CMSC 471: Machine Learning

KMA Solaiman - ksolaima@umbc.edu

LINEAR MODELS

Linear Models

- Can be used for either regression or classification
- A number of instances for classification. Common ones are:
- Perceptron
- Linear SVM
- Logistic regression
- (yes, even though "regression" is in the name ())

Linear Models: Core Idea

Model the relationship between the input data X and corresponding labels Y via a linear relationship (non-zero intercepts b are okay)

$$
Y=W^{T} X+b
$$

Items to learn: W, b

Linear Models: Core Idea

Model the relationship between the input data X and corresponding labels Y via a linear relationship (non-zero intercepts b are okay)

$$
Y=W^{T} X+b
$$

For regression: the output of this equation is the predicted value

Linear Models: Core Idea

Model the relationship between the input data X and corresponding labels Y via a linear relationship (non-zero intercepts b are okay)

$$
Y=W^{T} X+b
$$

Items to learn: W, b

> For regression: the output of this equation is the predicted value

Linear Models in sklearn

1.1. Linear Models
1.1.1. Ordinary Least Squares
1.1.2. Ridge regression and
classification
1.1.3. Lasso
1.1.4. Multi-task Lasso
1.1.5. Elastic-Net
1.1.6. Multi-task Elastic-Net
1.1.7. Least Angle Regression
1.1.8. LARS Lasso
1.1.9. Orthogonal Matching Pursuit
(OMP)
1.1.10. Bayesian Regression
1.1.11. Logistic regression
1.1.12. Generalized Linear

Regression
1.1.13. Stochastic Gradient Descent

- SGD
1.1.14. Perceptron
1.1.15. Passive Aggressive

Algorithms
1.1.16. Robustness regression:
outliers and modeling errors
1.1.17. Polynomial regression:
extending linear models with basis
functions

These all have easy-to-use interfaces, with the same core interface:

- Training: model.fit(X=training_features, $\mathrm{y}=$ training_labels)
- Prediction: model.predict(X=eval_features)

A Graphical View of Linear Models

Linear Models in the Basic Framework

What if

- We want a unified way to predict more than two classes?
- We want a probabilistic (bounded, interpretable) score?
- We want to use transformations of our data x to help make decisions?

What if

- We want a unified way to predict more than two classes?
- We want a probabilistic (bounded, interpretable) score?
- We want to use transformations of our data x to help make decisions?

Terminology

common ML
as statistical regression

Log-Linear Models
(Multinomial) logistic regression
Softmax regression
based in
information theory
a form of
viewed as
to be cool today :)

Maximum Entropy models (MaxEnt)
Generalized Linear Models
Discriminative Naïve Bayes
Very shallow (sigmoidal) neural nets

Turning Scores into Probabilities

Core Aspects to Maxent Classifier $p(y \mid x)$

- features $f(x, y)$ between x and y that are meaningful;
- weights θ (one per feature) to say how important each feature is; and
- a way to form probabilities from f and θ
$p(y \mid x)=\frac{\exp \left(\theta^{T} f(x, y)\right)}{\sum_{y^{\prime}} \exp \left(\theta^{T} f\left(x, y^{\prime}\right)\right)}$

Discriminative Document Classification

s: Michael Jordan, coach Phil
Jackson and the star cast,
ENTAILED
including Scottie Pippen, took
the Chicago Bulls to six
National Basketball
Association championships.
h: The Bulls basketball team
is based in Chicago.

Discriminative Document Classification

s: Michael Jordan, coach Phil

Jackson and the star cast,
itreluding Scottie Pippen, took
the Chicago Bulls to six
National Basketball
Association championships.
h: The Bulls basketball team
is based in Chicago.

ENTAILED

These extractions
are all features that have fired (likely
have some
significance)

Discriminative Document Classification

s: Michael Jordan, coach Phil
Jackson and the star_cast, - . -itneluding Scoty, é Pippen, took the Chicago Bulls to six
National Basketball
Association championships.

h: The Bulls basketball team
is based in Chicago.

