11.1

Planning 1

Chapter 11.1-11.3

Some material adopted from notes by
Andreas Geyer-Schulz and Chuck Dyer

Planning is the art and
practice of thinking
before acting

— Patrik Haslum

http://users.cecs.anu.edu.au/~patrik/

Overview

* What 1s planning?
* Approaches to planning
—GPS / STRIPS

—Situation calculus formalism

—Partial-order planning

Planning Problem

* Find a sequence of actions that achieves a goal when
executed from an initial state.
« That 1s, given
— A set of operators (possible actions)
— An 1nitial state description

— A goal (description or conjunction of predicates)

« Compute a sequence of operations: a plan.

Planning Prob

» Find a sequence of actions thapachieves P¥beNwhish
executed from an initial sta
« That 1s, given
— A set of operators (possibie actions)
— An 1nitial state description
— A goal (description or conjunction of predicates)

« Compute a sequence of operations: a plan.

Planning Prob

» Find a sequence of actions thapachieves P8bWHER
executed from an initial sta

» That is, given
— A set of operators (possibie actions

— An initial state description

— A goal (description or conjunction of predica

« Compute a sequence of operations: a plan.

Planning Prob

» Find a sequence of actions thapachieves P8bWHER
executed from an initial sta

» That is, given
— A set of operators (possibie actions

— An initial state description

— A goal (description or conjunction of predica

« Compute a sequence of operations: a plan.

Some example domains

* We’ll use some simple problems to illustrate planning
problems and algorithms

 Putting on your socks and shoes in the morning
— Actions like put-on-left-sock, put-on-right-shoe
 Planning a shopping trip involving buying several
kinds of items

—Actions like go(X), buy(Y)

Typical Assumptions (1)

* Atomic time: Each action 1s indivisible
— Can’t be interrupted halfway through putting on pants

* No concurrent actions allowed
— Can’t put on socks at the same time

* Deterministic actions
— The result of actions are completely known — no uncertainty

9

Typical Assumptions

» Agent is the sole cause of change in the world
— Nobody else is putting on your socks

« Agent is omniscient:
— Has complete knowledge of the state of the world

* Closed world assumption:

— Everything known-true about the world is in the state description
— Anything not known-true is known-false

10

Classic Planning

Find sequence of actions to reach a ’J_\/ robot arm

goal in a discrete, deterministic, static,
fully-observable environment

e State space search and logical A C] B

reasoning could be used Initial State

e But classic planning developed custom
representations & algorithms to do it ‘
more effectively

e The approach uses a knowledge base m
and reasoning about the state ’J'\ B
of the world and possible actions C

e We'll look first at doing this in the Goal State
simple blocks world

Blocks world M

The blocks world is a
“micro-world” with

a table, a set of blocks, and
a robot hand

Some constraints for a
simple model:

— Only one block can be on
another block

— Any number of blocks can
be on the table

— The hand can only hold one
block

(] @) Run Current Plan

njs
oo

/ Run CurrentPlan) { Stop |

Meant to be a simple model!
(Applet demo at:
http://aispace.org/planning/index.shtml)

https://en.wikipedia.org/wiki/Blocks_world

Blocks world M

Typical representation uses a logic
notation to represent the state of the world:
ontable(a) ontable(c)

clear(a) clear(c)
handempty

And possible actions with their preconditions

and effects:
Pickup Putdown
Stack Unstack

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

Initial state asserts
everything that's
true initially

o

Goal state asserts
things we want to
be true eventually

Typical BW planning problem

Logical assertions
Sequence

describing initial & £ robot
ar . final states o1 robo
Initial state: / actions

clear(a) / I \
clear(b)
clear(c) ‘ I

ontable(a) Plan:

ontable(b) A C E pickup(b)

ontable(c) stack(b,c)

handempty pickup(a)
Goal state: I stack(a,b)

on(b,c) A

on(a,b) l_\ B

ontable(c) C

Planning vs. problem solving

* Problem solving methods solve similar problems

e Planning is more powerful and efficient because of
the representations and methods used

e States, goals, and actions are decomposed into sets
of sentences (usually in first-order logic)

e Search often proceeds through plan space rather
than state space (though there are also state-space
planners)

e Sub-goals can be planned independently, reducing
the complexity of the planning problem

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

Simple approach:

e find a way to
achieve each
goal in order

o

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

Simple approach:

e find a way to
achieve each
goal in order

o

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

Simple approach:

e find a way to
achieve each
goal in order

o

Note: Goalsin a
different order!

