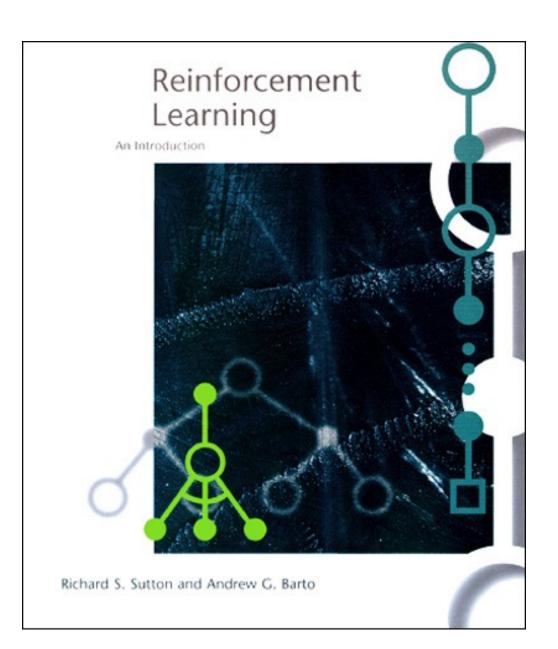
CMSC 471: Reinforcement Learning

There's an entire book!

http://incompleteideas. net/book/the-book-2nd.html



The Big Idea

- "Planning": Find a sequence of steps to accomplish a goal.
 - Given start state, transition model, goal functions...
- This is a kind of sequential decision making.
 - Transitions are deterministic.
- What if they are stochastic (probabilistic)?
 - One time in ten, you drop your sock
- Probabilistic Planning: Make a plan that accounts for probability by carrying it through the plan.

Review: Formalizing Agents

• Given:

- A state space S
- A set of actions a_1 , ..., a_k including their results
- Reward value at the end of each trial (series of action) (may be positive or negative)

Output:

A mapping from states to actions

Review: Formalizing Agents

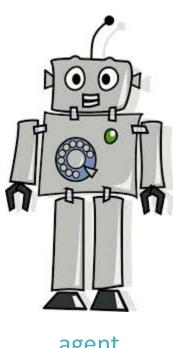
• Given:

- A state space S
- A set of actions a_1 , ..., a_k including their results
- Reward value at the end of each trial (series of action) (may be positive or negative)

Output:

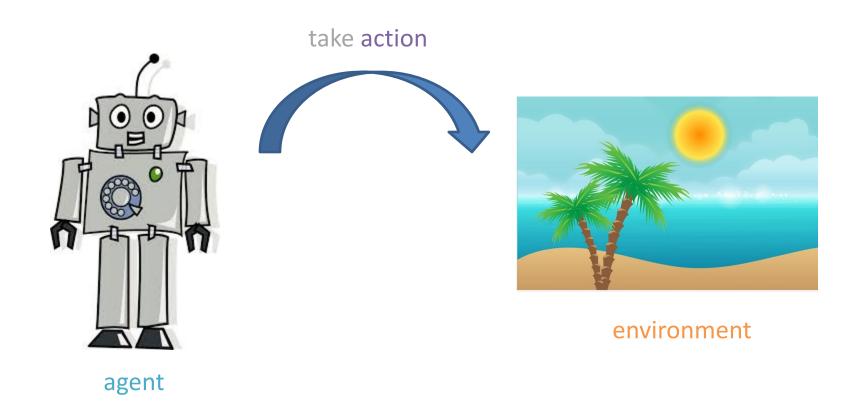
- A mapping from states to actions
- Which is a policy, π

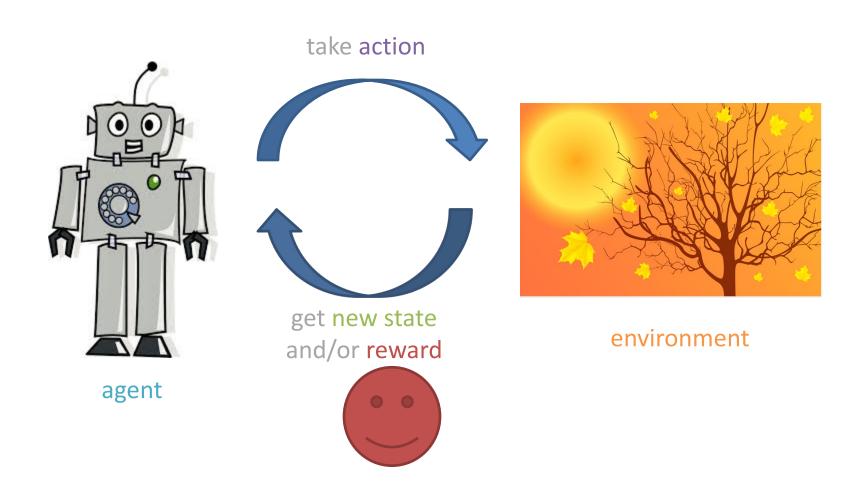
- We often have an agent which has a task to perform
 - It takes some actions in the world
 - At some later point, gets feedback on how well it did
 - The agent performs the same task repeatedly
- This problem is called reinforcement learning:
 - The agent gets positive reinforcement for tasks done well
 - And gets negative reinforcement for tasks done poorly
 - Must somehow figure out which actions to take next time

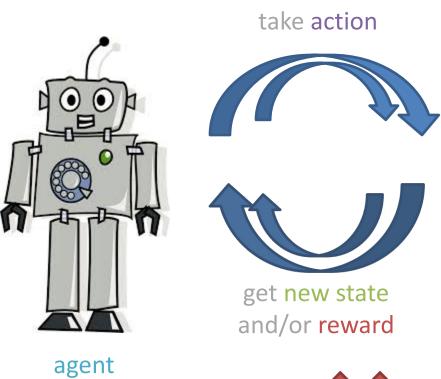


agent

environment

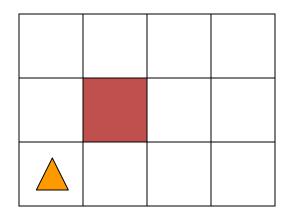




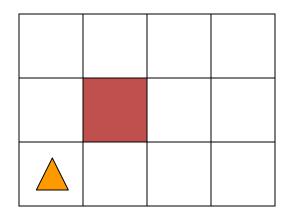


environment

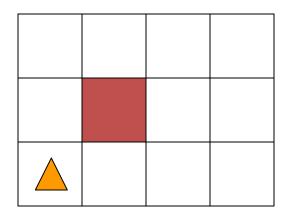
Simple Robot Navigation Problem



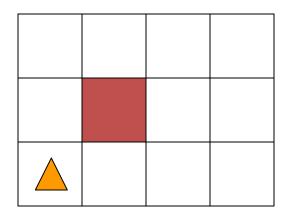
• In each state, the possible actions are U, D, R, and L



