
CMSC 471
Artificial Intelligence

Search

KMA Solaiman – ksolaima@umbc.edu

Slide adoption courtesy: Tim Finin, Frank Ferraro (UMBC),
Charles R. Dyer (UW-Madison), Dan Klein and Pieter Abbeel (CS188, UC Berkeley)

mailto:ksolaima@umbc.edu

Today

• Agents that Plan Ahead
• Goal-based agents

• Search Problems
• Generic state-space search algorithm

• Uninformed Search Methods
– Depth-First Search
– Breadth-First Search
– Uniform-Cost Search

How do you design an intelligent agent?
•An agent is an entity that

perceives and acts
• Intelligent agents perceive

environment via sensors
and act rationally on them
with their effectors
•Discrete agents receive

percepts one at a time, and
map them to a sequence of
discrete actions

Courtesy Tim Finin

Characteristics of environments
Fully

observable? Deterministic? Episodic? Static? Discrete? Single
agent?

Solitaire No Yes Yes Yes Yes Yes

Backgammon Yes No No Yes Yes No

Taxi driving No No No No No No

Internet
shopping No No No No Yes No

Medical
diagnosis No No No No No Yes

A Yes in a cell means that aspect is simpler; a No more complex
Courtesy Tim Finin

Characteristics of environments
Fully

observable? Deterministic? Episodic? Static? Discrete? Single
agent?

Solitaire No Yes Yes Yes Yes Yes

Backgammon Yes No No Yes Yes No

Taxi driving No No No No No No

Internet
shopping No No No No Yes No

Medical
diagnosis No No No No No Yes

→ Lots of real-world domains fall into the hardest case!

A Yes in a cell means that aspect is simpler; a No more complex
Courtesy Tim Finin

Agents that Plan

(0) Table-driven agents
Use percept sequence/action table to find next
action. Implemented by a lookup table

(1) Simple reflex agents
Based on condition-action rules, stateless devices
with no memory of past world states

(2) Agents with memory
represent states and keep track of past world states

(3) Agents with goals
Have a state and goal information describing desirable
situations; can take future events into consideration

(4) Utility-based agents
base decisions on utility theory in order to act rationally

simple

complex
Courtesy Tim Finin

Recap

https://en.wikipedia.org/wiki/Utility

(3) Architecture for goal-based agent
state and goal information describe desirable
situations allowing agent to take future events into
consideration

Courtesy Tim Finin

Recap

Planning Agents

• Planning agents:
– Ask “what if”
– Decisions based on (hypothesized)

consequences of actions
– Must have a model of how the world

evolves in response to actions
– Must formulate a goal (test)
– Consider how the world WOULD BE

• Optimal vs. complete
planning

Big Idea
Allen Newell and Herb Simon developed
the problem space principle as an AI
approach in the late 60s/early 70s

"The rational activity in which people engage to solve a
problem can be described in terms of (1) a set of states
of knowledge, (2) operators for changing one state into
another, (3) constraints on applying operators and (4)
control knowledge for deciding which operator to apply
next."

Newell A & Simon H A. Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall. 1972.

https://en.wikipedia.org/wiki/Allen_Newell
https://en.wikipedia.org/wiki/Herbert_A._Simon

Big Idea
Allen Newell and Herb Simon developed
the problem space principle as an AI
approach in the late 60s/early 70s

"The rational activity in which people engage to solve a
problem can be described in terms of (1) a set of states
of knowledge, (2) operators for changing one state into
another, (3) constraints on applying operators and (4)
control knowledge for deciding which operator to apply
next."

Newell A & Simon H A. Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall. 1972.

