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Chapter 11.1-11.3

Some material adopted from notes by
Andreas Geyer-Schulz and Chuck Dyer

11.1



Planning is the art and 
practice of thinking 

before acting
— Patrik Haslum

http://users.cecs.anu.edu.au/~patrik/


Overview
• What is planning?
• Approaches to planning

–GPS / STRIPS
–Situation calculus formalism
–Partial-order planning
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Planning Problem

• Find a sequence of actions that achieves a goal when 
executed from an initial state.

• That is, given
– A set of operators (possible actions) 

– An initial state description

– A goal (description or conjunction of predicates)

• Compute a sequence of operations: a plan.
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Planning Problem

• Find a sequence of actions that achieves a goal when 
executed from an initial state.

• That is, given
– A set of operators (possible actions) 

– An initial state description

– A goal (description or conjunction of predicates)

• Compute a sequence of operations: a plan.

• put on right shoe
• put on left shoe
• put on pants
• put on right sock
• put on left sock
• put on shirt
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Planning Problem

• Find a sequence of actions that achieves a goal when 
executed from an initial state.

• That is, given
– A set of operators (possible actions) 

– An initial state description

– A goal (description or conjunction of predicates)

• Compute a sequence of operations: a plan.

• put on right shoe
• put on left shoe
• put on pants
• put on right sock
• put on left sock
• put on shirt
• pants off
• right shoe off
• right sock off
• right shoe off
   (etc)
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Planning Problem

• Find a sequence of actions that achieves a goal when 
executed from an initial state.

• That is, given
– A set of operators (possible actions) 

– An initial state description

– A goal (description or conjunction of predicates)

• Compute a sequence of operations: a plan.

• put on right shoe
• put on left shoe
• put on pants
• put on right sock
• put on left sock
• put on shirt
• pants off
• right shoe off
• right sock off
• right shoe off
   (etc)

• pants on
   (etc)
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Some example domains

• We’ll use some simple problems to illustrate planning 
problems and algorithms 

• Putting on your socks and shoes in the morning
– Actions like put-on-left-sock, put-on-right-shoe

• Planning a shopping trip involving buying several 
kinds of items
– Actions like go(X), buy(Y)
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Typical Assumptions (1)
• Atomic time: Each action is indivisible 

– Can’t be interrupted halfway through putting on pants
• No concurrent actions allowed

– Can’t put on socks at the same time
• Deterministic actions

– The result of actions are completely known – no uncertainty
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Typical Assumptions
• Agent is the sole cause of change in the world 

– Nobody else is putting on your socks
• Agent is omniscient:

– Has complete knowledge of the state of the world
• Closed world assumption: 

– Everything known-true about the world is in the state description
– Anything not known-true is known-false
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Classic Planning
Find sequence of actions to reach a 
goal in a discrete, deterministic, static, 
fully-observable environment
• State space search and logical

reasoning could be used
• But classic planning developed custom 

representations & algorithms to do it 
more effectively

• The approach uses a knowledge base 
and reasoning about the state
of the world and possible actions

• We’ll look first at doing this in the
simple blocks world

A BC

A
B
C

Goal State

Initial State

robot arm



Blocks world

The blocks world is a 
“micro-world” with 
a table, a set of blocks, and 
a robot hand
Some constraints for a 
simple model:

– Only one block can be on 
another block

– Any number of blocks can 
be on the table

– The hand can only hold one 
block

Meant to be a simple model!
(Applet demo at:
http://aispace.org/planning/index.shtml)

https://en.wikipedia.org/wiki/Blocks_world


Blocks world

Typical representation uses a logic
notation to represent the state of the world:

ontable(a)     ontable(c)
clear(a)          clear(c)
handempty  

And possible actions with their preconditions 
and effects:
Pickup     Putdown
Stack       Unstack



Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

Initial state asserts 
everything that’s 
true initially

Goal state asserts 
things we want to 
be true eventually



Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal state:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

Plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Logical assertions
describing initial & 
final states

Sequence 
of robot 
actions



Planning vs. problem solving
• Problem solving methods solve similar problems
• Planning is more powerful and efficient because of 

the representations and methods used
• States, goals, and actions are decomposed into sets 

of sentences (usually in first-order logic)
• Search often proceeds through plan space rather 

than state space (though there are also state-space 
planners)

• Sub-goals can be planned independently, reducing 
the complexity of the planning problem



Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

Simple approach:
• find a way to 

achieve each 
goal in order



Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Simple approach:
• find a way to 

achieve each 
goal in order



Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

Simple approach:
• find a way to 

achieve each 
goal in order

Note: Goals in a 
different order!



Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
 pickup(a)

       stack(a,b)
       unstack(a,b)
       putdown(a)
       pickup(b)
       stack(b,c)
       pickup(a)
       stack(a,b)

Note: Goals in a 
different order!



Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

Note: not very 
efficient!



Major Approaches

• Planning as search
• GPS / STRIPS
• Situation calculus
• Partial order planning
• Hierarchical decomposition (HTN planning)
• Planning with constraints (SATplan, Graphplan)
• Reactive planning
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Planning as Search (?)

•Can think of planning as a search problem
• Actions: generate successor states
• States: completely described & only used for 

successor generation, heuristic fn. evaluation & goal 
testing

• Goals:  represented as a goal test and using a 
heuristic function

• Plan representation: unbroken sequences of 
actions forward from initial states or backward from 
goal state
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“Get a quart of milk, a bunch of bananas
and a variable-speed cordless drill.”

Treating planning as a search 
problem isn’t very efficient!

Slightly more complex KB:
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General Problem Solver
• The General Problem Solver (GPS) system 

– An early planner (Newell, Shaw, and Simon) 

• Generate actions that reduce difference between current state and 
goal state

• Uses Means-Ends Analysis
– Compare what is given or known with what is desired 
– Select a reasonable thing to do next
– Use a table of differences to identify procedures to reduce differences

• GPS is a state space planner
– Operates on state space problems specified by an initial state, some goal 

states, and a set of operations
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History: Shakey the robot

First general-purpose mobile robot to be able 
to reason about its own actions

Shakey: Experiments in Robot Planning 
and Learning (1972, 24 min)

Shakey the Robot: 1st Robot 
to Embody Artificial Intelli-
gence (2017, 6 min.)

https://en.wikipedia.org/wiki/Shakey_the_robot
https://www.youtube.com/watch?v=GmU7SimFkpU
https://www.youtube.com/watch?v=GmU7SimFkpU
https://youtu.be/7bsEN8mwUB8
https://youtu.be/7bsEN8mwUB8
https://youtu.be/7bsEN8mwUB8


Strips planning representation
• Classic approach first used in the STRIPS

(Stanford Research Institute Problem Solver) planner
• A State is a conjunction of ground literals

at(Home) Ù ¬have(Milk) Ù ¬have(bananas) ...
• Goals are conjunctions of literals, but may have

variables, assumed to be existentially quantified
at(?x) Ù have(Milk) Ù have(bananas) ...

• Need not fully specify state 
– Non-specified conditions either don’t-care or assumed false 
– Represent many cases in small storage 
– May only represent changes in state rather than entire 

situation  
• Unlike theorem prover, not seeking whether goal is true, but is 

there a sequence of actions to attain it 

Shakey the robot

https://en.wikipedia.org/wiki/STRIPS
https://en.wikipedia.org/wiki/Shakey_the_robot


Blocks World Operators

•Classic basic operations for the Blocks World
– stack(X,Y): put block X on block Y
– unstack(X,Y): remove block X from block Y
– pickup(X): pickup block X
– putdown(X): put block X on the table

•Each represented by 
– list of preconditions
– list of new facts to be added (add-effects)
– list of facts to be removed (delete-effects)
– optionally, set of (simple) variable constraints



Blocks World Stack Action

stack(X,Y): 
• preconditions(stack(X,Y), [holding(X), clear(Y)])

• deletes(stack(X,Y), [holding(X), clear(Y)]).

• adds(stack(X,Y), [handempty, on(X,Y), clear(X)])

• constraints(stack(X,Y), [X¹Y, Y¹table, X¹table])



Blocks World Operators II
operator(stack(X,Y), 

         Precond [holding(X), clear(Y)],

         Add [handempty, on(X,Y), clear(X)],

         Delete [holding(X), clear(Y)],

     Constr [X¹Y, Y¹table, X¹table]).

operator(pickup(X),

         [ontable(X), clear(X), handempty],

         [holding(X)],

         [ontable(X), clear(X), handempty],

         [X¹table]).

operator(unstack(X,Y), 

        [on(X,Y), clear(X), handempty],

        [holding(X), clear(Y)],

        [handempty, clear(X), on(X,Y)],

        [X¹Y, Y¹table, X¹table]).