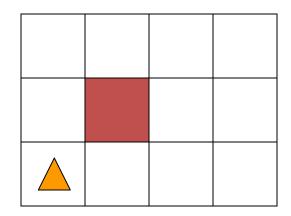
- In each state, the possible actions are U, D, R, and L
- The effect of U is as follows (transition model):
 - With probability 0.8, the robot moves up one square (if the robot is already in the top row, then it does not move)



- In each state, the possible actions are U, D, R, and L
- The effect of U is as follows (transition model):
 - With probability 0.8, the robot moves up one square (if the robot is already in the top row, then it does not move)
 - With probability 0.1, the robot moves right one square (if the robot is already in the rightmost row, then it does not move)



- In each state, the possible actions are U, D, R, and L
- The effect of U is as follows (transition model):
 - With probability 0.8, the robot moves up one square (if the robot is already in the top row, then it does not move)
 - With probability 0.1, the robot moves right one square (if the robot is already in the rightmost row, then it does not move)
 - With probability 0.1, the robot moves left one square (if the robot is already in the leftmost row, then it does not move)



- In each state, the possible actions are U, D, R, and L
- The effect of U is as follows (transition model):
 - With probability 0.8, the robot moves up one square (if the robot is already in the top row, then it does not move)
 - With probability 0.1, the robot moves right one square (if the robot is already in the rightmost row, then it does not move)
 - With probability 0.1, the robot moves left one square (if the robot is already in the leftmost row, then it does not move)
- •D, R, and L have similar probabilistic effects

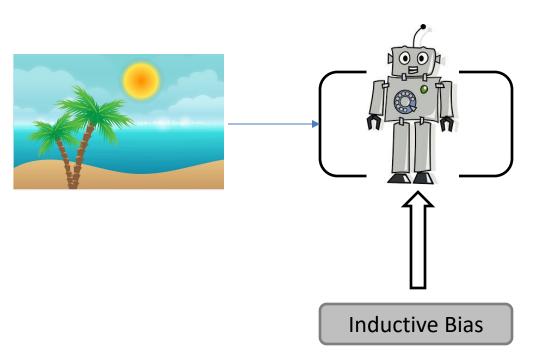
Markov Property

The transition properties depend only on the current state, not on the previous history (how that state was reached)

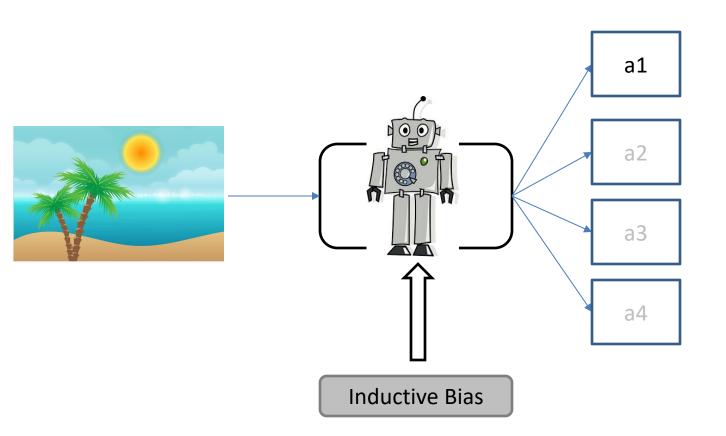
Markov assumption generally: current state only ever depends on previous state (or finite set of previous states).

But what about the learning part of reinforcement learning?

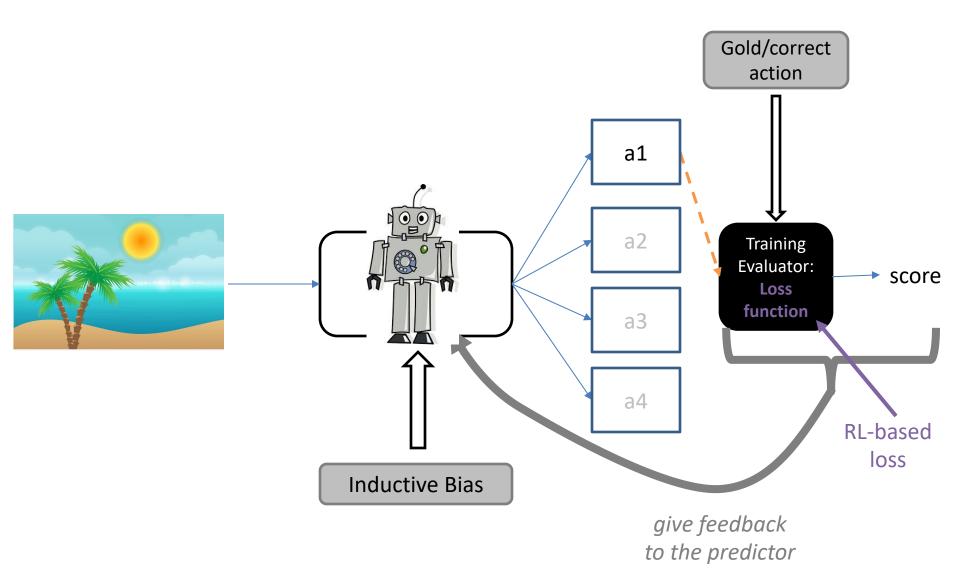
RL, in our ML framework

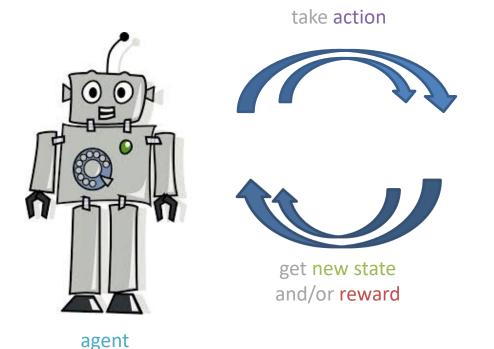


RL, in our ML framework



RL, in our ML framework

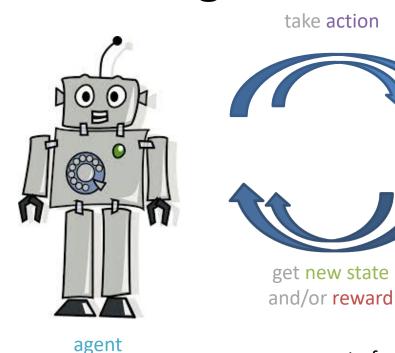




environment

Markov Decision Process:

