
Planning 1
Chapter 11.1-11.3

Some material adopted from notes by
Andreas Geyer-Schulz and Chuck Dyer

11.1

Planning is the art and
practice of thinking

before acting
— Patrik Haslum

http://users.cecs.anu.edu.au/~patrik/

Overview
• What is planning?
• Approaches to planning

–GPS / STRIPS
–Situation calculus formalism
–Partial-order planning

3

Planning Problem

• Find a sequence of actions that achieves a goal when
executed from an initial state.

• That is, given
– A set of operators (possible actions)

– An initial state description

– A goal (description or conjunction of predicates)

• Compute a sequence of operations: a plan.

4

Planning Problem

• Find a sequence of actions that achieves a goal when
executed from an initial state.

• That is, given
– A set of operators (possible actions)

– An initial state description

– A goal (description or conjunction of predicates)

• Compute a sequence of operations: a plan.

• put on right shoe
• put on left shoe
• put on pants
• put on right sock
• put on left sock
• put on shirt

5

Planning Problem

• Find a sequence of actions that achieves a goal when
executed from an initial state.

• That is, given
– A set of operators (possible actions)

– An initial state description

– A goal (description or conjunction of predicates)

• Compute a sequence of operations: a plan.

• put on right shoe
• put on left shoe
• put on pants
• put on right sock
• put on left sock
• put on shirt
• pants off
• right shoe off
• right sock off
• right shoe off
 (etc)

6

Planning Problem

• Find a sequence of actions that achieves a goal when
executed from an initial state.

• That is, given
– A set of operators (possible actions)

– An initial state description

– A goal (description or conjunction of predicates)

• Compute a sequence of operations: a plan.

• put on right shoe
• put on left shoe
• put on pants
• put on right sock
• put on left sock
• put on shirt
• pants off
• right shoe off
• right sock off
• right shoe off
 (etc)

• pants on
 (etc)

7

Some example domains

• We’ll use some simple problems to illustrate planning
problems and algorithms

• Putting on your socks and shoes in the morning
– Actions like put-on-left-sock, put-on-right-shoe

• Planning a shopping trip involving buying several
kinds of items
– Actions like go(X), buy(Y)

8

Typical Assumptions (1)
• Atomic time: Each action is indivisible

– Can’t be interrupted halfway through putting on pants
• No concurrent actions allowed

– Can’t put on socks at the same time
• Deterministic actions

– The result of actions are completely known – no uncertainty

9

Typical Assumptions
• Agent is the sole cause of change in the world

– Nobody else is putting on your socks
• Agent is omniscient:

– Has complete knowledge of the state of the world
• Closed world assumption:

– Everything known-true about the world is in the state description
– Anything not known-true is known-false

10

Classic Planning
Find sequence of actions to reach a
goal in a discrete, deterministic, static,
fully-observable environment
• State space search and logical

reasoning could be used
• But classic planning developed custom

representations & algorithms to do it
more effectively

• The approach uses a knowledge base
and reasoning about the state
of the world and possible actions

• We’ll look first at doing this in the
simple blocks world

A BC

A
B
C

Goal State

Initial State

robot arm

Blocks world

The blocks world is a
“micro-world” with
a table, a set of blocks, and
a robot hand
Some constraints for a
simple model:

– Only one block can be on
another block

– Any number of blocks can
be on the table

– The hand can only hold one
block

Meant to be a simple model!
(Applet demo at:
http://aispace.org/planning/index.shtml)

https://en.wikipedia.org/wiki/Blocks_world

Blocks world

Typical representation uses a logic
notation to represent the state of the world:

ontable(a) ontable(c)
clear(a) clear(c)
handempty

And possible actions with their preconditions
and effects:
Pickup Putdown
Stack Unstack

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

Initial state asserts
everything that’s
true initially

Goal state asserts
things we want to
be true eventually

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal state:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

Plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Logical assertions
describing initial &
final states

Sequence
of robot
actions

Planning vs. problem solving
• Problem solving methods solve similar problems
• Planning is more powerful and efficient because of

the representations and methods used
• States, goals, and actions are decomposed into sets

of sentences (usually in first-order logic)
• Search often proceeds through plan space rather

than state space (though there are also state-space
planners)

• Sub-goals can be planned independently, reducing
the complexity of the planning problem

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

Simple approach:
• find a way to

achieve each
goal in order

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Simple approach:
• find a way to

achieve each
goal in order

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

Simple approach:
• find a way to

achieve each
goal in order

Note: Goals in a
different order!