ENTAILED
These extractions are all features that have fired (likely
have some
significance)

Discriminative Document Classification

s: Michael Jordan, coach Phil Jackson and the star_cast, - . -ifneluḍing Scot, ié Pippen, took the Chicago Bulls to six
National Basketball
Association championships.

h: The Bulls basketball team
is based in Chicago.

ENTAILED
These extractions are all features that have fired (likely
have some
significance)

We need to score the different extracted clues.

Score and Combine Our Clues

score ${ }_{1}$（ 艮，ENTAILED）
score $_{2}$（籑，ENTAILED）
score $_{3}$（

Combine

posterior
probability of
ENTAILED
score $_{\mathrm{k}}$（夙，ENTAILED）

Scoring Our Clues

(ignore the feature indexing for now)
score $_{1}$ ((in , ENTAILED)
score ${ }_{2}$ ((
score $_{3}$ (青, ENTAILED)

A linear scoring model!

Scoring Our Clues

Learn these scores．．．but how？

What do we optimize？

> score $_{1}$ (䍗, ENTAILED)
> score $_{2}$ (餢, ENTAILED)
> score $_{3}$ (青, ENTAILED)

Turning Scores into Probabilities (More Generally)

score $\left(x, y_{1}\right)>\operatorname{score}\left(x, y_{2}\right)$

$$
p\left(y_{1} \mid x\right)>p\left(y_{2} \mid x\right)
$$

Maxent Modeling

s: Michael Jordan, coach Phil Jackson and the star cast, including Scottie Pippen, took the Chicago Bulls to six National Basketball Association championships. h : The Bulls basketball team is based in Chicago.

ENTAILED

A linear scoring model!

Maxent Modeling

score $_{1}$ (䦩, ENTAILED)
score $_{2}$ ((
score $_{3}$ (䈍, ENTAILED)

Maxent Modeling

Learn the scores (but we'll declare what combinations should be looked at)

Maxent Modeling

weight $_{1}$ applies $_{1}$ ((${ }^{\text {(}}$, ENTAILED)
weight $_{2} *$ applies $_{2}$ (風, ENTAILED)
weight $_{3} *$ applies $_{3}$ (堿, ENTAILED)

Maxent Modeling

K different for K different weights... features

Maxent Modeling

multiplied and then summed

Maxent Modeling

K different for K different
weights... features...
multiplied and then summed

Maxent Modeling

$\exp \left(\theta^{T} f(\right.$ 雪, ENTAILED $)$

K different for K different
weights...

Machine Learning Framework:

 Learning

A Graphical View of Logistic Regression/Classification

 (2 classes)

A Graphical View of Logistic Regression/Classification (4 classes)