 $(\mathcal{S}, \mathcal{A}, \mathcal{R}, P, \gamma)$

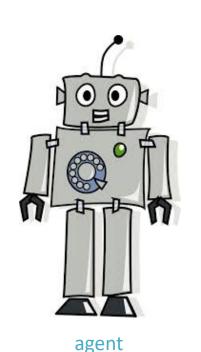


environment

Markov Decision Process:

set of possible actions $(\mathcal{S},\mathcal{A},\mathcal{R},P,\gamma)$ set of

possible states



take action

set of

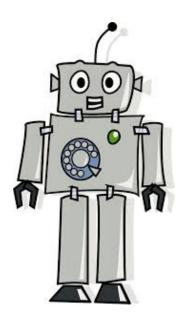
environment

Markov Decision
Process:

possible actions $(\mathcal{S},\mathcal{A},\mathcal{R},P,\gamma)$

set of possible states

reward of (state, action) pairs



take action

environment

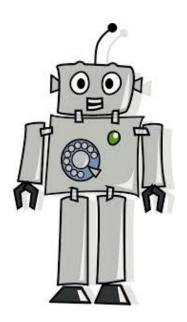
agent

Markov Decision Process:

set of state-action possible transition actions distribution $(\mathcal{S},\mathcal{A},\mathcal{R},P,\gamma)$

set of possible states

reward of (state, action) pairs



take action

states

environment

agent

Markov Decision Process:

set of state-action possible transition actions distribution $(\mathcal{S},\mathcal{A},\mathcal{R},P,\gamma)$ set of reward of possible (state, factor

action) pairs

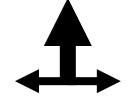
Robot in a room

		+1
		-1
START		

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP10% move LEFT10% move RIGHT



reward +1 at [4,3], -1 at [4,2] reward -0.04 for each step

Goal: what's the strategy to achieve the maximum reward?

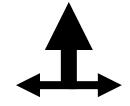
Robot in a room

		+1
		-1
START		

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP10% move LEFT10% move RIGHT



reward +1 at [4,3], -1 at [4,2] reward -0.04 for each step

states: current location

actions: where to go next

rewards

what is the solution? Learn a mapping from (state, action) pairs to new states

| Slide courtesy Peter Bodík | Slide courtesy Peter Bodík |

set of state-action possible transition actions distribution **Markov Decision** $(S, \mathcal{A}, \mathcal{R}, P, \gamma)$ **Process:** set of reward of discount possible (state, factor action) pairs states

Start in initial state s_0

set of state-action possible transition distribution actions **Markov Decision Process:** set of reward of discount possible (state, factor action) pairs states

Start in initial state s_0 for t = 1 to ...: choose action a_t

set of state-action possible transition distribution actions **Markov Decision** $(\mathcal{S}, \mathcal{A}, \mathcal{R}, P, \gamma)$ **Process:** reward of set of discount possible (state, factor action) pairs states

```
Start in initial state s_0 for t = 1 to ...: choose action a_t "move" to next state s_t \sim \pi(\cdot|s_{t-1},a_t)
```

Policy $\pi: S \rightarrow A$

set of

state-action

Markov Decision Process: $(S, \mathcal{A}, \mathcal{R}, P, \gamma)$ set of possible states states possible transition distribution $(S, \mathcal{A}, \mathcal{R}, P, \gamma)$

```
Start in initial state s_0 for t = 1 to ...: choose action a_t "move" to next state s_t \sim \pi(\cdot|s_{t-1},a_t) get reward r_t = \mathcal{R}(s_t,a_t)
```

set of state-action possible transition distribution actions **Markov Decision** $(\mathcal{S}, \mathcal{A}, \mathcal{R}, P, \gamma)$ **Process:** set of reward of discount possible (state, factor action) pairs states

```
Start in initial state s_0 for t = 1 to ...: choose action a_t "move" to next state s_t \sim \pi(\cdot|s_{t-1},a_t) get reward r_t = \mathcal{R}(s_t,a_t)
```

objective: choose action over time to maximize timediscounted reward

set of

Markov Decision Process: $(S, \mathcal{A}, \mathcal{R}, P, \gamma)$ set of reward of possible states states action) pairs $(S, \mathcal{A}, \mathcal{R}, P, \gamma)$

```
Start in initial state s_0 for t = 1 to ...: choose action a_t "move" to next state s_t \sim \pi(\cdot|s_{t-1},a_t) get reward r_t = \mathcal{R}(s_t,a_t)
```

objective: choose action over time to maximize discounted reward

Consider all possible future times t

state-action

Reward at time t

set of

Markov Decision Process: $(S, \mathcal{A}, \mathcal{R}, P, \gamma) \\ \text{set of possible states} \\ \text{states} \\ \text{possible transition distribution} \\ \text{discount factor} \\ \text{discount factor} \\ \text{factor} \\ \text{factor} \\ \text{possible states} \\ \text{possible action} \\ \text{possible states} \\ \text{discount factor} \\ \text{factor} \\ \text{f$

```
Start in initial state s_0 for t = 1 to ...: choose action a_t "move" to next state s_t \sim \pi(\cdot|s_{t-1},a_t) get reward r_t = \mathcal{R}(s_t,a_t)
```

objective: maximize discounted reward

Consider all possible future times t

state-action

Discount at R time t

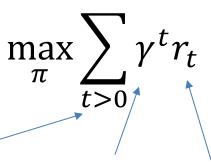
Reward at time t

Markov Decision Process:

set of state-action possible transition actions distribution
$$(\mathcal{S},\mathcal{A},\mathcal{R},P,\gamma)$$
 set of reward of possible states action) pairs discount factor

Start in initial state s_0 for t = 1 to ...: choose action a_t "move" to next state $s_t \sim \pi(\cdot|s_{t-1},a_t)$ get reward $r_t = \mathcal{R}(s_t,a_t)$

objective: maximize discounted reward



Consider all possible future times t

Discount at time t

Reward at time t

Example of Discounted Reward

objective: maximize discounted reward $\max_{\pi} \sum_{t>0} \gamma^t r_t$ Consider all Discount at Reward at possible future time t time t

