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Today

• Agents that Plan Ahead
• Goal-based agents

• Search Problems
• Generic state-space search algorithm

• Uninformed Search Methods
– Depth-First Search
– Breadth-First Search
– Uniform-Cost Search



How do you design an intelligent agent?
•An agent is an entity that 

perceives and acts
• Intelligent agents perceive 

environment via sensors 
and act rationally on them 
with their effectors
•Discrete agents receive 

percepts one at a time, and 
map them to a sequence of 
discrete actions

Courtesy Tim Finin



Characteristics of environments
Fully 

observable? Deterministic? Episodic? Static? Discrete? Single 
agent?

Solitaire No Yes Yes Yes Yes Yes

Backgammon Yes No No Yes Yes No

Taxi driving No No No No No No

Internet 
shopping No No No No Yes No

Medical 
diagnosis No No No No No Yes

A Yes in a cell means that aspect is simpler; a No more complex
Courtesy Tim Finin



Characteristics of environments
Fully 

observable? Deterministic? Episodic? Static? Discrete? Single 
agent?

Solitaire No Yes Yes Yes Yes Yes

Backgammon Yes No No Yes Yes No

Taxi driving No No No No No No

Internet 
shopping No No No No Yes No

Medical 
diagnosis No No No No No Yes

→ Lots of real-world domains fall into the hardest case!

A Yes in a cell means that aspect is simpler; a No more complex
Courtesy Tim Finin



Agents that Plan



(0) Table-driven agents 
Use percept sequence/action table to find next
action.  Implemented by a lookup table

(1) Simple reflex agents 
Based on condition-action rules, stateless devices 
with no memory of past world states

(2) Agents with memory 
represent states and keep track of past world states

(3) Agents with goals 
Have a state and goal information describing desirable 
situations; can take future events into consideration

(4) Utility-based agents 
base decisions on utility theory in order to act rationally

simple

complex
Courtesy Tim Finin

Recap

https://en.wikipedia.org/wiki/Utility


(3) Architecture for goal-based agent 
state and goal information describe desirable 
situations allowing agent to take future events into 
consideration 

Courtesy Tim Finin

Recap



Planning Agents

• Planning agents:
– Ask “what if”
– Decisions based on (hypothesized) 

consequences of actions
– Must have a model of how the world 

evolves in response to actions
– Must formulate a goal (test)
– Consider how the world WOULD BE

• Optimal vs. complete 
planning



Big Idea
Allen Newell and Herb Simon developed
the problem space principle as an AI
approach in the late 60s/early 70s

"The rational activity in which people engage to solve a 
problem can be described in terms of (1) a set of states 
of knowledge, (2) operators for changing one state into 
another, (3) constraints on applying operators and (4) 
control knowledge for deciding which operator to apply 
next."

Newell A & Simon H A. Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall. 1972. 

https://en.wikipedia.org/wiki/Allen_Newell
https://en.wikipedia.org/wiki/Herbert_A._Simon


Big Idea
Allen Newell and Herb Simon developed
the problem space principle as an AI
approach in the late 60s/early 70s

"The rational activity in which people engage to solve a 
problem can be described in terms of (1) a set of states 
of knowledge, (2) operators for changing one state into 
another, (3) constraints on applying operators and (4) 
control knowledge for deciding which operator to apply 
next."

Newell A & Simon H A. Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall. 1972. 

We’ll achieve this by 
formulating an appropriate 

graph and then applying 
graph search algorithms to it

https://en.wikipedia.org/wiki/Allen_Newell
https://en.wikipedia.org/wiki/Herbert_A._Simon
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Search Problems: Key Terms
• A search problem consists of:

– A state space

– A successor function
 (with actions, costs)

– A start state and a goal test

• A solution is a sequence of actions (a plan) 
which transforms the start state to a goal state

“N”, 1.0

“E”, 1.0



Search Problems Are Models



Search Problems Are Models



Example: 8-Puzzle
Given an initial configuration of 8 numbered 
tiles on a 3x3 board, move the tiles to 
produce a desired goal configuration



Simpler: 3-Puzzle
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Building goal-based agents
We must answer the following questions
–How do we represent the state of the “world”?
–What is the goal and how can we recognize it?
–What are the possible actions?
–What relevant information do we encoded to 

describe states, actions and their effects and thereby 
solve the problem? 

initial state goal state



Characteristics of 8-puzzle ?
Fully

observable? Deterministic? Episodic? Static? Discrete? Single 
agent?

8-puzzle



Characteristics of 8-puzzle
Fully

observable? Deterministic? Episodic? Static? Discrete? Single 
agent?

