found: S A G (cost 18)

• Breadth-First Search:
– 7 Expanded nodes: S A B C D E G
– Solution found: S A G (cost 18)

• Uniform-Cost Search:
– 7 Expanded nodes: S A D B C E G
– Solution found: S C G (cost 13)
Only uninformed search that worries about costs

• Iterative-Deepening Search:
– 10 nodes expanded: S S A B C S A D E G
– Solution found: S A G (cost 18)

Searching Backward from Goal

• Usually a successor function is reversible
– i.e., can generate a node’s predecessors in graph

• If we know a single goal (rather than a goal’s
properties), we could search backward to the
initial state

• It might be more efficient
– Depends on whether the graph fans in or out

Bi-directional search

•Alternate searching from the start state toward the goal
and from the goal state toward the start
• Stop when the frontiers intersect
•Works well only when there are unique start & goal states
• Requires ability to generate “predecessor” states
• Can (sometimes) lead to finding a solution more quickly

Comparing Search Strategies

Summary

• Search in a problem space is at the heart of
many AI systems

• Formalizing the search in terms of states,
actions, and goals is key

• The simple “uninformed” algorithms we
examined can be augmented to heuristics to
improve them in various ways

• But for some problems, a simple algorithm is
best

Informed (Heuristic) Search

• Heuristic search
• Best-first search
–Greedy search
–Beam search
–A* Search

• Memory-conserving variations of A*
• Heuristic functions

Big idea: heuristic
Merriam-Webster's Online Dictionary

Heuristic (pron. \hyu-’ris-tik\): adj. [from Greek heuriskein to discover]
involving or serving as an aid to learning, discovery, or problem-solving
by experimental and especially trial-and-error methods

The Free On-line Dictionary of Computing (15Feb98)
heuristic 1. <programming> A rule of thumb, simplification or educated
guess that reduces or limits the search for solutions in domains that are
difficult and poorly understood. Unlike algorithms, heuristics do not
guarantee feasible solutions and are often used with no theoretical
guarantee. 2. <algorithm> approximation algorithm.

From WordNet (r) 1.6
heuristic adj 1: (CS) relating to or using a heuristic rule 2: of or relating to
a general formulation that serves to guide investigation [ant: algorithmic]
n : a commonsense rule (or set of rules) intended to increase the
probability of solving some problem [syn: heuristic rule, heuristic
program]

https://en.wikipedia.org/wiki/Heuristic

Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

ℎ(𝑛) is admissible iff ℎ 𝑛 ≤ the lowest actual
cost from 𝑛-to-goal

Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

ℎ(𝑛) is admissible iff ℎ 𝑛 ≤ the lowest actual
cost from 𝑛-to-goal

ℎ(𝑛) is consistent iff
ℎ 𝑛 ≤ lowestcost 𝑛, 𝑛′ + ℎ(𝑛!)

Informed methods add
domain-specific information

• Select best path along which to continue
searching

• h(n): estimates goodness of node n
• h(n) = estimated cost (or distance) of

minimal cost path from n to a goal state.
• Based on domain-specific information and

computable from current state description
that estimates how close we are to a goal

Heuristics
• All domain knowledge used in search is encoded

in the heuristic function, h(<node>)
• Examples:
–8-puzzle: number of tiles out of place
–8-puzzle: sum of distances each tile is from its goal
–Missionaries & Cannibals: # people on starting river

bank
• In general
– ℎ 𝑛 ≥ 0	for all nodes n
– ℎ(𝑛) = 0 implies that n is a goal node
– ℎ 𝑛 = ∞ implies n is a dead-end that can’t lead to

goal

Heuristics for 8-puzzle

Misplaced
Tiles
Heuristic

• Three tiles are misplaced (the 3, 8, and 1)
so heuristic function evaluates to 3

• Heuristic says that it thinks a solution may
be available in 3 or more moves

• Very rough estimate, but easy to calculate

3 2 8
4 5 6
7 1

1 2 3
4 5 6
7 8

Goal
State

Current
State

h = 3

(not including
the blank)

3 2 8
4 5 6
7 1

3 tiles are not
where they need
to be

Heuristics for 8-puzzle

Manhattan
Distance (not
including the
blank)

• The 3, 8 and 1 tiles are misplaced (by 2, 3,
and 3 steps) so the heuristic function
evaluates to 8

• Heuristic says that it thinks a solution may
be available in just 8 more moves.

• The misplaced heuristic’s value is 3

3 2 8
4 5 6
7 1

1 2 3
4 5 6
7 8

Goal
State

Current
State

3 3

8

8

1

1

2 spaces

3 spaces

3 spaces

Total 8

5

6 4

3

4 2

1 3 3

0 2

We can use heuristics
to guide search

Manhattan Distance
heuristic helps us
quickly find a
solution to the 8-
puzzle

h(n)

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

Best-first search

• Search algorithm that improves depth-
first search by expanding most promising
node chosen according to heuristic rule

• Order nodes on Fringe list by increasing
value of an evaluation function, f(n),
incorporating domain-specific information

http://en.wikipedia.org/wiki/Best_first_search

Best-first search

• Search algorithm that improves depth-
first search by expanding most promising
node chosen according to heuristic rule

• Order nodes on Fringe list by increasing
value of an evaluation function, f(n),
incorporating domain-specific information