• If the discount factor $\gamma = 0.8$ then reward

$$0.8^{0}r_{0} +$$

$$0.8^{1}r_{1} + 0.8^{2}r_{2} +$$

$$0.8^{3}r_{3} + \dots + 0.8^{n}r_{n} + \dots$$

 Allows you to consider all possible rewards in the future but preferring current vs. future self

Markov Decision Process: Formalizing Reinforcement Learning

set of

state-action

Markov Decision Process: $(S, \mathcal{A}, \mathcal{R}, P, \gamma) \\ \text{set of possible states} \\ \text{states} \\ \text{possible transition distribution} \\ \text{reward of factor} \\ \text{discount factor} \\ \text{factor} \\ \text{factor} \\ \text{states} \\ \text{possible states} \\ \text{or action) pairs} \\ \text{transition distribution} \\ \text{discount factor} \\ \text{factor} \\ \text{fac$

Start in initial state s_0 for t = 1 to ...: choose action a_t "move" to next state $s_t \sim \pi(\cdot|s_{t-1},a_t)$ get reward $r_t = \mathcal{R}(s_t,a_t)$

objective: maximize discounted reward

$$\max_{\pi} \sum_{t>0} \gamma^t r_t$$

"solution": the policy π^* that maximizes the expected (average) time-discounted reward

Markov Decision Process: Formalizing Reinforcement Learning

Markov Decision Process:

set of state-action possible transition actions distribution
$$(\mathcal{S},\mathcal{A},\mathcal{R},P,\gamma)$$
 set of reward of possible states action) pairs discount factor

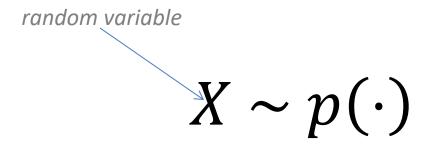
Start in initial state s_0 for t = 1 to ...: choose action a_t "move" to next state $s_t \sim \pi(\cdot|s_{t-1},a_t)$ get reward $r_t = \mathcal{R}(s_t,a_t)$

objective: maximize discounted reward

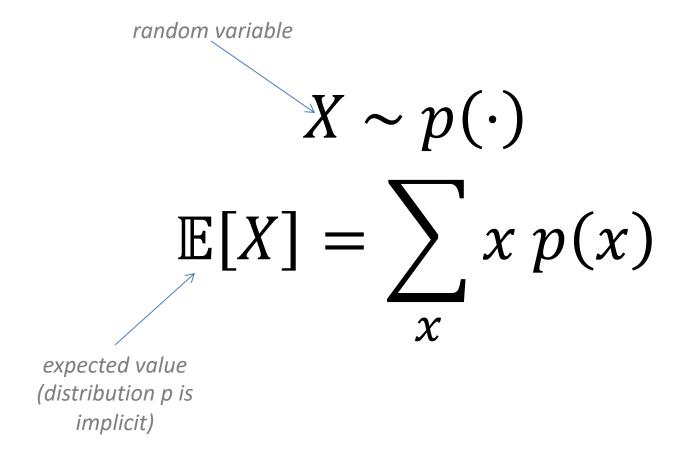
$$\max_{\pi} \sum_{t>0} \gamma^t r_t$$

"solution"
$$\pi^* = \underset{\pi}{\operatorname{argmax}} \mathbb{E} \left[\sum_{t>0} \gamma^t r_t ; \pi \right]$$

Expected Value of a Random Variable

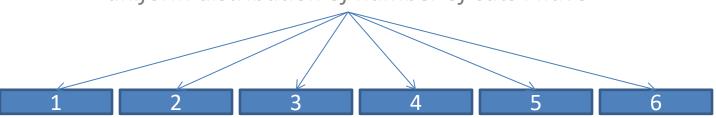


Expected Value of a Random Variable



Expected Value: Example

uniform distribution of number of cats I have



$$\mathbb{E}[X] = \sum_{x} x \, p(x)$$

$$1/6 * 1 + 1/6 * 2 + 1/6 * 3 + 1/6 * 4 + 1/6 * 5 + 1/6 * 6$$

$$1/6 * 6$$

Expected Value: Example 2

non-uniform distribution of number of cats a normal cat person has

$$\mathbb{E}[X] = \sum_{x} x \, p(x)$$

$$\frac{1/2 * 1 +}{1/10 * 2 +}$$

$$\frac{1}{10 * 3 +} = 2.5$$

$$\frac{1}{10 * 4 +}$$

$$\frac{1}{10 * 5 +}$$

$$\frac{1}{10 * 6}$$

Expected Value of a Function of a Random Variable

$$X \sim p(\cdot)$$

$$\mathbb{E}[X] = \sum_{x} x p(x)$$

$$\mathbb{E}[f(X)] = ???$$

Expected Value of a Function of a Random Variable

$$X \sim p(\cdot)$$

$$\mathbb{E}[X] = \sum_{x} x p(x)$$

$$\mathbb{E}[f(X)] = \sum_{x} f(x) p(x)$$

Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

Dynamic programming

use value functions to structure the search for good policies

Value function is defined as V^{π}

Dynamic programming

use value functions to structure the search for good policies

Value function is defined as V^{π}

policy evaluation: compute V^{π} from π policy improvement: improve π based on V^{π}

Dynamic programming

use value functions to structure the search for good policies

Value function is defined as V^{π}

policy evaluation: compute V^{π} from π policy improvement: improve π based on V^{π}

start with an arbitrary policy repeat evaluation/improvement until convergence

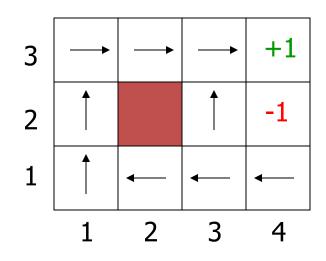
Reactive Agent Algorithm

Repeat:

 Accessible or observable state

- ◆ s ← sensed state
- If s is a terminal state then exit
- a ← choose action (given s)
- Perform a

Policy (Reactive/Closed-Loop Strategy)



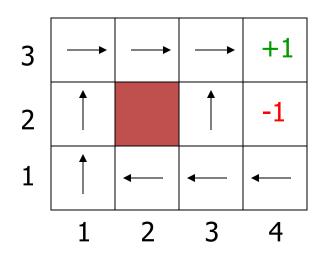
- In every state, we need to know what to do
- The goal doesn't change
- A policy (Π) is a complete mapping from states to actions
 - "If in [3,2], go up; if in [3,1], go left; if in..."