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
 pickup(a)

 stack(a,b)
 unstack(a,b)
 putdown(a)
 pickup(b)
 stack(b,c)
 pickup(a)
 stack(a,b)

Note: Goals in a
different order!

Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Note: not very
efficient!

Major Approaches

• Planning as search
• GPS / STRIPS
• Situation calculus
• Partial order planning
• Hierarchical decomposition (HTN planning)
• Planning with constraints (SATplan, Graphplan)
• Reactive planning

27

Planning as Search (?)

•Can think of planning as a search problem
• Actions: generate successor states
• States: completely described & only used for

successor generation, heuristic fn. evaluation & goal
testing

• Goals: represented as a goal test and using a
heuristic function

• Plan representation: unbroken sequences of
actions forward from initial states or backward from
goal state

28

“Get a quart of milk, a bunch of bananas
and a variable-speed cordless drill.”

Treating planning as a search
problem isn’t very efficient!

Slightly more complex KB:

29

General Problem Solver
• The General Problem Solver (GPS) system

– An early planner (Newell, Shaw, and Simon)

• Generate actions that reduce difference between current state and
goal state

• Uses Means-Ends Analysis
– Compare what is given or known with what is desired
– Select a reasonable thing to do next
– Use a table of differences to identify procedures to reduce differences

• GPS is a state space planner
– Operates on state space problems specified by an initial state, some goal

states, and a set of operations

30

History: Shakey the robot

First general-purpose mobile robot to be able
to reason about its own actions

Shakey: Experiments in Robot Planning
and Learning (1972, 24 min)

Shakey the Robot: 1st Robot
to Embody Artificial Intelli-
gence (2017, 6 min.)

https://en.wikipedia.org/wiki/Shakey_the_robot
https://www.youtube.com/watch?v=GmU7SimFkpU
https://www.youtube.com/watch?v=GmU7SimFkpU
https://youtu.be/7bsEN8mwUB8
https://youtu.be/7bsEN8mwUB8
https://youtu.be/7bsEN8mwUB8

Strips planning representation
• Classic approach first used in the STRIPS

(Stanford Research Institute Problem Solver) planner
• A State is a conjunction of ground literals

at(Home) Ù ¬have(Milk) Ù ¬have(bananas) ...
• Goals are conjunctions of literals, but may have

variables, assumed to be existentially quantified
at(?x) Ù have(Milk) Ù have(bananas) ...

• Need not fully specify state
– Non-specified conditions either don’t-care or assumed false
– Represent many cases in small storage
– May only represent changes in state rather than entire

situation
• Unlike theorem prover, not seeking whether goal is true, but is

there a sequence of actions to attain it

Shakey the robot

https://en.wikipedia.org/wiki/STRIPS
https://en.wikipedia.org/wiki/Shakey_the_robot

Blocks World Operators

•Classic basic operations for the Blocks World
– stack(X,Y): put block X on block Y
– unstack(X,Y): remove block X from block Y
– pickup(X): pickup block X
– putdown(X): put block X on the table

•Each represented by
– list of preconditions
– list of new facts to be added (add-effects)
– list of facts to be removed (delete-effects)
– optionally, set of (simple) variable constraints

Blocks World Stack Action

stack(X,Y):
• preconditions(stack(X,Y), [holding(X), clear(Y)])

• deletes(stack(X,Y), [holding(X), clear(Y)]).