8-puzzle Yes Yes Yes Yes Yes Yes

• All the Yes’s mean it may be relatively easy!
• This is typical of the problems worked on in 

the 60s and 70s
• And the algorithms for solving them a state-

space search model



Representing states / State-space

• State of an 8-puzzle?



Representing states / State-space

• State of an 8-puzzle?
– A 3x3 array of integer in {0..8}
– No integer appears twice
– 0 represents the empty space

• In Python, we might implement this using a nine-
character string: “540681732”

• And write functions to map the 2D coordinates to 
an index



What’s the goal to be achieved?
• Describe situation we want to achieve, a set 

of properties that we want to hold, etc. 
• Defining a goal test function that when 

applied to a state returns True or False
• For our problem:

def isGoal(state):
    return state == “123405678”



What are the actions?
• Primitive actions for changing the state

In a deterministic world: no uncertainty in an 
action’s effects (simple model)

• Given action and description of current 
world state, action completely specifies 
– Whether action can be applied to the current 

world (i.e., is it applicable and legal?) and 
– What state results after action is performed in 

the current world (i.e., no need  for history 
information to compute  the next state)



Representing actions

• Actions ideally considered as discrete events 
that occur at an instant of time

• Example, in a planning context
– If  state:inClass and perform action:goHome, then 

next state is state:atHome 
– There’s no time where you’re neither in class nor at 

home (i.e., in the state of “going home”)



Representing actions

• Actions for 8-puzzle?



Representing actions

• Actions for 8-puzzle?

• Number of actions/operators depends on the 
representation used in describing a state
– Specify 4 possible moves for each of the 8 tiles, 

resulting in a total of 4*8=32 operators
– Or: Specify four moves for “blank” square and we 

only need 4 operators

• Representational shift can simplify a problem!
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• Problem: Pathing
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– Successor: update location 

only
– Goal test: is (x,y)=END

• Problem: Eat-All-Dots
– States: {(x,y), dot booleans}
– Actions: NSEW
– Successor: update location 
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What’s in a State Space?

• Problem: Pathing
– States: (x,y) location
– Actions: NSEW
– Successor: update location 

only
– Goal test: is (x,y)=END

• Problem: Eat-All-Dots
– States: {(x,y), dot booleans}
– Actions: NSEW
– Successor: update location 

and possibly a dot boolean
– Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)



State Space Sizes?

• World state:
– Agent positions: 120
– Food count: 30
– Ghost positions: 12
– Agent facing: NSEW
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State Space Sizes?

• World state:
– Agent positions: 120
– Food count: 30
– Ghost positions: 12
– Agent facing: NSEW

• How many
– World states?
 120x(230)x(122)x4
– States for pathing?
 120
– States for eat-all-dots?
        



State Space Sizes?

• World state:
– Agent positions: 120
– Food count: 30
– Ghost positions: 12
– Agent facing: NSEW

• How many
– World states?
 120x(230)x(122)x4
– States for pathing?
 120
– States for eat-all-dots?
 120x(230)



State Space Sizes?
• Size of a problem usually described in 

terms of possible number of states

– Tic-Tac-Toe has about 39 states (19,683≈2*104)
– Checkers has about 1040 states
– Rubik’s Cube has about 1019 states
– Chess has about 10120 states in a typical game
– Go has 2*10170 
– Theorem provers may deal with an infinite space

• State space size ≈ solution difficulty



State Space Sizes?
• Our estimates were loose upper bounds
• How many possible, legal states does tic-

tac-toe really have?
• Simple upper bound: nine board cells, each 

of which can be empty, O or X, so 39

• Only 593 states after eliminating
– impossible states

– Rotations and reflections X

X

X X



Some example problems

• Toy problems and micro-worlds
–8-Puzzle
–Missionaries and Cannibals
–Cryptarithmetic
–8-Queens Puzzle
–Remove 5 Sticks
–Water Jug Problem

• Real-world problems



Example: The 8-Queens Puzzle 

Place eight queens 
on a chessboard 
such that no queen 
attacks any other

We can generalize 
the problem to a 
NxN chessboard

What are the states, goal test, actions?

http://en.wikipedia.org/wiki/Eight_queens_puzzle


Some more real-world problems

• Route finding
• Touring (traveling salesman)
• Logistics
• VLSI layout
• Robot navigation
• Theorem proving
• Learning



Route Planning
Find a route from Arad to Bucharest

A simplified map of major roads in Romania used in our text



Example: Traveling in Romania

• State space:
– Cities

• Successor function:
– Roads: Go to adjacent city 

with cost = distance

• Start state:
– Arad

• Goal test:
– Is state == Bucharest?