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)

<«

ontable(c)

o

A plan:
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Note: Goalsin a
different order!

Yet Another BW planning problem

Initial state:

clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:

on(a,b)
on(b,c)
ontable(c)

o

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

o

Note: not very
efficient!

Major Approaches

 Planning as search

* GPS / STRIPS

* Situation calculus

* Partial order planning

 Hierarchical decomposition (HTN planning)

* Planning with constraints (SATplan, Graphplan)
* Reactive planning

27

Planning as Search (?)

e Can think of planning as a search problem

e Actions: generate successor states

e States: completely described & only used for
successor generation, heuristic fn. evaluation & goal
testing

e Goals: represented as a goal test and using a
heuristic function

e Plan representation: unbroken sequences of
actions forward from initial states or backward from
goal state

“Get a quart of milk, a bunch of bananas
and a variable-speed cordless drill.”

Talk to Parrot
-

Go To Pet Store Buy a Dog
- o
Go To School Go To Class
Lt o
Start Go To Supermarket Buy Tuna Fish
T T
Go To Sleep Buy Arugula
- -
Read A Book Buy Milk
- -, —b > —p-| Finish
Sit in Chair Sit Some More
2=

Read A Book

s

29

General Problem Solver

e The General Problem Solver (GPS) system

— An early planner (Newell, Shaw, and Simon)

« Generate actions that reduce difference between current state and
goal state

» Uses Means-Ends Analysis

— Compare what is given or known with what is desired
— Select a reasonable thing to do next

— Use a table of differences to identify procedures to reduce differences

* GPS 1s a state space planner

— Operates on state space problems specified by an 1nitial state, some goal
states, and a set of operations

History: Shakey the robot

First general-purpose mobile robot to be able
to reason about its own actions

Shakey the Robot: The First Robot to Embody Artificial Intelligence

" A
:
)

Shakey: Experiments in Robot Planning and Learning (1972)

Shakey the Robot: 1st Robot
to Embody Artificial Intelli-
gence (2017, 6 min.)

Shakey: Experiments in Robot Planning
and Learning (1972, 24 min)

https://en.wikipedia.org/wiki/Shakey_the_robot
https://www.youtube.com/watch?v=GmU7SimFkpU
https://www.youtube.com/watch?v=GmU7SimFkpU
https://youtu.be/7bsEN8mwUB8
https://youtu.be/7bsEN8mwUB8
https://youtu.be/7bsEN8mwUB8

Strips planning representation

e Classic approach first used in the STRIPS
(Stanford Research Institute Problem Solver) planner

e A State is a conjunction of ground literals

at(Home) A —have(Milk) A —have(bananas) ...

e Goals are conjunctions of literals, but may have
variables, assumed to be existentially quantified Shakey the robot

at(?x) A have(Milk) A have(bananas) ...

e Need not fully specify state
— Non-specified conditions either don’t-care or assumed false
— Represent many cases in small storage

— May only represent changes in state rather than entire
situation

e Unlike theorem prover, not seeking whether goal is true, but is
there a sequence of actions to attain it

https://en.wikipedia.org/wiki/STRIPS
https://en.wikipedia.org/wiki/Shakey_the_robot

Blocks World Operators

e Classic basic operations for the Blocks World
—stack(X,Y): put block X on block Y
—unstack(X,Y): remove block X from block Y
—pickup(X): pickup block X
—putdown(X): put block X on the table

eEach represented by

—list of preconditions

—list of new facts to be added (add-effects)
—list of facts to be removed (delete-effects)
—optionally, set of (simple) variable constraints

Blocks World Stack Action

stack(X,Y):

e preconditions(stack(X,Y), [holding(X), clear(Y)])
e deletes(stack(X,Y), [holding(X), clear(Y)]).

e adds(stack(X,Y), [handempty, on(X,Y), clear(X)])

e constraints(stack(X,Y), [XY, Y#table, X#table])

Blocks World Operators 11

operator(unstack(X,Y),

[on(X,Y), clear(X), handempty],
[holding(X), clear(Y)],
[handempty, clear(X), on(X,Y)],
[X=Y,Y=#table, X+table]).

operator(stack(X,Y),
Precond [holding(X), clear(Y)],
Add [handempty, on(X,Y), clear(X)],
Delete [holding(X), clear(Y)],
Constr [X=Y, Y#table, X+table]).

operator(putdown(X),
operator(pickup(X), [holding(X)],
[ontable(X), clear(X), handempty], [ontable(X), handempty, clear(X)],
[holding(X)], [holding(X)],
[ontable(X), clear(X), handempty], [Xtable]).