We’ll achieve this by
formulating an appropriate

graph and then applying
graph search algorithms to it

https://en.wikipedia.org/wiki/Allen_Newell
https://en.wikipedia.org/wiki/Herbert_A._Simon

Search Problems: Key Terms
• A search problem consists of:

Search Problems: Key Terms
• A search problem consists of:

– A state space

Search Problems: Key Terms
• A search problem consists of:

– A state space

– A successor function
 (with actions, costs)

Search Problems: Key Terms
• A search problem consists of:

– A state space

– A successor function
 (with actions, costs)

“N”, 1.0

“E”, 1.0

Search Problems: Key Terms
• A search problem consists of:

– A state space

– A successor function
 (with actions, costs)

– A start state and a goal test

“N”, 1.0

“E”, 1.0

Search Problems: Key Terms
• A search problem consists of:

– A state space

– A successor function
 (with actions, costs)

– A start state and a goal test

• A solution is a sequence of actions (a plan)
which transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Search Problems Are Models

Search Problems Are Models

Example: 8-Puzzle
Given an initial configuration of 8 numbered
tiles on a 3x3 board, move the tiles to
produce a desired goal configuration

Simpler: 3-Puzzle

3

2 1

1 2

3

start goal

3

2 1

start

goal

3

2 1

2 3

1

2 3

1

2

1 3

2

1 3

1 2

3

Building goal-based agents
We must answer the following questions
–How do we represent the state of the “world”?
–What is the goal and how can we recognize it?
–What are the possible actions?
–What relevant information do we encoded to

describe states, actions and their effects and thereby
solve the problem?

initial state goal state

Characteristics of 8-puzzle ?
Fully

observable? Deterministic? Episodic? Static? Discrete? Single
agent?

8-puzzle

Characteristics of 8-puzzle
Fully

observable? Deterministic? Episodic? Static? Discrete? Single
agent?

8-puzzle Yes Yes Yes Yes Yes Yes

• All the Yes’s mean it may be relatively easy!
• This is typical of the problems worked on in

the 60s and 70s
• And the algorithms for solving them a state-

space search model

Representing states / State-space

• State of an 8-puzzle?

Representing states / State-space

• State of an 8-puzzle?
– A 3x3 array of integer in {0..8}
– No integer appears twice
– 0 represents the empty space

• In Python, we might implement this using a nine-
character string: “540681732”

• And write functions to map the 2D coordinates to
an index

What’s the goal to be achieved?
• Describe situation we want to achieve, a set

of properties that we want to hold, etc.
• Defining a goal test function that when

applied to a state returns True or False
• For our problem:

def isGoal(state):
 return state == “123405678”

What are the actions?
• Primitive actions for changing the state

In a deterministic world: no uncertainty in an
action’s effects (simple model)

• Given action and description of current
world state, action completely specifies
– Whether action can be applied to the current

world (i.e., is it applicable and legal?) and
– What state results after action is performed in

the current world (i.e., no need for history
information to compute the next state)

Representing actions

• Actions ideally considered as discrete events
that occur at an instant of time

• Example, in a planning context
– If state:inClass and perform action:goHome, then

next state is state:atHome
– There’s no time where you’re neither in class nor at

home (i.e., in the state of “going home”)

Representing actions

• Actions for 8-puzzle?

Representing actions

• Actions for 8-puzzle?

• Number of actions/operators depends on the
representation used in describing a state
– Specify 4 possible moves for each of the 8 tiles,

resulting in a total of 4*8=32 operators
– Or: Specify four moves for “blank” square and we

only need 4 operators

• Representational shift can simplify a problem!

What’s in a State Space?

The world state includes every last detail of the environment

What’s in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

What’s in a State Space?

• Problem: Pathing

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

What’s in a State Space?

• Problem: Pathing
– States: (x,y) location

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

What’s in a State Space?

• Problem: Pathing
– States: (x,y) location
– Actions: NSEW

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

What’s in a State Space?

• Problem: Pathing
– States: (x,y) location
– Actions: NSEW
– Successor: update location

only

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

What’s in a State Space?

• Problem: Pathing
– States: (x,y) location
– Actions: NSEW
– Successor: update location

only
– Goal test: is (x,y)=END

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

What’s in a State Space?

• Problem: Pathing
– States: (x,y) location
– Actions: NSEW
– Successor: update location

only
– Goal test: is (x,y)=END

• Problem: Eat-All-Dots

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

What’s in a State Space?

• Problem: Pathing
– States: (x,y) location
– Actions: NSEW
– Successor: update location

only
– Goal test: is (x,y)=END

• Problem: Eat-All-Dots
– States: {(x,y), dot booleans}

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

What’s in a State Space?