operator(putdown(X), 

         [holding(X)],

         [ontable(X), handempty, clear(X)],

         [holding(X)],

         [X¹table]).
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STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.
– Goal Stack - push down stack of goals to be solved, with 

current goal on top
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STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.
– Goal Stack - push down stack of goals to be solved, with 

current goal on top

• If current goal not satisfied by present state, find 
action that adds it and push action and its 
preconditions (subgoals) on stack
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STRIPS planning
• STRIPS maintains two additional data structures:

– State List - all currently true predicates.
– Goal Stack - push down stack of goals to be solved, with 

current goal on top

• If current goal not satisfied by present state, find 
action that adds it and push action and its 
preconditions (subgoals) on stack

• When a current goal is satisfied, POP from stack
• When an action is on top stack, record its 

application on plan sequence and use its add and 
delete lists to update  current state
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Typical BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(b,c)
on(a,b)
ontable(c)

A BC

A
B
C

A plan:
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

😃



Another BW planning problem

Initial state:
clear(a)
clear(b)
clear(c)
ontable(a)
ontable(b)
ontable(c)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A BC

A
B
C

A plan:
 pickup(a)

       stack(a,b)
       unstack(a,b)
       putdown(a)
       pickup(b)
       stack(b,c)
       pickup(a)
       stack(a,b)

😐



Yet Another BW planning problem

Initial state:
clear(c)
ontable(a)
on(b,a)
on(c,b)
handempty

Goal:
on(a,b)
on(b,c)
ontable(c)

A
B
C

A
B
C

Plan:
unstack(c,b)
putdown(c)
unstack(b,a)
putdown(b)
pickup(b)
stack(b,a)
unstack(b,a)
putdown(b)
pickup(a)
stack(a,b)
unstack(a,b)
putdown(a)
pickup(b)
stack(b,c)
pickup(a)
stack(a,b)

😐



Yet Another BW planning problem

Initial state:
ontable(a)
ontable(b)
clear(a)
clear(b)
handempty

Goal:
on(a,b)
on(b,a)

A B

Plan:
??

😡



Goal interaction
• Simple planning algorithms assume independent sub-goals

– Solve each separately and concatenate the solutions
• Sussman Anomaly: an example of goal interaction problem: 

– Solving on(A,B) first (via unstack(C,A),stack(A,B)) is undone 
when solving 2nd goal on(B,C) (via unstack(A,B), stack(B,C))

– Solving on(B,C) first will be undone when solving on(A,B)
• Classic STRIPS couldn’t handle this, although minor 

modifications can get it to do simple cases

A B
C

Initial state

A
B
C

Goal state

https://en.wikipedia.org/wiki/Sussman_Anomaly


State-Space Planning
• STRIPS searches thru a space of situations (where 

you are, what you have, etc.)
• Find plan by searching situations to reach goal
• Progression planner: searches forward 

– From initial state to goal state
– Prone to exploring irrelevant actions

• Regression planner: searches backward from goal
– Works iff operators have enough information to go both ways
– Ideally leads to reduced branching: planner is only considering things that 

are relevant to the goal
– but it’s harder to define good heuristics – so most current systems favor 

forward search
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Planning Heuristics

• Need an admissible heuristic to apply to planning states
– Estimate of the distance (number of actions) to the goal

• Planning typically uses relaxation to create heuristics
– Ignore all or some selected preconditions 
– Ignore delete lists: Movement towards goal is never undone
– Use state abstraction (group together “similar” states and treat them 

as though they are identical) – e.g., ignore fluents*
– Assume subgoal independence (use max cost; or, if subgoals 

actually are independent, sum the costs)
– Use pattern databases to store exact solution costs of recurring 

subproblems

* an aspect of the world that changes - R&N 266
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Plan-Space Planning
• Alternative: search through space of plans, not situations
• The system represents plans and the actions within those plans. 