• adds(stack(X,Y), [handempty, on(X,Y), clear(X)])

• constraints(stack(X,Y), [X¹Y, Y¹table, X¹table])

Blocks World Operators II
operator(stack(X,Y),

 Precond [holding(X), clear(Y)],

 Add [handempty, on(X,Y), clear(X)],

 Delete [holding(X), clear(Y)],

 Constr [X¹Y, Y¹table, X¹table]).

operator(pickup(X),

 [ontable(X), clear(X), handempty],

 [holding(X)],

 [ontable(X), clear(X), handempty],

 [X¹table]).

operator(unstack(X,Y),

 [on(X,Y), clear(X), handempty],

 [holding(X), clear(Y)],

 [handempty, clear(X), on(X,Y)],

 [X¹Y, Y¹table, X¹table]).

operator(putdown(X),

 [holding(X)],

 [ontable(X), handempty, clear(X)],

 [holding(X)],

 [X¹table]).

44

STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.
– Goal Stack - push down stack of goals to be solved, with

current goal on top

46

STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.
– Goal Stack - push down stack of goals to be solved, with

current goal on top

• If current goal not satisfied by present state, find
action that adds it and push action and its
preconditions (subgoals) on stack

47

STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.
– Goal Stack - push down stack of goals to be solved, with

current goal on top

• If current goal not satisfied by present state, find
action that adds it and push action and its
preconditions (subgoals) on stack

• When a current goal is satisfied, POP from stack
• When an action is on top stack, record its

application on plan sequence and use its add and
delete lists to update current state

48

Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

😃

Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
 pickup(a)

 stack(a,b)
 unstack(a,b)
 putdown(a)
 pickup(b)
 stack(b,c)
 pickup(a)
 stack(a,b)

😐

Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(b)
stack(b,a)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

😐

Yet Another BW planning problem

Initial state:
ontable(a)
ontable(b)
clear(a)
clear(b)
handempty

Goal:
on(a,b)
on(b,a)

A B

Plan:
??

😡

Goal interaction
• Simple planning algorithms assume independent sub-goals

– Solve each separately and concatenate the solutions
• Sussman Anomaly: an example of goal interaction problem:

– Solving on(A,B) first (via unstack(C,A),stack(A,B)) is undone
when solving 2nd goal on(B,C) (via unstack(A,B), stack(B,C))

– Solving on(B,C) first will be undone when solving on(A,B)
• Classic STRIPS couldn’t handle this, although minor

modifications can get it to do simple cases

A B
C

Initial state

A
B
C

Goal state

https://en.wikipedia.org/wiki/Sussman_Anomaly

State-Space Planning
• STRIPS searches thru a space of situations (where

you are, what you have, etc.)
• Find plan by searching situations to reach goal
• Progression planner: searches forward

– From initial state to goal state
– Prone to exploring irrelevant actions

• Regression planner: searches backward from goal
– Works iff operators have enough information to go both ways
– Ideally leads to reduced branching: planner is only considering things that

are relevant to the goal
– but it’s harder to define good heuristics – so most current systems favor

forward search

54

Planning Heuristics

• Need an admissible heuristic to apply to planning states
– Estimate of the distance (number of actions) to the goal

• Planning typically uses relaxation to create heuristics
– Ignore all or some selected preconditions
– Ignore delete lists: Movement towards goal is never undone
– Use state abstraction (group together “similar” states and treat them

as though they are identical) – e.g., ignore fluents*
– Assume subgoal independence (use max cost; or, if subgoals

actually are independent, sum the costs)
– Use pattern databases to store exact solution costs of recurring

subproblems

* an aspect of the world that changes - R&N 266
59

Plan-Space Planning
• Alternative: search through space of plans, not situations
• The system represents plans and the actions within those plans.

The emphasis is on the order and structure of actions.
• Start from a partial plan; expand and refine until a complete

plan that solves the problem is generated
• Refinement operators add constraints to the partial plan and

modification operators for other changes
• We can still use STRIPS-style operators:

Op(ACTION: PutOnRightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: PutOnRightSock, EFFECT: RightSockOn)
Op(ACTION: PutOnLeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: PutOnLeftSock, EFFECT: LeftSockOn)

64

Partial-Order Planning

• A linear planner builds a plan as a totally ordered
sequence of plan steps

• A non-linear planner (aka partial-order planner) builds
up a plan as a set of steps with some temporal constraints
– E.g., S1<S2 (step S1 must come before S2)

PutOnRightSock PutOnRightShoe<

The order here
does matter, so
the planner has to
know that.