• Solution?



State Space Graphs and Search Trees



State Space Graphs

• State space graph: A mathematical 
representation of a search problem
– Nodes are (abstracted) world 

configurations
– Arcs represent transitions/ successors 

(action results)
– The goal test is a set of goal nodes (maybe 

only one)

• In a state space graph, each state occurs 
only once!

• We can rarely build this full graph in 
memory (it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny state space graph for a tiny 
search problem
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Search Trees

• A search tree:
– A “what if” tree of plans and their outcomes
– The start state is the root node
– Children correspond to successors
– Nodes show states, but correspond to PLANS that achieve 

those states
– For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures



State Space Graphs vs. Search Trees
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We construct the 
tree on demand – 

and we construct as 
little as possible.

Each NODE in in 
the search tree is 
an entire PATH in 
the state space 

graph.

Search TreeState Space Graph



Quiz: State Space Graphs vs. Search 
Trees

S G

b

a

Consider this 4-state graph: 



Quiz: State Space Graphs vs. Search 
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?



Quiz: State Space Graphs vs. Search 
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?



Quiz: State Space Graphs vs. Search 
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?



Quiz: State Space Graphs vs. Search 
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s



Quiz: State Space Graphs vs. Search 
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s
ba



Quiz: State Space Graphs vs. Search 
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s
b

b G

a



Quiz: State Space Graphs vs. Search 
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s
b

b G a

a

G



Quiz: State Space Graphs vs. Search 
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s
b

b G a

a

G

a G



Quiz: State Space Graphs vs. Search 
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s
b

b G a

a

G

a G b G



Quiz: State Space Graphs vs. Search 
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

s
b

b G a

a

G

a G b G

… …



Quiz: State Space Graphs vs. Search 
Trees

S G

b

a

Consider this 4-state graph: 

Important: Those who don’t know history are doomed to repeat it!

How big is its search tree (from S)?

s
b

b G a

a

G

a G b G

… …



Formalizing search

• Solution: sequence of actions associated with 
a path from a start node to a goal node

• Solution cost: sum of the arc costs on the 
solution path
– If all arcs have same (unit) cost, then 

solution cost is length of solution (number 
of steps)
–Algorithms generally require that arc costs 

cannot be negative (why?)



A General Searching Algorithm
Core ideas:
1. Maintain a list of 

frontier (fringe) nodes
1. Nodes coming 

into the frontier 
have been 
explored

2. Nodes going out 
of the frontier 
have not been 
explored

2. Iteratively select 
nodes from the 
frontier and explore 
unexplored nodes 
from the frontier

3. Stop when you reach 
your goal

Figure 3.3



State-space search algorithm
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure

function general-search (problem, QUEUEING-FUNCTION)
  nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
  loop
     if EMPTY(nodes) then return "failure"
     node = REMOVE-FRONT(nodes)
     if problem.GOAL-TEST(node.STATE) succeeds
        then return node
     nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
             problem.OPERATORS))
 end

 ;; Note: The goal test is NOT done when nodes are generated
     ;; Note: This algorithm does not detect loops



Key procedures to be defined

• EXPAND
– Generate  a node’s successor nodes, adding them to the 

graph if not already there

• GOAL-TEST
– Test if state satisfies all goal conditions

•QUEUEING-FUNCTION
– Maintain ranked list of nodes that are candidates for 

expansion
– Changing definition of the QUEUEING-FUNCTION leads to 

different search strategies



Informed vs. uninformed search

Uninformed search strategies (blind search)
–Use no information about likely direction of a goal
–Methods: breadth-first, depth-first, depth-limited, 

uniform-cost, depth-first iterative deepening, 
bidirectional

Informed search strategies (heuristic search)
–Use information about domain to (try to) (usually) 

head in the general direction of goal node(s)
–Methods: hill climbing, best-first, greedy search, 

beam search, algorithm A, algorithm A*

https://en.wikipedia.org/wiki/Heuristic


Evaluating search strategies
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Evaluating search strategies
• Completeness
– Guarantees finding a solution whenever one exists

• Time complexity (worst or average case)
– Usually measured by number of nodes expanded

• Space complexity
– Usually measured by maximum size of graph/tree 

during the search

• Optimality/Admissibility
– If a solution is found, is it guaranteed to be an 

optimal one, i.e., one with minimum cost



NEXT CLASS
UNINFORMED SEARCH



EXTRA HELPER SLIDES



PRIMER ON GRAPHS



Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes, (𝑥, 𝑦)