[X#table]).

STRIPS planning

e STRIPS maintains two additional data structures:

— State List - all currently true predicates.

— Goal Stack - push down stack of goals to be solved, with
current goal on top

STRIPS planning

e STRIPS maintains two additional data structures:

— State List - all currently true predicates.
— Goal Stack - push down stack of goals to be solved, with
current goal on top
e |[f current goal not satisfied by present state, find
action that adds it and push action and its
preconditions (subgoals) on stack

STRIPS planning

e STRIPS maintains two additional data structures:

— State List - all currently true predicates.
— Goal Stack - push down stack of goals to be solved, with
current goal on top
e |[f current goal not satisfied by present state, find
action that adds it and push action and its
preconditions (subgoals) on stack

e When a current goal is satisfied, POP from stack

e When an action is on top stack, record its
application on plan sequence and use its add and
delete lists to update current state

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

o

(00
=

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

o

A plan:

pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Yet Another BW planning problem ©

Initial state:

clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:

on(a,b)
on(b,c)
ontable(c)

o

o

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(b)
stack(b,a)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Yet Another BW planning problem

Initial state:
ontable(a)
ontable(b)
clear(a)
clear(b)
handempty

Goal:
on(a,b)
on(b,a)

‘ I Plan:
B i

Goal interaction

e Simple planning algorithms assume independent sub-goals
— Solve each separately and concatenate the solutions
e Sussman Anomaly: an example of goal interaction problem:

— Solving on(A,B) first (via unstack(C,A),stack(A,B)) is undone
when solving 2nd goal on(B,C) (via unstack(A,B), stack(B,C))

— Solving on(B,C) first will be undone when solving on(A,B)

e Classic STRIPS couldn’t handle this, although minor
modifications can get it to do simple cases

| |
e[M5

A . C

Initial state Goal state

o

https://en.wikipedia.org/wiki/Sussman_Anomaly

State-Space Planning

« STRIPS searches thru a space of situations (where
you are, what you have, etc.)
 Find plan by searching situations to reach goal

* Progression planner: searches forward
— From 1nitial state to goal state
— Prone to exploring irrelevant actions

« Regression planner: searches backward from goal
— Works iff operators have enough information to go both ways

— Ideally leads to reduced branching: planner is only considering things that
are relevant to the goal

— but 1t’s harder to define good heuristics — so most current systems favor
forward search

Planning Heuristics

e Need an admissible heuristic to apply to planning states

— Estimate of the distance (number of actions) to the goal

* Planning typically uses relaxation to create heuristics
— Ignore all or some selected preconditions
— Ignore delete lists: Movement towards goal is never undone

— Use state abstraction (group together “similar” states and treat them
as though they are identical) — e.g., ignore fluents*

— Assume subgoal independence (use max cost; or, if subgoals
actually are independent, sum the costs)

— Use pattern databases to store exact solution costs of recurring

subproblems

Plan-Space Planning

 Alternative: search through space of plans, not situations

» The system represents plans and the actions within those plans.
The emphasis 1s on the order and structure of actions.

 Start from a partial plan; expand and refine until a complete
plan that solves the problem is generated

* Refinement operators add constraints to the partial plan and
modification operators for other changes

* We can still use STRIPS-style operators:
Op(ACTION: PutOnRightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: PutOnRightSock, EFFECT: RightSockOn)
Op(ACTION: PutOnLeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: PutOnLeftSock, EFFECT: LeftSockOn)

64

Partial-Order Planning

A linear planner builds a plan as a totally ordered
sequence of plan steps

* A non-linear planner (aka partial-order planner) builds
up a plan as a set of steps with some temporal constraints
— E.g., S1<S2 (step S1 must come before S2)

The order here
does matter, so

the planner has to
know that.

PutOnRightSock < PutOnRightShoe

65

Partial-Order Planning

A linear planner builds a plan as a totally ordered
sequence of plan steps

* A non-linear planner (aka partial-order planner) builds
up a plan as a set of steps with some temporal constraints
— E.g., S1<S2 (step S1 must come before S2)
 Partially ordered plan (POP) refined by either:
— adding a new plan step, or

— adding a new constraint to the steps already in the plan.