• Problem: Pathing
– States: (x,y) location
– Actions: NSEW
– Successor: update location

only
– Goal test: is (x,y)=END

• Problem: Eat-All-Dots
– States: {(x,y), dot booleans}
– Actions: NSEW

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

What’s in a State Space?

• Problem: Pathing
– States: (x,y) location
– Actions: NSEW
– Successor: update location

only
– Goal test: is (x,y)=END

• Problem: Eat-All-Dots
– States: {(x,y), dot booleans}
– Actions: NSEW
– Successor: update location

and possibly a dot boolean

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

What’s in a State Space?

• Problem: Pathing
– States: (x,y) location
– Actions: NSEW
– Successor: update location

only
– Goal test: is (x,y)=END

• Problem: Eat-All-Dots
– States: {(x,y), dot booleans}
– Actions: NSEW
– Successor: update location

and possibly a dot boolean
– Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

• World state:
– Agent positions: 120
– Food count: 30
– Ghost positions: 12
– Agent facing: NSEW

State Space Sizes?

• World state:
– Agent positions: 120
– Food count: 30
– Ghost positions: 12
– Agent facing: NSEW

• How many

State Space Sizes?

• World state:
– Agent positions: 120
– Food count: 30
– Ghost positions: 12
– Agent facing: NSEW

• How many
– World states?

State Space Sizes?

• World state:
– Agent positions: 120
– Food count: 30
– Ghost positions: 12
– Agent facing: NSEW

• How many
– World states?
 120x(230)x(122)x4

State Space Sizes?

• World state:
– Agent positions: 120
– Food count: 30
– Ghost positions: 12
– Agent facing: NSEW

• How many
– World states?
 120x(230)x(122)x4
– States for pathing?

State Space Sizes?

• World state:
– Agent positions: 120
– Food count: 30
– Ghost positions: 12
– Agent facing: NSEW

• How many
– World states?
 120x(230)x(122)x4
– States for pathing?
 120

State Space Sizes?

• World state:
– Agent positions: 120
– Food count: 30
– Ghost positions: 12
– Agent facing: NSEW

• How many
– World states?
 120x(230)x(122)x4
– States for pathing?
 120
– States for eat-all-dots?

State Space Sizes?

• World state:
– Agent positions: 120
– Food count: 30
– Ghost positions: 12
– Agent facing: NSEW

• How many
– World states?
 120x(230)x(122)x4
– States for pathing?
 120
– States for eat-all-dots?
 120x(230)

State Space Sizes?
• Size of a problem usually described in

terms of possible number of states

– Tic-Tac-Toe has about 39 states (19,683≈2*104)
– Checkers has about 1040 states
– Rubik’s Cube has about 1019 states
– Chess has about 10120 states in a typical game
– Go has 2*10170
– Theorem provers may deal with an infinite space

• State space size ≈ solution difficulty

State Space Sizes?
• Our estimates were loose upper bounds
• How many possible, legal states does tic-

tac-toe really have?
• Simple upper bound: nine board cells, each

of which can be empty, O or X, so 39

• Only 593 states after eliminating
– impossible states

– Rotations and reflections X

X

X X

Some example problems

• Toy problems and micro-worlds
–8-Puzzle
–Missionaries and Cannibals
–Cryptarithmetic
–8-Queens Puzzle
–Remove 5 Sticks
–Water Jug Problem

• Real-world problems

Example: The 8-Queens Puzzle

Place eight queens
on a chessboard
such that no queen
attacks any other

We can generalize
the problem to a
NxN chessboard

What are the states, goal test, actions?

http://en.wikipedia.org/wiki/Eight_queens_puzzle

Some more real-world problems

• Route finding
• Touring (traveling salesman)
• Logistics
• VLSI layout
• Robot navigation
• Theorem proving
• Learning

Route Planning
Find a route from Arad to Bucharest

A simplified map of major roads in Romania used in our text

Example: Traveling in Romania

• State space:
– Cities

• Successor function:
– Roads: Go to adjacent city

with cost = distance

• Start state:
– Arad

• Goal test:
– Is state == Bucharest?

• Solution?