65

Partial-Order Planning

• A linear planner builds a plan as a totally ordered
sequence of plan steps

• A non-linear planner (aka partial-order planner) builds
up a plan as a set of steps with some temporal constraints
– E.g., S1<S2 (step S1 must come before S2)

• Partially ordered plan (POP) refined by either:
– adding a new plan step, or
– adding a new constraint to the steps already in the plan.

• Linearize a POP by topological sort

66

Linear vs. POP: Shoes
Do these

sequences in
any order

67

PDDL

PDDL

•Planning Domain Description Language
•Based on STRIPS with various extensions
•First defined by Drew McDermott (Yale) et al.

– Classic spec: PDDL 1.2; good reference guide

•Used in biennial International Planning
Competition (IPC) series (1998-2020)

•Many planners use it as a standard input

69

https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
https://www.csee.umbc.edu/courses/671/fall12/hw/hw6/pddl1.2.pdf
https://planning.wiki/ref/pddl
mailto:http://www.icaps-conference.org/index.php/Main/Competitions
mailto:http://www.icaps-conference.org/index.php/Main/Competitions

PDDL Representation

•Task specified via two files: domain file and
problem file
– Both use a logic-oriented notation with Lisp syntax

•Domain file defines a domain via requirements,
predicates, constants, and actions
– Used for many different problem files

•Problem file: defines problem by describing its
domain, objects, initial state and goal state

•Planner: takes a domain and a problem and
produces a plan

71

Blocks Word
Domain File

(define (domain BW)
 (:requirements :strips)
 (:constants red green blue yellow small large)
 (:predicates (on ?x ?y) (on-table ?x) (color ?x ?y) … (clear ?x))
(:action pick-up

 :parameters (?obj1)
 :precondition (and (clear ?obj1) (on-table ?obj1)

 (arm-empty))
 :effect (and (not (on-table ?obj1))
 (not (clear ?obj1))
 (not (arm-empty))
 (holding ?obj1)))
 … more actions ...)

72

Allows basic add and
delete effects in actions

Variables begin
with a ?

Blocks Word
Problem File

(define (problem 00)
 (:domain BW)
 (:objects A B C)
 (:init (arm-empty)
 (on B A)
 (on C B)
 (clear C))
 (:goal (and (on A B)
 (on B C))))

A

C

B

C

A

B

73

Blocks Word
Problem File

(define (problem 00)
 (:domain BW)
 (:objects A B C)
 (:init (arm-empty)
 (on B A)
 (on C B)
 (clear C))
 (:goal (and (on A B)
 (on B C))))

A

C

B

C

A

B

Begin plan
1 (unstack c b)
2 (put-down c)
3 (unstack b a)
4 (stack b c)
5 (pick-up a)
6 (stack a b)
End plan 74

http://planning.domains/

77

Planning.domains

•Open source environment for providing
planning services using PDDL (GitHub)

•Default planner is ff
– very successful forward-chaining heuristic

search planner producing sequential plans
– Can be configured to work with other planners

•Use interactively or call via web-based API

78

https://github.com/ai-planning
https://fai.cs.uni-saarland.de/hoffmann/ff.html

Real-World Planning Domains

• Real-world domains are complex
• Don’t satisfy assumptions of STRIPS or partial-order

planning methods
• Some of the characteristics we may need to deal with:

– Modeling and reasoning about resources
– Representing and reasoning about time
– Planning at different levels of abstractions
– Conditional outcomes of actions
– Uncertain outcomes of actions
– Exogenous events
– Incremental plan development
– Dynamic real-time replanning

} Scheduling

} HTN planning

} Planning under uncertainty

79

Planning Summary
• Planning representations

– Situation calculus
– STRIPS representation: Preconditions and effects

• Planning approaches
– State-space search (STRIPS, forward chaining, ….)
– Plan-space search (partial-order planning, HTNs, …)
– Constraint-based search (GraphPlan, SATplan, …)

• Search strategies
– Forward planning
– Goal regression
– Backward planning
– Least-commitment
– Nonlinear planning

80