» Linearize a POP by topological sort

66

Linear vs. POP:

Total Order Plans:

Shoes

Do these
sequences in

any order
Partial r Plan:

/(Start

Start Start Start Start Start Start
' { { ' ' '
Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
v ' ' Y v ’
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
' Y ' ' ' '
Right Left Right Left Left Right
Shoe Shoe Shoe Shoe Sock Sock
v ' ' ' ' '
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
' Y ' ' ' '
Finish Finish Finish Finish Finish Finish

N

_ LeftSho_e9 n, QightShoeOn

- /\\ N

Left Right
Sock Sock
LeftSockOn |RightSockOn
Left Right
Shoe Shoe

m

67

PDDL

PDDL g ﬁ

e Planning Domain Description Language

e Based on STRIPS with various extensions
e First defined by Drew McDermott (Yale) et al.

—Classic spec: PDDL 1.2; good reference guide

e Used in biennial International Planning
Competition (IPC) series (1998-2020)

e Many planners use it as a standard input

https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
https://www.csee.umbc.edu/courses/671/fall12/hw/hw6/pddl1.2.pdf
https://planning.wiki/ref/pddl
mailto:http://www.icaps-conference.org/index.php/Main/Competitions
mailto:http://www.icaps-conference.org/index.php/Main/Competitions

PDDL Representation

e Task specified via two files: domain file and
problem file

—Both use a logic-oriented notation with Lisp syntax

e Domain file defines a domain via requirements,
predicates, constants, and actions

— Used for many different problem files

e Problem file: defines problem by describing its
domain, objects, initial state and goal state

e Planner: takes a domain and a problem and
produces a plan

.

(define (domain BW) Alloss lesle el el C
delete effects in actions

(:requirements :strips) E,'

(:predicates (on ?x ?y) (on-table ?x) (color ?x ?y) ... (clear ?x))

(:constants red green blue yellow small large)

(:action pick-up
:parameters (?objl)

:precondition (and (clear ?0bjl1) (on-table ?0bjl)
(arm-empty))

:effect (and (not (on-table ?0bj1)) \\//v?tﬂaslfs begin
(not (clear ?0bjl))

(not (arm-empty))

(holding *obj1))) Blocks Word
... more actions ...) . .
Domain File

Blocks Word
Problem File

C

.

—

(define (problem 00)
(:domain BW)
(:objects A B C)

(:init (arm-empty)
(on B A)
(on CB) I»I

(clear C))
(:goal (and (on A B)
(on B C))))

73

(define (problem 00)
(:domain BW)
(:objects A B C)

(:init (arm-empty)
(on B A)
(on C B)

(clear C))
(:goal (and (on A B)
(on B C))))

Blocks Word
Problem File

Al
-

Begin plan

1 (unstack c b)
2 (put-down c)
3 (unstack b a)
4 (stack b c)

5 (pick-up a)

6 (stack a b)
End plan

'

C

74

http://planning.domains/

planning.domains/

c @ © # planning.domains e @ Search mn @ @ ®

API Solver Editor Education About planning.domains

Planning.Domains

A collection of tools for working with planning domains.

planning.domains s 1) api.planning.domains & 2) solver.planning.domains @
3) editor.planning.domains @ 4) education.planning.domains @

&/

Planning.domains

e Open source environment for providing
planning services using PDDL (GitHub)

e Default planner is ff

—very successful forward-chaining heuristic
search planner producing sequential plans

—Can be configured to work with other planners

e Use interactively or call via web-based API

https://github.com/ai-planning
https://fai.cs.uni-saarland.de/hoffmann/ff.html

Real-World Planning Domains

* Real-world domains are complex

* Don’t satisfy assumptions of STRIPS or partial-order
planning methods

« Some of the characteristics we may need to deal with:
— Modeling and reasoning about resources
— Representing and reasoning about time Scheduling
— Planning at different levels of abstractions
— Conditional outcomes of actions
— Uncertain outcomes of actions

— Exogenous events } Planning under uncertainty
— Incremental plan development

— Dynamic real-time replanning } HTN p]anning

Planning Summary

* Planning representations
— Situation calculus
— STRIPS representation: Preconditions and effects

» Planning approaches
— State-space search (STRIPS, forward chaining,)

— Plan-space search (partial-order planning, HTNs, ...)
— Constraint-based search (GraphPlan, SATplan, ...)

» Search strategies
— Forward planning
— Goal regression
— Backward planning
— Least-commitment
— Nonlinear planning

