
CMSC 471
Artificial Intelligence

Search

KMA Solaiman – ksolaima@umbc.edu

Slide adoption courtesy: Tim Finin, Frank Ferraro (UMBC),
Charles R. Dyer (UW-Madison), Dan Klein and Pieter Abbeel (CS188, UC Berkeley)

mailto:ksolaima@umbc.edu

A General Searching Algorithm
Core ideas:
1. Maintain a list of

frontier (fringe) nodes
1. Nodes coming

into the frontier
have been
explored

2. Nodes going out
of the frontier
have not been
explored

2. Iteratively select
nodes from the
frontier and explore
unexplored nodes
from the frontier

3. Stop when you reach
your goal

Figure 3.3

State-space search algorithm
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure

function general-search (problem, QUEUEING-FUNCTION)
 nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds
 then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
 problem.OPERATORS))
 end

 ;; Note: The goal test is NOT done when nodes are generated
 ;; Note: This algorithm does not detect loops

State Space Graphs and Search Trees

State Space Graphs

• State space graph: A mathematical
representation of a search problem
– Nodes are (abstracted) world configurations
– Arcs represent transitions/ successors (action

results)
– The goal test is a set of goal nodes (maybe only

one)

• In a state space graph, each state occurs only
once!

• We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We construct the
tree on demand –

and we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Informed vs. uninformed search

Uninformed search strategies (blind search)
–Use no information about likely direction of a goal
–Methods: breadth-first, depth-first, depth-limited,

uniform-cost, depth-first iterative deepening,
bidirectional

Informed search strategies (heuristic search)
–Use information about domain to (try to) (usually)

head in the general direction of goal node(s)
–Methods: hill climbing, best-first, greedy search,

beam search, algorithm A, algorithm A*

https://en.wikipedia.org/wiki/Heuristic

Evaluating search strategies
• Completeness
– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)
– Usually measured by number of nodes expanded

• Space complexity
– Usually measured by maximum size of graph/tree

during the search

• Optimality/Admissibility
– If a solution is found, is it guaranteed to be an

optimal one, i.e., one with minimum cost

Example of uninformed search strategies

S

CBA

D GE

3 1 8

15 20 5
3
7

Consider this search space where S is the start
node and G is the goal. Numbers are arc costs.

Classic uninformed search methods

• The four classic uninformed search methods
–Breadth first search (BFS)
–Depth first search (DFS)
–Uniform cost search (generalization of BFS)
– Iterative deepening (blend of DFS and BFS)

• To which we can add another technique
–Bi-directional search (hack on BFS)

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO
queue

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO
queue

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO
queue

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO
queue

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO
queue

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO
queue

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation:
Frontier is a FIFO
queue

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?

– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?

– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?

– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?

– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?

– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?

– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?

– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?

– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?

– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?

– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?
– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?
– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?
– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?
– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?
– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?
– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Potential issues??

Breadth-First Search
• Takes a long time to find solutions with large

number of steps because must explore all
shorter length possibilities first

Breadth-First Search
Long time to find solutions with many steps: we
must look at all shorter length possibilities first
• Complete search tree of depth s where nodes have b

children has 1 + b + b2 + ... + bs = (b(s+1) - 1)/(b-1)
nodes = 0(bs)
• Tree of depth 12 with branching 10 has more than

a trillion nodes
• If BFS expands 1000 nodes/sec and nodes uses 100

bytes, then it may take 35 years to run and uses
111 terabytes of memory!

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d

b
Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d

b
aStrategy: expand a

deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d

c
Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d

c
Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d
e

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

h

d
e

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rp

h

d
e

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h

d
e

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

h

d
e

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

d
e

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

fd
e

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

fd
e

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

fd
e

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

fd
e

r

Strategy: expand a
deepest node first

Implementation:
Frontier is a LIFO stack

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Breadth-First Search
 Expanded node Nodes list (aka Fringe)

 { S0 }
 S0 { A3 B1 C8 }
 A3 { B1 C8 D6 E10 G18 }
 B1 { C8 D6 E10 G18 G21 }
 C8 { D6 E10 G18 G21 G13 }
 D6 { E10 G18 G21 G13 }
 E10 { G18 G21 G13 }
 G18 { G21 G13 }

Note: we typically don’t check for goal until we expand node
Solution path found is S A G , cost 18
Number of nodes expanded (including goal node) = 7

Notation

G18

G is node; 18 is
cost of shortest

known path from

start node S

weighted arcs

Depth-First Search

 Expanded node Nodes list
 { S0 }
 S0 { A3 B1 C8 }
 A3 { D6 E10 G18 B1 C8 }
 D6 { E10 G18 B1 C8 }
 E10 { G18 B1 C8 }
 G18 { B1 C8 }

 Solution path found is S A G, cost 18
 Number of nodes expanded (including goal node) = 5

Quiz: DFS vs BFS

Quiz: DFS vs BFS

• When will BFS outperform DFS?