Reactive Agent Algorithm

Repeat:

- ◆ s ← sensed state
- If s is terminal then exit
- $a \leftarrow \Pi(s)$
- Perform a

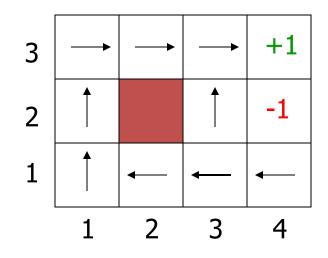
Optimal Policy



- A policy Π is a complete mapping from states to actions
- The optimal policy

 is the one that always yields a
 history (sequence of steps ending at a terminal state)
 with maximal expected utility

Optimal Policy



- A policy Π is a comp

 This problem is called a
- The optimal policy T Markov Decision Problem (MDP) history with maximal expected utility

How to compute Π^* ?

ns

Problem:

 When making a decision, we only know the reward so far, and the possible actions

- When making a decision, we only know the reward so far, and the possible actions
- We've defined value function retroactively (i.e., the value function/utility of a history/sequence of states is known *once we finish it*)

- When making a decision, we only know the reward so far, and the possible actions
- We've defined value function retroactively (i.e., the value function/utility of a history/sequence of states is known *once we finish it*)
- What is the value function of a particular *state* in the middle of decision making?

- When making a decision, we only know the reward so far, and the possible actions
- We've defined value function retroactively (i.e., the value function/utility of a history/sequence of states is known *once we finish it*)
- What is the value function of a particular *state* in the middle of decision making?
- Need to compute *expected value function* of possible future histories/states

- When making a decision, we only know the reward so far, and the possible actions
- We've defined value function retroactively (i.e., the value function/utility of a history/sequence of states is known *once we finish it*)
- What is the value function of a particular *state* in the middle of decision making?
- Need to compute *expected value function* of possible future histories/states

$$V^{\pi}(s) = \mathbb{E}\left[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots \mid s_0 = s, \pi\right].$$

 $V^{\pi}(s)$ is simply the expected sum of discounted rewards upon starting in state s, and taking actions according to π .¹

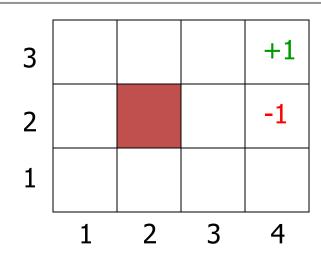
Given a fixed policy π , its value function V^{π} satisfies the **Bellman equations**:

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s').$$

Algorithm 4 Value Iteration

- 1: For each state s, initialize V(s) := 0.
- 2: for until convergence do
- 3: For every state, update

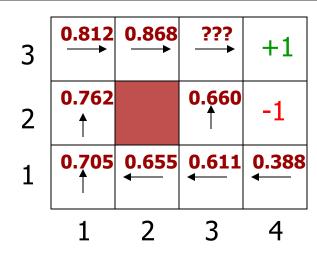
$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s').$$
 (15.4)



Algorithm 4 Value Iteration

- 1: For each state s, initialize V(s) := 0.
- 2: for until convergence do
- 3: For every state, update

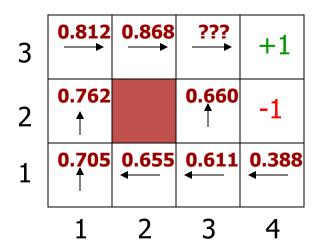
$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s').$$
 (15.4)



Algorithm 4 Value Iteration

- 1: For each state s, initialize V(s) := 0.
- 2: for until convergence do
- 3: For every state, update

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s').$$
 (15.4)

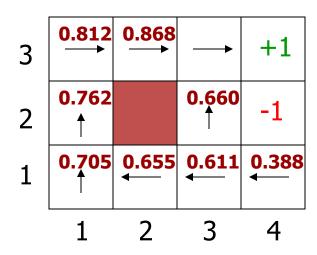


EXERCISE: What is $V^*([3,3])$ (assuming that the other V^* are as shown)?

Algorithm 4 Value Iteration

- 1: For each state s, initialize V(s) := 0.
- 2: for until convergence do
- 3: For every state, update

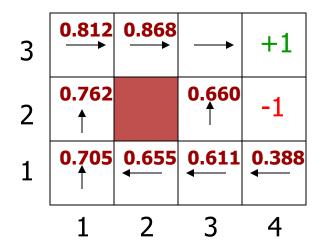
$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s').$$
 (15.4)



Algorithm 4 Value Iteration

- 1: For each state s, initialize V(s) := 0.
- 2: for until convergence do
- 3: For every state, update

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s').$$
 (15.4)

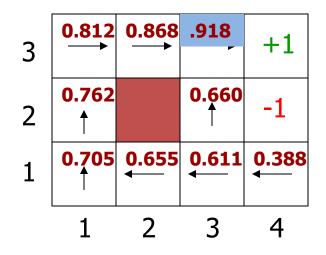


$$V^*_{3,3} =$$
 $R_{3,3} +$
 $[P_{3,2} V^*_{3,2} + P_{3,3} V^*_{3,3} + P_{4,3} V^*_{4,3}]$

Algorithm 4 Value Iteration

- 1: For each state s, initialize V(s) := 0.
- 2: for until convergence do
- 3: For every state, update

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s').$$
 (15.4)

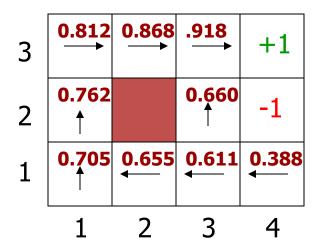


$$V^*_{3,3} =$$
 $R_{3,3} +$
 $[P_{3,2} V^*_{3,2} + P_{3,3} V^*_{3,3} + P_{4,3} V^*_{4,3}]$

From (3, 3), 3 options: (3, 2), (4, 3), (3, 4) => but there is no (3,4) but wall, so bounced off and remains at (3, 3)

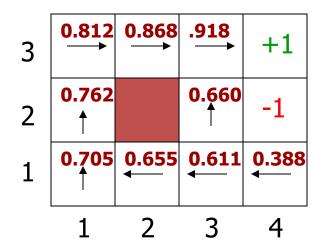
$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s').$$

What's next action for (3, 1)??