sklearn.linear_model.LogisticRegression π

```
class sklearn.linear_model. LogisticRegression(penalty='l2', *,dual=False, tol=0.0001, C=1.0, fit_intercept=True,
intercept_scaling=1, class_weight=None, random_state=None, solver= 'lbfgs', max_iter=100, multi_class='auto', verbose=0,
warm_start=False, n_jobs=None, l1_ratio=None)

Logistic Regression (aka logit, MaxEnt) classifier.
In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross-entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag', 'saga' and 'newton-cg' solvers.)

This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag', 'saga' and 'Ibfgs' solvers. Note that regularization is applied by default. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied).

The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation, or no regularization. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. The Elastic-Net regularization is only supported by the 'saga' solver.

Read more in the User Guide.

Parameters: penalty: \{'l1', 'l2', 'elasticnet', 'none'\}, default='l2'
Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is only supported by the 'saga' solver. If 'none' (not supported by the liblinear solver), no regularization is applied.
https://scikit-
learn.org/stable/modules/generated/sklearn.linear model.LogisticRegression.html

\section*{ML FOR USERS}

\section*{Deep Learning}


What society thinks I do

What mathematicians think I do


What my friends think I do


What I think I do


What other computer scientists think I do

\section*{from import *}
keras torch

What I actually do \({ }_{37}\)

\section*{Our Jobs}

\section*{Help you learn the ropes...}


\section*{Our Jobs}

\section*{Help you learn the ropes...}


\section*{Our Jobs}

Help you learn the ropes...


... so you can go into a job...

\section*{Our Jobs}

Help you learn the ropes...

... and apply your knowledge using whatever tools your org. uses!

... so you can go into a job...

\section*{from terens import *}
keras torch

What I actually do

\section*{Toolkit Basics}
- Machine learning involves working with data - analyzing, manipulating, transforming, ...
- More often than not, it's numeric or has a natural numeric representation
- Natural language text is an exception, but this too can have a numeric representation
- A common data model is as a N -dimensional matrix or tensor
- These are supported in Python via libraries

\section*{Typical Python Libraries}

\section*{numpy, scipy}
- Basic mathematical libraries for dealing with matrices and scientific/mathematical functions
pandas, matplotlib
- Libraries for data science \& plotting
sklearn (scikit-learn)
- A whole bunch of implemented classifiers

torch (pytorch) and tensorflow
- Frameworks for building neural networks

\section*{What is Numpy?}
- NumPy supports features needed for ML
- Typed N-dimensional arrays (matrices/tensors)
- Fast numerical computations (matrix math)
- High-level math functions
- Python does numerical computations slowly and lacks an efficient matrix representation
- \(1000 \times 1000\) matrix multiply
- Python triple loop takes > 10 minutes!
- Numpy takes \({ }^{\sim} 0.03\) seconds

\section*{NumPy Arrays Can Represent ..}

Structured lists of numbers
- Vectors
- Matrices

- Images
- Tensors
- Convolutional Neural
\[
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
\] Networks

\section*{NumPy Arrays Can Represent ..}

Structured lists of numbers
- Vectors
- Matrices
- Images
- Tensors
- Convolutional Neural Networks


\section*{NumPy Arrays Can Represent ..}

Structured lists of numbers
- Vectors
- Matrices
- Images
- Tensors
- Convolutional Neural Networks


\section*{NumPy Arrays, Basic Properties}
```