• When will DFS outperform BFS?

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

0

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

0

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

16

0

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

0

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

22

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

g(n) = cost from root to n

Strategy: expand lowest g(n)

Frontier is a priority queue
sorted by g(n)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

…

Uniform Cost Search (UCS) Properties

• What nodes does UCS expand?
– Processes all nodes with cost less than cheapest

solution!
– If that solution costs C* and arcs cost at least e ,

then the “effective depth” is roughly C*/e
– Takes time O(bC*/e) (exponential in effective

depth)

• How much space does the frontier take?
– Has roughly the last tier, so O(bC*/e)

• Is it complete?
– Assuming C* is finite and e > 0, yes!

• Is it optimal?
– Yes! (Proof next lecture via A*)

b

C*/e “tiers”
g £ 3

g £ 2
g £ 1

Uniform-Cost Search
 Expanded node Nodes list

 { S0 }
 S0 { B1 A3 C8 }
 B1 { A3 C8 G21 }
 A3 { D6 C8 E10 G18 G21 }
 D6 { C8 E10 G18 G21 }
 C8 { E10 G13 G18 G21 }
 E10 { G13 G18 G21 }
 G13 { G18 G21 }
 Solution path found is S C G, cost 13
 Number of nodes expanded (including goal node) = 7

priority queue

https://en.wikipedia.org/wiki/Priority_queue

Depth-First Iterative Deepening (DFID)
• Do DFS to depth 0, then (if no solution) DFS to

depth 1, etc.
• Usually used with a tree search
• Complete
• Optimal/Admissible if all operators have unit

cost, else finds shortest solution (like BFS)
• Time complexity a bit worse than BFS or DFS

Nodes near top of search tree generated many times,
but since almost all nodes are near tree bottom,
worst case time complexity still exponential, O(bd)

• If branching factor is b and solution is at depth d,
then nodes at depth d are generated once, nodes
at depth d-1 are generated twice, etc.
–Hence bd + 2b(d-1) + ... + db <= bd / (1 - 1/b)2 = O(bd).
– If b=4, worst case is 1.78 * 4d, i.e., 78% more nodes

searched than exist at depth d (in worst case)
• Linear space complexity, O(bd), like DFS
• Has advantages of BFS (completeness) and DFS

(i.e., limited space, finds longer paths quickly)
• Preferred for large state spaces where solution

depth is unknown

Depth-First Iterative Deepening (DFID)

How they perform
• Depth-First Search:

– 4 Expanded nodes: S A D E G
– Solution found: S A G (cost 18)

• Breadth-First Search:
– 7 Expanded nodes: S A B C D E G
– Solution found: S A G (cost 18)

• Uniform-Cost Search:
– 7 Expanded nodes: S A D B C E G
– Solution found: S C G (cost 13)
Only uninformed search that worries about costs

• Iterative-Deepening Search:
– 10 nodes expanded: S S A B C S A D E G
– Solution found: S A G (cost 18)

Searching Backward from Goal

• Usually a successor function is reversible
– i.e., can generate a node’s predecessors in graph

• If we know a single goal (rather than a goal’s
properties), we could search backward to the
initial state

• It might be more efficient
– Depends on whether the graph fans in or out

Bi-directional search

•Alternate searching from the start state toward the goal
and from the goal state toward the start
• Stop when the frontiers intersect
•Works well only when there are unique start & goal states
• Requires ability to generate “predecessor” states
• Can (sometimes) lead to finding a solution more quickly

Comparing Search Strategies

Summary

• Search in a problem space is at the heart of
many AI systems

• Formalizing the search in terms of states,
actions, and goals is key

• The simple “uninformed” algorithms we
examined can be augmented to heuristics to
improve them in various ways

• But for some problems, a simple algorithm is
best