$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s').$$

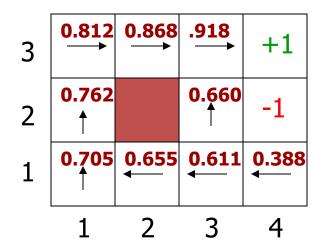
What's next action for (3, 1)??



$$\pi^*_{3,1}$$
 being (\leftarrow) = $P_{up} V^*_{1,2} + P_{left} V^*_{3,3}$ (Bounced off) + $P_{right} V^*_{3,2}$ = 0.8 * 0.655 + 0.1 * 0.611 + 0.1 * 0.66

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s').$$

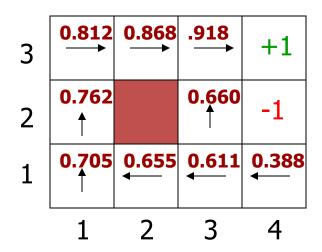
What's next action for (3, 1)??



$$\pi^*_{3,1}$$
 being (\leftarrow) = $P_{up} V^*_{1,2} + P_{left} V^*_{3,3}$ (Bounced off) + $P_{right} V^*_{3,2}$ = 0.8 * 0.655 + 0.1 * 0.611 + 0.1 * 0.66

$$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s').$$

What's next action for (3, 1)??



$$\pi^*_{3,1}$$
 being (\leftarrow) = $P_{up} V^*_{1,2} + P_{left} V^*_{3,3}$ (Bounced off) + $P_{right} V^*_{3,2}$ = 0.8 * 0.655 + 0.1 * 0.611 + 0.1 * 0.66

$$\pi^*_{3,1}$$
 being (\(\epsilon\) = $P_{up} V^*_{3,2} + P_{left} V^*_{2,1} + P_{right} V^*_{1,4}$

Value Iteration: Summary

- Initialize state values (expected utilities) randomly
- Repeatedly update state values using best action, according to current approximation of state values
- Terminate when state values stabilize
- Resulting policy will be the best policy because it's based on accurate state value estimation

Overview: Learning Strategies

Dynamic Programming

Q-learning

Monte Carlo approaches

Monte Carlo policy evaluation

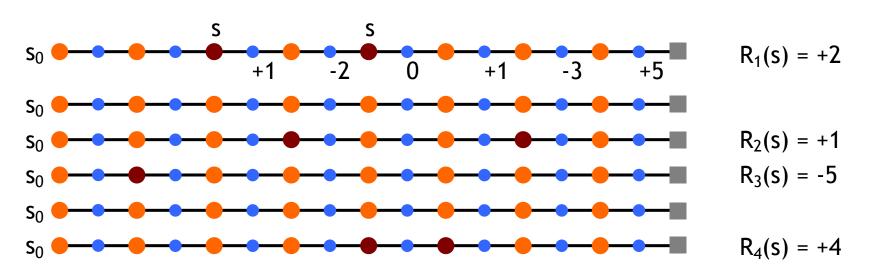
don't need full knowledge of environment (just (simulated) experience) want to estimate $V^{\pi}(s)$

Monte Carlo policy evaluation

don't need full knowledge of environment (just (simulated) experience) want to estimate $V^{\pi}(s)$

expected return starting from s and following π

estimate as average of observed returns in state s



$$V^{\pi}(s) \approx (2 + 1 - 5 + 4)/4 = 0.5$$

RL Summary 1:

Reinforcement learning systems

- Learn series of actions or decisions, rather than a single decision
- Based on feedback given at the end of the series
- A reinforcement learner has
 - A goal
 - Carries out trial-and-error search
 - Finds the best paths toward that goal

RL Summary 2:

- A typical reinforcement learning system is a reactive agent, interacting with its environment.
- It must balance:
 - Exploration: trying different actions and sequences of actions to discover which ones work best
 - Exploitation (achievement): using sequences which have worked well so far
- Must learn successful sequences of actions in an uncertain environment

RL Summary 3

- Very hot area of research at the moment
- There are many more sophisticated RL algorithms
 - Most notably: probabilistic approaches
- Applicable to game-playing, search, finance, robot control, driving, scheduling, diagnosis, ...

EXTRA SLIDES

Some Challenges

1. Representing states (and actions)

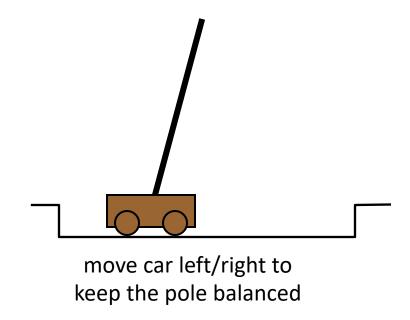
2. Defining our reward

3. Learning our policy

State Representation

Task: pole-balancing

state representation?



State Representation

Task: pole-balancing

state representation

position and velocity of car

angle and angular velocity of pole

move car left/right to keep the pole balanced

what about *Markov property*?

State Representation

Task: pole-balancing

state representation

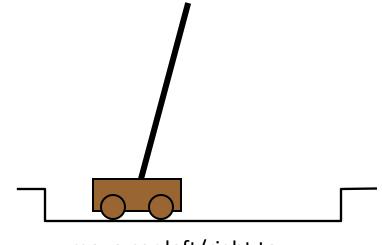
position and velocity of car

angle and angular velocity of pole

what about *Markov property*?

would need more info

noise in sensors, temperature,
bending of pole



move car left/right to keep the pole balanced

Some Challenges

1. Representing states (and actions)

2. Defining our reward

3. Learning our policy

Designing Rewards

robot in a maze

episodic task, not discounted, +1 when out, 0 for each step

chess

GOOD: +1 for winning, -1 losing

BAD: +0.25 for taking opponent's pieces

high reward even when lose

Designing Rewards

robot in a maze

episodic task, not discounted, +1 when out, 0 for each step

chess

GOOD: +1 for winning, -1 losing

BAD: +0.25 for taking opponent's pieces

high reward even when lose

rewards

rewards indicate what we want to accomplish NOT how we want to accomplish it

Designing Rewards

robot in a maze

episodic task, not discounted, +1 when out, 0 for each step

chess

GOOD: +1 for winning, -1 losing

BAD: +0.25 for taking opponent's pieces

high reward even when lose

rewards

rewards indicate what we want to accomplish NOT how we want to accomplish it

shaping

positive reward often very "far away" rewards for achieving subgoals (domain knowledge) also: adjust initial policy or initial value function

Simple Reinforcement Learning

- Feedback is at the end, on a series of actions.
- Very early concept in Artificial Intelligence!
- Arthur Samuels' checker
 program was a simple
 reinforcement based learner,
 initially developed in 1956.
- In 1962 it beat a human checkers master.

Human: I'm thinking of an animal.

- Human: I'm thinking of an animal.
- Computer: Is it a bird?

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?
- Human: No.

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?
- Human: No.
- Computer: What is it?

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?
- Human: No.
- Computer: What is it?
- Human: A mouse.