>>> import numpy as np
>>> a= np.array([[1,2,3],[4,5,6]],dtype=np.float32)
>>> print(a.ndim, a.shape, a.dtype)
2 (2, 3) float32
>> print(a)
[[1. 2. 3.]
[4. 5. 6.]]

```

\section*{Arrays:}
1. Can have any number of dimensions, including zero (a scalar)
2. Are typed: np.uint8, np.int64, np.float32, np.float64
3. Are dense: each element of array exists and has the same type

\section*{NumPy Array Indexing, Slicing}
\(a[0,0]\) \# top-left element
\(a[0,-1]\) \# first row, last column
\(a[0,:]\) \# first row, all columns
\(a[:, 0]\) \# first column, all rows
\(a[0: 2,0: 2]\) \# 1st 2 rows, 1st 2 columns

Notes:
- Zero-indexing
- Multi-dimensional indices are comma-separated)
- Python notation for slicing

\section*{SciPy}
- SciPy builds on the NumPy array object
- Adds additional mathematical functions and sparse arrays
- Sparse array: one where most elements = 0
- An efficient representation only implicitly encodes the non-zero values
- Access to a missing element returns 0

\section*{SciPy sparse array use case}
- NumPy and SciPy arrays are numeric
- We can represent a document's content by a vector of features
- Each feature is a possible word
- A feature's value might be any of:
- TF: number of times it occurs in the document;
- TF-IDF: ... normalized by how common the word is
- and maybe normalized by document length ...

\section*{SciPy sparse array use case}
- Maybe only model 50k most frequent words found in a document collection, ignoring others
- Assign each unique word an index (e.g., dog:137)
- Build python dict w from vocabulary, so w['dog']=137
- The sentence "the dog chased the cat"
- Would be a numPy vector of length 50,000
- Or a sciPy sparse vector of length 4
- An 800-word news article may only have 100 unique words; The Hobbit has about 8,000

\title{
More on \\ SciPy
}

\section*{SciPy Tutorial}
- Introduction
- Basic functions
- Special functions (scipy.special)
- Integration (scipy.integrate)
- Optimization (scipy.optimize)
- Interpolation (scipy.interpolate)
- Fourier Transforms (scipy.fft)
- Signal Processing (scipy.signal)
- Linear Algebra (scipy.linalg)
- Sparse eigenvalue problems with ARPACK
- Compressed Sparse Graph Routines (scipy.sparse.csgraph)
- Spatial data structures and algorithms (scipy.spatial)
- Statistics (scipy.stats)
- Multidimensional image processing (scipy.ndimage)
- File IO (scipy.io)

\section*{scikit-learn \\ Machine Learning in Python}
- Simple and efficien tools for data mining and data analysis
- Accessible to everybo \({ }^{\prime} v\), and reusable in various contexts
- Built on NumPy, SciPy, a d matplotlib
- Open source, commercially usable - BSD license

\section*{Many tutorials}

\section*{Classification}

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.
Algorithms: SVM, nearest neighbors,
random forest, .
- Examples

\section*{Dimensionality reduction}

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency
Algorithms: PCA, feature selection, non-
negative matrix factorization. - Examples

\section*{Regression}

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. Algorithms: SVR, ridge regression, Lasso,
- Examples

\section*{Model selection}

Comparing, validating and choosing parameters and models.
Goal: Improved accuracy via parameter tuning
Modules: grid search, cross validation, metrics. - Examples

\section*{Clustering}

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes
Algorithms: k-Means, spectral clustering,
mean-shift, ... - Examples

\section*{Preprocessing}

Feature extraction and normalization.
Application: Transforming input data such as text for use with machine learning algorithms.
Modules: preprocessing, feature extraction.
- Examples

\section*{How easy is this?}
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html \(\ggg\) from sklearn.datasets import load iris \(\ggg\) from \(s k l e a r n . l i n e a r m o d e l\) import LogisticRegression \(\ggg X, Y=\) load_iris (return_X_y=True)
features on
data

\section*{DATA \& EVALUATION}


\section*{Machine Learning Repository}

Center for Machine Leaming and Intelligent Systems

\section*{Welcome to the UC Irvine Machine Learning Repository!}

We currently maintain 233 data sets as a service to the machine learning community. You may view all data sets through our searchable interface. Our old web site is still available, for those who prefer the old format. For a general overview of the Repository, please visit our About page. For information about citing data sets in publications, please read our citation policy. If you wish to donate a data set, please consult our donation policy. For any other questions, feel free to contact the Repository librarians. We have also set up a mirror site for the Repository.