State Space Graphs and Search Trees

State Space Graphs

• State space graph: A mathematical
representation of a search problem
– Nodes are (abstracted) world

configurations
– Arcs represent transitions/ successors

(action results)
– The goal test is a set of goal nodes (maybe

only one)

• In a state space graph, each state occurs
only once!

• We can rarely build this full graph in
memory (it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

Search Trees

Search Trees

This is now / start

Search Trees

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

Search Trees

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

Search Trees

• A search tree:
– A “what if” tree of plans and their outcomes
– The start state is the root node
– Children correspond to successors
– Nodes show states, but correspond to PLANS that achieve

those states
– For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We construct the
tree on demand –

and we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph:

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s
ba

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s
b

b G

a

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s
b

b G a

a

G

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s
b

b G a

a

G

a G

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s
b

b G a

a

G

a G b G

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s
b

b G a

a

G

a G b G

… …

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph:

Important: Those who don’t know history are doomed to repeat it!

How big is its search tree (from S)?

s
b

b G a

a

G

a G b G

… …

Formalizing search

• Solution: sequence of actions associated with
a path from a start node to a goal node

• Solution cost: sum of the arc costs on the
solution path
– If all arcs have same (unit) cost, then

solution cost is length of solution (number
of steps)
–Algorithms generally require that arc costs

cannot be negative (why?)

A General Searching Algorithm
Core ideas:
1. Maintain a list of

frontier (fringe) nodes
1. Nodes coming

into the frontier
have been
explored

2. Nodes going out
of the frontier
have not been
explored

2. Iteratively select
nodes from the
frontier and explore
unexplored nodes
from the frontier

3. Stop when you reach
your goal

Figure 3.3

State-space search algorithm
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure

function general-search (problem, QUEUEING-FUNCTION)
 nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds
 then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
 problem.OPERATORS))
 end

 ;; Note: The goal test is NOT done when nodes are generated
 ;; Note: This algorithm does not detect loops

Key procedures to be defined

• EXPAND
– Generate a node’s successor nodes, adding them to the

graph if not already there

• GOAL-TEST
– Test if state satisfies all goal conditions

•QUEUEING-FUNCTION
– Maintain ranked list of nodes that are candidates for

expansion
– Changing definition of the QUEUEING-FUNCTION leads to

different search strategies

Informed vs. uninformed search

Uninformed search strategies (blind search)
–Use no information about likely direction of a goal
–Methods: breadth-first, depth-first, depth-limited,

uniform-cost, depth-first iterative deepening,
bidirectional

Informed search strategies (heuristic search)
–Use information about domain to (try to) (usually)

head in the general direction of goal node(s)
–Methods: hill climbing, best-first, greedy search,

beam search, algorithm A, algorithm A*

https://en.wikipedia.org/wiki/Heuristic

Evaluating search strategies

• Completeness
– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)
• Space complexity
• Optimality/Admissibility

Evaluating search strategies

• Completeness
– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)
– Usually measured by number of nodes expanded

• Space complexity
• Optimality/Admissibility

Evaluating search strategies

• Completeness
– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)
– Usually measured by number of nodes expanded

• Space complexity
– Usually measured by maximum size of graph/tree

during the search

• Optimality/Admissibility

Evaluating search strategies
• Completeness
– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)
– Usually measured by number of nodes expanded

• Space complexity
– Usually measured by maximum size of graph/tree

during the search

• Optimality/Admissibility
– If a solution is found, is it guaranteed to be an

optimal one, i.e., one with minimum cost

NEXT CLASS
UNINFORMED SEARCH

EXTRA HELPER SLIDES

PRIMER ON GRAPHS

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes, (𝑥, 𝑦)

G can be:
• Undirected: order of (𝑥, 𝑦) doesn’t matter
– These are symmetric

• Directed: order of (𝑥, 𝑦) does matter
• Weighted: cost function 𝑔(𝑥, 𝑦)
• (among other qualities)

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c V= { ??? }

E = { ??? }

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c
V= { a, b, c }

E = { (a, c), (b, c) }

undirected

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c V= { ??? }

E = { ??? }

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

V= { a, b, c }

E = { (a, c), (b, c) }

a

b

c

directed

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

V= { a, b, c }

E = { (a, c), (c, b) }

a

b

c

directed

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c
V= { ??? }

E = { ??? }

g = ???