Example: Animals Guessing Game Architecture

- All of the parts of ML Architecture:
 - The Representation is a sequence of questions and pairs of yes/no answers (decision tree).
 - The Actor "walks" the tree, interacting with a human; at each question it chooses whether to follow the "yes" branch or the "no" branch.
 - The Evaluator/loss function is the human player telling the game whether it has guessed correctly.
 - The Learner elicits new questions and adds questions, guesses and branches to the tree.

Reinforcement Learning (cont.)

- Goal: agent acts in the world to maximize its rewards
- Agent has to figure out what it did that made it get that reward/punishment
 - This is known as the credit assignment problem

Human: I'm thinking of an animal.

Human: I'm thinking of an animal.

– Computer: Is it a bird?

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?
- Human: No.

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?
- Human: No.
- Computer: What is it?

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?
- Human: No.
- Computer: What is it?
- Human: A mouse.

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?
- Human: No.
- Computer: What is it?
- Human: A mouse.
- Computer: Tell me a question that distinguishes a frog from a mouse.

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?
- Human: No.
- Computer: What is it?
- Human: A mouse.
- Computer: Tell me a question that distinguishes a frog from a mouse.
- Human: Does it have fur?

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?
- Human: No.
- Computer: What is it?
- Human: A mouse.
- Computer: Tell me a question that distinguishes a frog from a mouse.
- Human: Does it have fur?
- Computer: What is the answer for a frog?

- Human: I'm thinking of an animal.
- Computer: Is it a bird?
- Human: No.
- Computer: Is it a frog?
- Human: No.
- Computer: What is it?
- Human: A mouse.
- Computer: Tell me a question that distinguishes a frog from a mouse.
- Human: Does it have fur?
- Computer: What is the answer for a frog?
- Human: No.

Example: Animals Behind the Scene

Computer: Is it a bird?

Human: No

Computer: Is it a frog?

Human: No

Computer: What is it?

Human: A mouse

Computer: Tell me a question that distinguishes a frog from

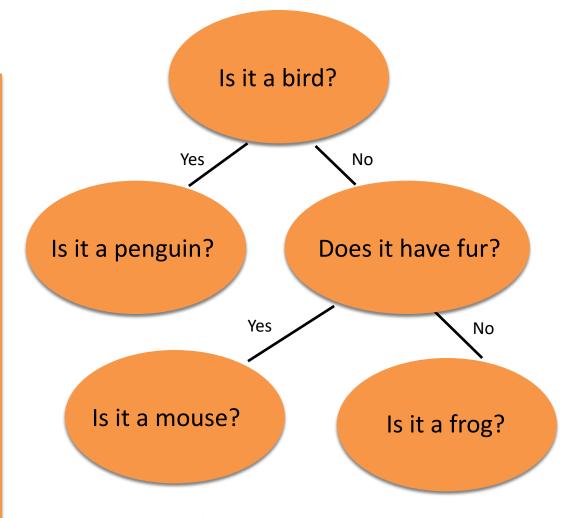
a mouse.

Human: Does it have fur?

Computer: What is the

answer for a frog?

Human: no



After several rounds...

Reinforcement Learning (cont.)

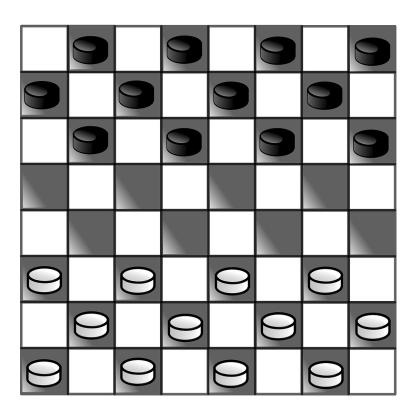
- Goal: agent acts in the world to maximize its rewards
- Agent has to figure out what it did that made it get that reward/punishment
 - This is known as the credit assignment problem
- RL can be used to train computers to do many tasks
 - Backgammon and chess playing
 - Job shop scheduling
 - Controlling robot limbs

Reactive Agent

- This kind of agent is a reactive agent
- The general algorithm for a reactive agent is:
 - Observe some state
 - If it is a terminal state, stop
 - Otherwise choose an action from the actions possible in that state
 - Perform the action
 - Recur.

Simple Example

- Learn to play checkers
 - Two-person game
 - 8x8 boards, 12 checkers/side
 - relatively simple set of rules:
 - http://www.darkfish.co m/checkers/rules.html
 - Goal is to eliminate all your opponent's pieces



Representing Checkers

- First we need to represent the game
- To completely describe one step in the game you need
 - A representation of the game board.
 - A representation of the current pieces
 - A variable which indicates whose turn it is
 - A variable which tells you which side is "black"
- There is no history needed
- A look at the current board setup gives you a complete picture of the state of the game

Representing Checkers

- Second, we need to represent the rules
- Represented as a set of allowable moves given board state
 - If a checker is at row x, column y, and row x+1 column y±1 is empty, it can move there.
 - If a checker is at (x,y), a checker of the opposite color is at (x+1, y+1), and (x+2,y+2) is empty, the checker must move there, and remove the "jumped" checker from play.
- There are additional rules, but all can be expressed in terms of the state of the board and the checkers.
- Each rule includes the outcome of the relevant action in terms of the state.
- What's a good reward?

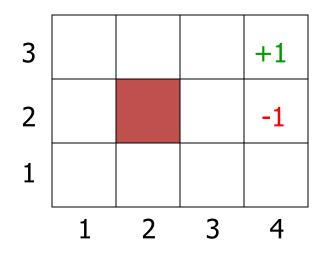
A More Complex Example

Consider an agent which must learn to drive a car

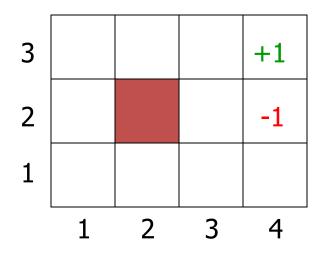
– State?

– Possible actions?

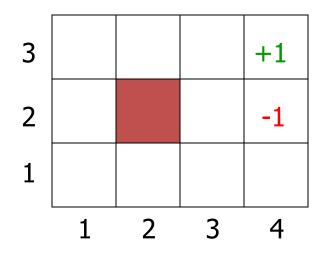
– Rewards?