Supported By:


\section*{233 data sets}

\section*{Latest News:}

2010-03-01: Note from donor regarding Netflix data
2009-10-16: Two new data sets have been added.
2009-09-14: Several data sets have been added.
2008-07-23: Repository mirror has been set up.
2008-03-24: New data sets have been added!
2007-06-25: Two new data sets have been added: UJI Pen Characters, MAGIC Gamma Telescope
2007-04-13: Research papers that cite the repository have been associated to specific data sets.

\section*{Featured Data Set: Yeast}


Task: Classification
Data Type: Multivariate
\# Attributes: 8 \# Instances: 1484
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Newest Data Sets:} \\
\hline 2012-10-21: & UC1 & QtyT40110D100K \\
\hline 2012-10-19: & UC1 & Legal Case Reports \\
\hline 2012-09-29: & UC1 & seeds \\
\hline 2012-08-30: & UC1 & Individual household electric power consumption \\
\hline 2012-08-15: & UC1 & Northix \\
\hline 2012-08-06: & UC1 & PAMAP2 Physical Activity Monitoring \\
\hline 2012-08-04: & UC1 & Restaurant \& consumer data \\
\hline 2012-08-03: & UC1 & CNAE-9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Most Pop & a Sets (hits since 2007): \\
\hline 386214: & Iris \\
\hline 272233: & Adult \\
\hline 237503: & Wine \\
\hline 195947: & Breast Cancer Wisconsin (Diagnostic) \\
\hline 182423: & Car Evaluation \\
\hline 151635: & Abalone \\
\hline 135419: & Poker Hand \\
\hline 113024: & Forest Fires
\[
57
\] \\
\hline
\end{tabular}

\section*{Zoo Data Set}

Download: Data Folder, Data Set Description
Abstract: Artificial, 7 classes of animals


\section*{http://archive.ics.uci.edu/ml/datasets/Zoo}
\begin{tabular}{|l|l|l|l|l|l||}
\hline \begin{tabular}{l} 
Data Set \\
Characteristics:
\end{tabular} & Multivariate & \begin{tabular}{l} 
Number of \\
Instances:
\end{tabular} & 101 & Area: & Life \\
\hline \hline \begin{tabular}{l} 
Attribute \\
Characteristics:
\end{tabular} & \begin{tabular}{l} 
Categorical, \\
Integer
\end{tabular} & \begin{tabular}{l} 
Number of \\
Attributes:
\end{tabular} & 17 & Date Donated & \begin{tabular}{l}
\(1990-05-\) \\
15
\end{tabular} \\
\hline \hline Associated Tasks: & Classification & Missing Values? & No & \begin{tabular}{l} 
Number of Web \\
Hits:
\end{tabular} & 18038 \\
\hline
\end{tabular}
animal name: string
hair: Boolean
feathers: Boolean
eggs: Boolean
milk: Boolean
airborne: Boolean
aquatic: Boolean
predator: Boolean
toothed: Boolean
backbone: Boolean
breathes: Boolean
venomous: Boolean
fins: Boolean
legs: \(\{0,2,4,5,6,8\}\)
tail: Boolean
domestic: Boolean
catsize: Boolean
type: \{mammal, fish, bird, shellfish, insect, reptile, amphibian\}

\section*{Zoo data}

\section*{101 examples}
aardvark,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal antelope,1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1,mammal bass, \(0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0\), fish bear,1,0,0,1,0,0,1,1,1,1,0,0,4,0,0,1,mammal boar, \(1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1, \mathrm{mammal}\) buffalo, \(1,0,0,1,0,0,0,1,1,1,0,0,4,1,0,1, \mathrm{mammal}\) calf,1,0,0,1,0,0,0,1,1,1,0,0,4,1,1,1,mammal carp, \(0,0,1,0,0,1,0,1,1,0,0,1,0,1,1,0, f i s h\) catfish, \(0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0\), fish cavy,1,0,0,1,0,0,0,1,1,1,0,0,4,0,1,0,mammal cheetah, \(1,0,0,1,0,0,1,1,1,1,0,0,4,1,0,1, m a m m a l\) chicken, \(0,1,1,0,1,0,0,0,1,1,0,0,2,1,1,0\), bird chub, \(0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0\), fish clam, \(0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0\), shellfish crab,0,0,1,0,0,1,1,0,0,0,0,0,4,0,0,0,shellfish

\section*{Defining Appropriate Features}

Feature functions help extract useful features (characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

\section*{Defining Appropriate Features}

Feature functions help extract useful features
(characteristics) of the data

They turn data into numbers

Features that are not 0 are said to have fired

Often binary-valued (0 or 1), but can be real-valued

\section*{Features}

Define a feature \(\mathrm{f}_{\text {clue }}\) (1) label) for each type of clue you want to consider

The feature \(f_{\text {clue }}\) fires if the clue applies to/can be found in the (䉣, label) pair