G can be:
• Undirected: order of (𝑥, 𝑦) doesn’t matter
– These are symmetric

• Directed: order of (𝑥, 𝑦) does matter
• Weighted: cost function 𝑔(𝑥, 𝑦) 
• (among other qualities)
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• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c
V= { a, b, c }

E = { (a, c), (b, c) }

undirected
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Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

V= { a, b, c }

E = { (a, c), (b, c) }

a

b

c

directed



Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

V= { a, b, c }

E = { (a, c), (c, b) }

a

b

c

directed



Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c
V= { ??? }

E = { ??? }

g = ???

4

5

1



Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c

V= { a, b, c }

E = { (a,c), (b, c), (c, b) }

g = {(a, c): 4, (b, c): 5, (c, b): 1}

4

5

1

weighted, directed



MORE EXAMPLES



Water Jug Problem
• Two jugs J1 & J2 with capacity C1 & C2
• Initially J1 has W1 water and J2 has W2 water
– e.g.: full 5 gallon jug and empty 2 gallon jug 

• Possible actions: 
– Pour from jug X to jug Y until X empty or Y full
– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G2 can be -1 to represent any amount

• E.g.: initially full jugs with capacities 3 and 1 
liters, goal is to have 1 liter in each

https://en.wikipedia.org/wiki/Water_pouring_puzzle


Example: Water Jug Problem

• Two jugs J1 and J2 with capacity C1 and C2
• Initially J1 has W1 water and J2 has W2 water
– e.g.: a full 5-gallon jug and an empty 2-gallon jug 

• Possible actions: 
– Pour from jug X to jug Y until X empty or Y full
– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G0 can be -1 to represent any amount

5 2



Example: Water Jug Problem

Given full 5-gal. jug and 
empty 2-gal. jug, fill 2-
gal jug with one gallon
• State representation?
–General state?
–Initial state?
–Goal state?
• Possible actions?
–Condition?
–Resulting state?

Name Cond. Transition Effect

Empty5 (x,y)→(0,y) Empty 5G 
jug

Empty2 (x,y)→(x,0)
Empty 2G 
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2G into 
5G

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5G into 
2G

5to2part y < 2 (1,y)→(0,y+1) Pour partial 
5G into 2G

Action table

5 2



Example: Water Jug Problem

Given full 5-gal. jug and 
empty 2-gal. jug, fill 2-
gal jug with one gallon
• State representation?
–General state?
–Initial state?
–Goal state?
• Possible actions?
–Condition?
–Resulting state?

Name Cond. Transition Effect

dump1 x>0 ((x,y)→(0,y) Empty Jug 1

dump2 y>0 (x,y)→(x,0) Empty Jug 2

pour_1_2
x>0 &
y<C2

(x,2)→(x+2,0) Pour from Jug 
1 to Jug 2

pour_2_1
y>0 &
X<C1

(x,0)→(x-2,2) Pour from Jug 
2 to Jug 1

5to2part y < 2 (1,y)→(0,y+1) Pour partial 
5G into 2G

Action table

5 2



So…

• How can we represent the states?
• What’s an initial state
• How do we recognize a goal state
• What are the actions; how can we tell which ones 

can be performed in a given state; what is the 
resulting state

• How do we search for a solution from an initial 
state given a goal state

• What is a solution? The goal state achieved or a 
path to it?



Search in a state space
• Basic idea:
–Create representation of initial state
–Try all possible actions & connect states that result
–Recursively apply process to the new states until we 

find a solution or dead ends

•We need to keep track of the connections 
between states and might use a
–Tree data structure or
–Graph data structure

• A graph structure is best in general…



Formalizing state space search

• A state space is a graph (V, E) where V is a set 
of nodes and E is a set of arcs, and each arc is 
directed from a node to another node
• Nodes: data structures with state description 

and other info, e.g., node’s parent, name of 
action that generated it from parent, etc.
• Arcs: instances of actions, head is a state, tail 

is the state that results from action



Formalizing search in a state space
• Each arc has fixed, positive cost associated 

with it corresponding to the action cost
– Simple case: all costs are 1

• Each node has a set of successor nodes 
corresponding to all legal actions that can be 
applied at node’s state
– Expanding a node = generating its successor nodes and 

adding them and their associated arcs to the graph

• One or more nodes are marked as start nodes
• A goal test predicate is applied to a state to 

determine if its associated node is a goal node



What does “search” 
look like for a 

particular problem?
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