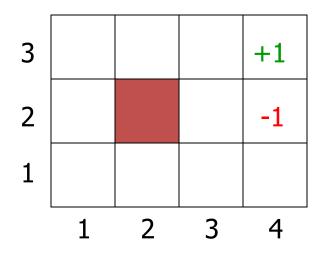
- [4,3] provides power supply
- [4,2] is a sand area from which the robot cannot escape



- [4,3] provides power supply
- [4,2] is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries

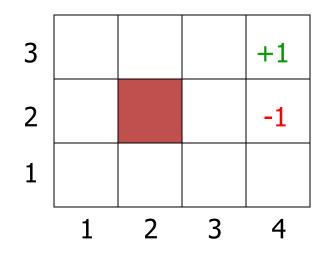


- [4,3] provides power supply
- [4,2] is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries
- [4,3] and [4,2] are terminal states



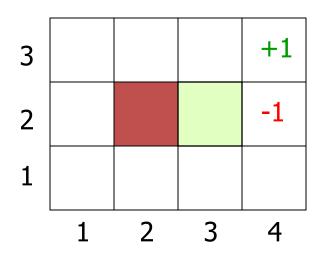
- [4,3] provides power supply
- [4,2] is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries
- [4,3] and [4,2] are terminal states
- Histories have utility!

Utility of a History



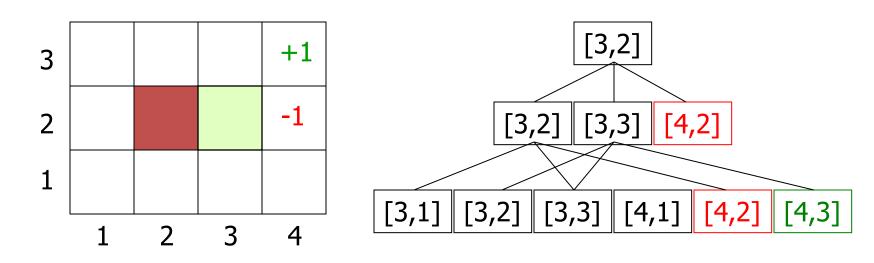
- [4,3] provides power supply
- [4,2] is a sand area from which the robot cannot escape
- The robot needs to recharge its batteries
- [4,3] or [4,2] are terminal states
- Histories have utility!
- The utility of a history is defined by the utility of the last state (+1 or −1) minus n/25, where n is the number of moves
 - Many utility functions possible, for many kinds of problems.

Utility of an Action Sequence



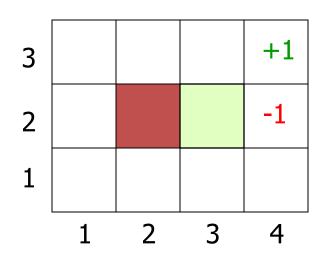
• Consider the action sequence (U,R) from [3,2]

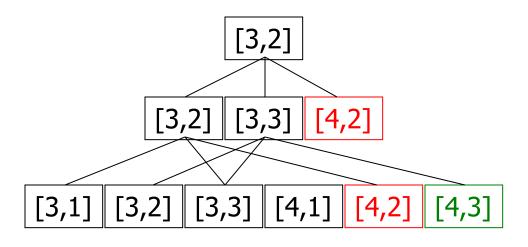
Utility of an Action Sequence



- Consider the action sequence (U,R) from [3,2]
- A run produces one of 7 possible histories, each with some probability

Utility of an Action Sequence

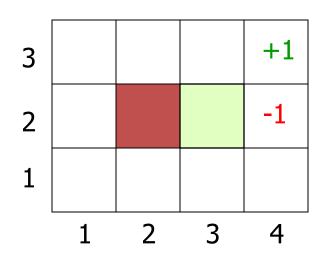


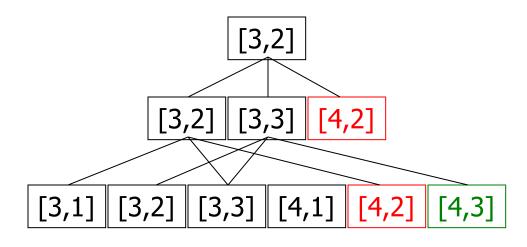


- Consider the action sequence (U,R) from [3,2]
- A run produces one of 7 possible histories, each with some probability
- The utility of the sequence is the expected utility of the histories:

$$\mathcal{U} = \Sigma_h \mathcal{U}_h \mathbf{P}(h)$$

Optimal Action Sequence



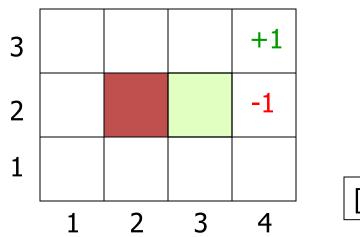


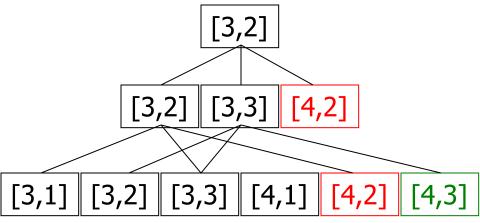
- Consider the action sequence (U,R) from [3,2]
- A run produces one of 7 possible histories, each with some probability
- The utility of the sequence is the expected utility of the histories:

$$\mathcal{U} = \Sigma_h \mathcal{U}_h \mathbf{P}(h)$$

• The optimal sequence is the one with maximal utility

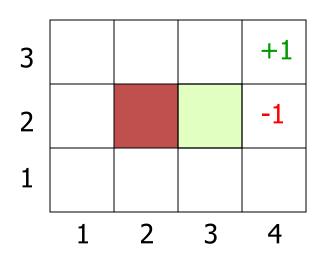
Optimal Action Sequence

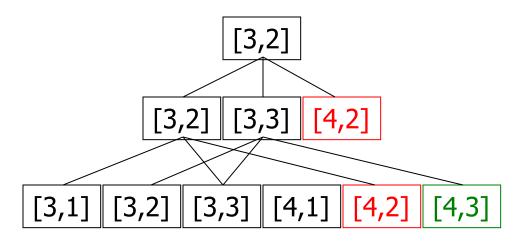




- Consider the action sequence (U,R) from [3,2]
- A run produces one of 7 possible histories, each with some probability
- The utility of the sequence is the expected utility of the histories
- The optimal sequence is the one with maximal utility
- But is the optimal action sequence what we want to compute?

Optimal Action Sequence





- Consider the action sequence (U,R) from [3,2]
- A run production only if the sequence is executed blindly!
 The utility of the sequence is the expected during of the mistories. ability
- The optimal sequence is the one with maximal utility
- But is the optimal action sequence what we want to compute?