sklearn example
(in-class, live coding)

\section*{Zoo example}
aima-python> python
>>> from learning import *
>>> 200
<DataSet(zoo): 101 examples, 18 attributes>
>>> dt = DecisionTreeLearner()
>>> dt.train(zoo)
>>> dt.predict(['shark',0,0,1,0,0,1,1,1,1,0,0,1,0,1,0,0])
'fish'
>>> dt.predict(['shark',0,0,0,0,0,1,1,1,1,0,0,1,0,1,0,0])
'mammal'

\section*{Central Question: How Well Are We Doing?}


\section*{Central Question: How Well Are We Doing?}


Clustering
the task: what kind of problem are you solving?

\section*{Evaluation methodology (1)}

Standard methodology:
1. Collect large set of examples with correct classifications (aka ground truth data)
2. Randomly divide collection into two disjoint sets: training and test (e.g., via a 90-10\% split)
3. Apply learning algorithm to training set giving hypothesis H
4. Measure performance of H on the held-out test set

\section*{Evaluation methodology (2)}
- Important: keep the training and test sets disjoint!
- Study efficiency \& robustness of algorithm: repeat steps 2-4 for different training sets \& training set sizes
- On modifying algorithm, restart with step 1 to avoid evolving algorithm to work well on just this collection

\section*{Experimenting with Machine Learning Models}

\section*{All your data}


\section*{Rule \#1}


\section*{Evaluation methodology (3)}

Common variation on methodology:
1. Collect set of examples with correct classifications
2. Randomly divide it into two disjoint sets: development \& test; further divide development into devtrain \& devtest
3. Apply ML to devtrain, giving hypothesis H
4. Measure performance of H w.r.t. devtest data
5. Modify approach, repeat 3-4 as needed
6. Final test on test data


\section*{Evaluation methodology (4)}
\(C \longdiv { \text { - Only devtest data used for evalua- } }\) 1. tion during system development
- When all development has ended, test data used for final evaluation
- Ensures final system not influenced by test data
3. - If more development needed, get
4. new dataset!
devtest data
5. Modify approach, repeat 3-4 as needed
6. Final test on test data


\section*{Zoo evaluation}
train_and_test(learner, data, start, end) uses data[start:end] for test and rest for train
>>> dtl = DecisionTreeLearner
>>> train_and_test(dtl(), zoo, 0, 10)
1.0
>>> train_and_test(dtl(), zoo, 90, 100)
0.80000000000000004
>>> train_and_test(dtl(), zoo, 90, 101)
0.81818181818181823
>>> train_and_test(dtl(), zoo, 80, 90)
0.90000000000000002

\section*{Zoo evaluation}
train_and_test(learner, data, start, end) uses data[start:end] for test and rest for train
- We hold out 10 data items for test; train on the other 91; show the accuracy on the test data
- Doing this four times for different test subsets shows accuracy from \(80 \%\) to \(100 \%\)
- What's the true accuracy of our approach?

\section*{K-fold Cross Validation}
- Problem: getting ground truth data expensive
- Problem: need different test data for each test
- Problem: experiments needed to find right feature space \& parameters for ML algorithms
- Goal: minimize training+test data needed
- Idea: split training data into K subsets; use K-1 for training and one for development testing
- Repeat K times and average performance
- Common K values are 5 and 10

\section*{Zoo evaluation}
- AIMA code has a cross_validation function that runs K-fold cross validation
- cross_validation(learner, data, K, N) does N iterations, each time randomly selecting \(1 / \mathrm{K}\) data points for test, leaving rest for train
>>> cross_validation(dtl(), zoo, 10, 20)
0.95500000000000007
- This is a very common approach to evaluating the accuracy of a model during development
- Best practice is still to hold out a final test data set

\section*{Leave one out}
- AIMA code also has a leave1out function that runs a different set of experiments to estimate accuracy of the model
- leave1out(learner, data) does len(data) trials, each using one element for test, rest for train
\[
\begin{aligned}
& \text { >>> leavelout(dtl(), zoo) } \\
& 0.97029702970297027
\end{aligned}
\]
- K-fold cross validation can be too pessimistic, since it only trains with \(80 \%\) or \(90 \%\) of the data
- The leave one out evaluation is an alternative

\section*{Learning curve (1)}

A learning curve shows accuracy on test set as a function of training set size or (for neural networks) running time


\section*{Learning curve}
- When evaluating ML algorithms, steeper learning curves are better