The emphasis is on the order and structure of actions.
• Start from a partial plan; expand and refine until a complete 

plan that solves the problem is generated
• Refinement operators add constraints to the partial plan and 

modification operators for other changes
• We can still use STRIPS-style operators: 

Op(ACTION: PutOnRightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)
Op(ACTION: PutOnRightSock, EFFECT: RightSockOn)
Op(ACTION: PutOnLeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)
Op(ACTION: PutOnLeftSock, EFFECT: LeftSockOn)
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Partial-Order Planning

• A linear planner builds a plan as a totally ordered 
sequence of plan steps

• A non-linear planner (aka partial-order planner) builds 
up a plan as a set of steps with some temporal constraints 
– E.g., S1<S2 (step S1 must come before S2) 

PutOnRightSock PutOnRightShoe<

The order here 
does matter, so 
the planner has to 
know that.
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Partial-Order Planning

• A linear planner builds a plan as a totally ordered 
sequence of plan steps

• A non-linear planner (aka partial-order planner) builds 
up a plan as a set of steps with some temporal constraints 
– E.g., S1<S2 (step S1 must come before S2) 

• Partially ordered plan (POP) refined by either:
– adding a new plan step, or
– adding a new constraint to the steps already in the plan.

• Linearize a POP by topological sort
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Linear vs. POP: Shoes
Do these 

sequences in 
any order
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PDDL



PDDL

•Planning Domain Description Language
•Based on STRIPS with various extensions
•First defined by Drew McDermott (Yale) et al.

– Classic spec: PDDL 1.2; good reference guide

•Used in biennial International Planning 
Competition (IPC) series (1998-2020)

•Many planners use it as a standard input

69

https://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
https://www.csee.umbc.edu/courses/671/fall12/hw/hw6/pddl1.2.pdf
https://planning.wiki/ref/pddl
mailto:http://www.icaps-conference.org/index.php/Main/Competitions
mailto:http://www.icaps-conference.org/index.php/Main/Competitions


PDDL Representation

•Task specified via two files: domain file and 
problem file
– Both use a logic-oriented notation with Lisp syntax

•Domain file defines a domain via requirements, 
predicates, constants, and actions
– Used for many different problem files

•Problem file: defines problem by describing its 
domain, objects, initial state and goal state

•Planner: takes a domain and a problem and 
produces a plan

71



Blocks Word
Domain File

(define (domain BW)
  (:requirements :strips)
  (:constants red green blue yellow small large)
  (:predicates (on ?x ?y) (on-table ?x) (color  ?x ?y) … (clear ?x))
(:action pick-up

      :parameters (?obj1)
      :precondition (and (clear ?obj1) (on-table ?obj1)

                                      (arm-empty))
      :effect (and (not (on-table ?obj1))
                            (not (clear ?obj1))
                            (not (arm-empty))
                            (holding ?obj1)))
  … more actions ...)

72

Allows basic add and
delete effects in actions

Variables begin
with a ?



Blocks Word
Problem File

(define (problem 00)
    (:domain BW)
    (:objects A B C)
    (:init (arm-empty)
            (on B A) 
            (on C B)
            (clear C))
    (:goal (and (on A B) 
                        (on B C))))

A

C

B

C

A

B
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Blocks Word
Problem File

(define (problem 00)
    (:domain BW)
    (:objects A B C)
    (:init (arm-empty)
            (on B A) 
            (on C B)
            (clear C))
    (:goal (and (on A B) 
                        (on B C))))

A

C

B

C

A

B

Begin plan
1 (unstack c b)
2 (put-down c)
3 (unstack b a)
4 (stack b c)
5 (pick-up a)
6 (stack a b)
End plan 74



http://planning.domains/
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Planning.domains

•Open source environment for providing 
planning services using PDDL (GitHub)

•Default planner is ff
– very successful forward-chaining heuristic 

search planner producing sequential plans
– Can be configured to work with other planners

•Use interactively or call via web-based API
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https://github.com/ai-planning
https://fai.cs.uni-saarland.de/hoffmann/ff.html


Real-World Planning Domains

• Real-world domains are complex
• Don’t satisfy assumptions of STRIPS or partial-order 

planning methods
• Some of the characteristics we may need to deal with:

– Modeling and reasoning about resources
– Representing and reasoning about time
– Planning at different levels of abstractions
– Conditional outcomes of actions
– Uncertain outcomes of actions
– Exogenous events
– Incremental plan development
– Dynamic real-time replanning

} Scheduling

} HTN planning

} Planning under uncertainty
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Planning Summary
• Planning representations

– Situation calculus
– STRIPS representation: Preconditions and effects

• Planning approaches
– State-space search (STRIPS, forward chaining, ….)
– Plan-space search (partial-order planning, HTNs, …)
– Constraint-based search (GraphPlan, SATplan, …)

• Search strategies
– Forward planning
– Goal regression 
– Backward planning
– Least-commitment
– Nonlinear planning
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