• This is a generic way of referring to the
class of informed methods

http://en.wikipedia.org/wiki/Best_first_search

Greedy best first search
• A greedy algorithm makes locally optimal choices in hope of finding

a global optimum
• Uses evaluation function f(n) = h(n), sorting nodes by increasing

values of f
• Selects node to expand appearing closest to goal (i.e., node with

smallest f value)
• Not complete as can end up in dead end when solution not found
• Not admissible, as in example
– Assume arc costs = 1, greedy search finds goal g, with solution cost of 5
– Optimal solution is path to goal with cost 3

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Admissible_decision_rule

Greedy best first search example

• Proof of non-admissibility
– Assume arc costs = 1, greedy

search finds goal g, with
solution cost of 5

– Optimal solution is path to
goal with cost 3

a

hb

c

d

e

g

i

g2

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0

Greedy best first search example

• Makes locally optimal choices at each step based on the current
information and do not reconsider past decisions.

• Once a greedy algorithm makes a choice and moves to the next
step, it does not go back to reconsider or explore alternative
paths. In some cases, they can get stuck in local optima or
suboptimal solutions.

• If fails to find a path to the goal, then the chosen path based on
the heuristic did not lead to a solution. In such cases, the
algorithm may terminate without finding a solution or may need
to be modified to explore alternative paths, possibly
incorporating backtracking, to improve its search capabilities.

Beam search
• Instead of picking one child per iteration, it expands k

number of children, in parallel.
• Use evaluation function f(n), but maximum size of the

nodes list is k, a fixed constant
• Only keep k best nodes as candidates for expansion,

discard rest
• k is the beam width
• More space efficient than greedy search, but may

discard nodes on a solution path
• As k increases, approaches best first search
• Complete?
• Admissible?

http://en.wikipedia.org/wiki/Beam_search

Beam search
• Instead of picking one child per iteration, it expands k

number of children, in parallel.
• Use evaluation function f(n), but maximum size of the

nodes list is k, a fixed constant
• Only keep k best nodes as candidates for expansion,

discard rest
• k is the beam width
• More space efficient than greedy search, but may

discard nodes on a solution path
• As k increases, approaches best first search
• Not complete
• Not admissible

http://en.wikipedia.org/wiki/Beam_search

We’ve got to be able to do
better, right?

Let’s think about car trips…

A* Search
Use an evaluation function

f(n) = g(n) + h(n)

minimal-cost path from
the start state to state n

cost estimate from state n
to the goal

estimated total cost from
start to goal via state n

A* Search
•Use as an evaluation function

f(n) = g(n) + h(n)
•g(n) = minimal-cost path from

the start state to state n
•g(n) adds “breadth-first”term

to evaluation function
•Ranks nodes on search frontier by

estimated cost of solution from
start node via given node to goal

S

BA

D
G

1 5 8

3

0

1

5

C

1

9

4

5
8

9

g(d)=4
h(d)=9
f(d)=13

E

7

8

g(b)=5
h(b)=5
f(d)=10

g(c)=8
h(c)=1
f(c)=9

A* Search
•Use as an evaluation function

f(n) = g(n) + h(n)
•g(n) = minimal-cost path from

the start state to state n
•g(n) adds “breadth-first”term

to evaluation function
•Ranks nodes on search frontier by

estimated cost of solution from
start node via given node to goal

S

BA

D
G

1 5 8

3

0

1

5

C

1

9

4

5
8

9

g(d)=4
h(d)=9
f(d)=13

C is chosen next to expand

E

7

8

g(b)=5
h(b)=5
f(d)=10

g(c)=8
h(c)=1
f(c)=9

A* Search
•Use an evaluation function

f(n) = g(n) + h(n)

•g(n) term adds “breadth-first” component to evaluation
function
•Ranks nodes on search frontier by estimated cost of solution

from start node via given node to goal
•Not complete if h(n) can = ∞
• Is it admissible?

minimal-cost path from
the start state to state n

cost estimate from state n
to the goal

estimated total cost from
start to goal via state n

A*
• Pronounced “a star”
• h is admissible when h(n) <= h*(n) holds
–h*(n) = true cost of minimal cost path from n to a goal

• Using an admissible heuristic guarantees that 1st
solution found will be an optimal one
–With an admissible heuristic, A* is cost-optimal

• A* is complete whenever branching factor is finite
and every action has fixed, positive cost
• A* is admissible

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of
Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2): 100–107.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers

Implementing A*

Q: Can this be an
instance of our
general search

algorithm?

Figure
3.3

Implementing A*

Q: Can this be an
instance of our
general search

algorithm?

Figure
3.3

A: Yup! Just make the
fringe a priority

queue ordered by
𝑓(𝑛)

Alternative A* Pseudo-code
1 Put the start node S on the nodes list, called OPEN
2 If OPEN is empty, exit with failure
3 Select node in OPEN with minimal f(n) and place on CLOSED
4 If n is a goal node, collect path back to start and stop
5 Expand n, generating all its successors and attach to them

pointers back to n. For each successor n' of n
1 If n’ not already on OPEN or CLOSED
• put n' on OPEN
• compute h(n'), g(n')=g(n)+ c(n, n'), f(n')=g(n')+h(n')

2 If n’ already on OPEN or CLOSED and if g(n') is lower for new
version of n', then:
• Redirect pointers backward from n’ on path with lower g(n’)
• Put n' on OPEN

IS A HEURISTIC ADMISSIBLE?
Next class