4

5

1

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c

V= { a, b, c }

E = { (a,c), (b, c), (c, b) }

g = {(a, c): 4, (b, c): 5, (c, b): 1}

4

5

1

weighted, directed

MORE EXAMPLES

Water Jug Problem
• Two jugs J1 & J2 with capacity C1 & C2
• Initially J1 has W1 water and J2 has W2 water
– e.g.: full 5 gallon jug and empty 2 gallon jug

• Possible actions:
– Pour from jug X to jug Y until X empty or Y full
– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G2 can be -1 to represent any amount

• E.g.: initially full jugs with capacities 3 and 1
liters, goal is to have 1 liter in each

https://en.wikipedia.org/wiki/Water_pouring_puzzle

Example: Water Jug Problem

• Two jugs J1 and J2 with capacity C1 and C2
• Initially J1 has W1 water and J2 has W2 water
– e.g.: a full 5-gallon jug and an empty 2-gallon jug

• Possible actions:
– Pour from jug X to jug Y until X empty or Y full
– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G0 can be -1 to represent any amount

5 2

Example: Water Jug Problem

Given full 5-gal. jug and
empty 2-gal. jug, fill 2-
gal jug with one gallon
• State representation?
–General state?
–Initial state?
–Goal state?
• Possible actions?
–Condition?
–Resulting state?

Name Cond. Transition Effect

Empty5 (x,y)→(0,y) Empty 5G
jug

Empty2 (x,y)→(x,0)
Empty 2G
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2G into
5G

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5G into
2G

5to2part y < 2 (1,y)→(0,y+1) Pour partial
5G into 2G

Action table

5 2

Example: Water Jug Problem

Given full 5-gal. jug and
empty 2-gal. jug, fill 2-
gal jug with one gallon
• State representation?
–General state?
–Initial state?
–Goal state?
• Possible actions?
–Condition?
–Resulting state?

Name Cond. Transition Effect

dump1 x>0 ((x,y)→(0,y) Empty Jug 1

dump2 y>0 (x,y)→(x,0) Empty Jug 2

pour_1_2
x>0 &
y<C2

(x,2)→(x+2,0) Pour from Jug
1 to Jug 2

pour_2_1
y>0 &
X<C1

(x,0)→(x-2,2) Pour from Jug
2 to Jug 1

5to2part y < 2 (1,y)→(0,y+1) Pour partial
5G into 2G

Action table

5 2

So…

• How can we represent the states?
• What’s an initial state
• How do we recognize a goal state
• What are the actions; how can we tell which ones

can be performed in a given state; what is the
resulting state

• How do we search for a solution from an initial
state given a goal state

• What is a solution? The goal state achieved or a
path to it?

Search in a state space
• Basic idea:
–Create representation of initial state
–Try all possible actions & connect states that result
–Recursively apply process to the new states until we

find a solution or dead ends

•We need to keep track of the connections
between states and might use a
–Tree data structure or
–Graph data structure

• A graph structure is best in general…

Formalizing state space search

• A state space is a graph (V, E) where V is a set
of nodes and E is a set of arcs, and each arc is
directed from a node to another node
• Nodes: data structures with state description

and other info, e.g., node’s parent, name of
action that generated it from parent, etc.
• Arcs: instances of actions, head is a state, tail

is the state that results from action

Formalizing search in a state space
• Each arc has fixed, positive cost associated

with it corresponding to the action cost
– Simple case: all costs are 1

• Each node has a set of successor nodes
corresponding to all legal actions that can be
applied at node’s state
– Expanding a node = generating its successor nodes and

adding them and their associated arcs to the graph

• One or more nodes are marked as start nodes
• A goal test predicate is applied to a state to

determine if its associated node is a goal node

What does “search”
look like for a

particular problem?

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start

Expanding a node on the fringe
(taking a certain action)

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start

Expanding a node on the fringe
(taking a certain action). Not all

actions shown.

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start

Expanding a node on the fringe
(taking a certain action). Not all

actions shown.

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start

Expanding a node on the fringe
(taking a certain action). Not all

actions shown.

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start