- They represents faster learning with less data performance


Here the system with the red curve is better since it requires less data to achieve given accuracy

\section*{Classification Evaluation: the 2-by-2 contingency table}

Let's assume there are two classes/labels


Assume is the "positive" label

Given X, our classifier predicts either label
\[
p(\bigcirc \mid x) \text { vs. } p(\bigcirc \mid x)
\]

Classification Evaluation: the 2-by-2 contingency table

\section*{What is the actual label?}

What label does our system predict? ( \(\downarrow\) )

\author{
Actually \\ Correct
}

\section*{Actually}

Incorrect
Selected/
Guessed
Not selected/
not guessed

\section*{Classification Evaluation:} the 2-by-2 contingency table

\section*{What is the actual label?}

What label does our system predict? ( \(\downarrow\) )

\author{
Actually \\ Correct
}

\section*{Actually}

Incorrect
Selected/
Guessed
True Positive
Atrual (TP)
Guessed
Not selected/
not guessed

\section*{Classification Evaluation:} the 2-by-2 contingency table

\section*{What is the actual label?}

What label does our system predict? ( \(\downarrow\) )

\section*{Actually \\ Correct}

\section*{Actually \\ Incorrect}

\section*{Selected/ \\ Guessed}

True Positive
False Positive
\(\bigcirc\)

Guessed
Actual (TP)
Guessed

Not selected/
not guessed

\section*{Classification Evaluation:} the 2-by-2 contingency table

\section*{What is the actual label?}

What label does our system predict? ( \(\downarrow\) )

\section*{Actually \\ Correct}

\section*{Actually}

Incorrect
Selected/
Guessed
Not selected/
not guessed

True Positive
(TP)
Guessed

False Positive (FP)

\section*{Classification Evaluation:} the 2-by-2 contingency table

\section*{What is the actual label?}

What label does our system predict? ( \(\downarrow\) )

\section*{Actually \\ Correct}

Actually
Incorrect
Selected/
Guessed
Not selected/
not guessed

True Positive (TP) Guessed
False Negative (FN)

\section*{False Positive}


Guessed
True Negative


Guessed

\section*{Classification Evaluation:} the 2-by-2 contingency table

\section*{What is the actual label?}

What label does our system predict? ( \(\downarrow\) )

\section*{Actually \\ Correct}

\section*{Actually \\ Incorrect}

\section*{Selected/ \\ Guessed \\ True Positive \\ False Positive \\ (TP) \\ Guessed \\  \\ (FP) \\ Guessed}

Not selected/ False Negative
not guessed
(FN)
Guessed

True Negative
\(\underset{\text { Actual }}{\bigcirc}\) (TN)
Guessed

Construct this table by counting the number of TPs, FPs, FNs, TNs

\section*{Contingency Table Example}


\section*{Contingency Table Example}

Predicted:
Actual:

\section*{What is the actual label?}

What label does our system predict? ( \(\downarrow\) )

\section*{Actually \\ Correct \\ Actually \\ Incorrect}

Selected/
Guessed

Not selected/ False Negative

True Positive (TP) (FN)

False Positive (FP) not guessed

\section*{Contingency Table Example}

Predicted:
Actual:

\section*{What is the actual label?}

What label does our system predict? ( \(\downarrow\) )

\section*{Actually \\ Correct \\ Actually \\ Incorrect}

Selected/
Guessed

Not selected/ False Negative

True Positive
(TP) = 2 (FN)

False Positive (FP) not guessed

\section*{Contingency Table Example} Predicted:

Actual:

\section*{What is the actual label?}

What label does our system predict? ( \(\downarrow\) )

\section*{Actually \\ Correct \\ Actually \\ Incorrect}

Selected/
Guessed

True Positive
(TP) = 2
Not selected/ False Negative not guessed
(FP) = 1
False Positive

True Negative

\section*{Contingency Table Example}

\author{
Predicted:
}


--

Actual:

\section*{What is the actual label?}

What label does our system predict? ( \(\downarrow\) )
Actually
Correct
Actually
Incorrect

Selected/
Guessed

True Positive
(TP) = 2
(FP) = 1
True Negative (TN)

\section*{Contingency Table Example}

Predicted:
Actual:

\section*{What is the actual label?}

What label does our system predict? ( \(\downarrow\) )
Actually
Correct
Actually
Incorrect

Selected/
Guessed

Not selected/ False Negative True Negative

True Positive
(TP) = 2
\[
(F N)=1
\]

False Positive
(FP) = 1 not guessed

\section*{Contingency Table Example}

Predicted:
Actual:

\section*{What is the actual label?}

What label does our system predict? ( \(\downarrow\) )
Actually
Correct
Actually
Incorrect

Selected/
Guessed

True Positive
\[
(T P)=2
\]

False Negative
\[
(F N)=1
\]

False Positive
(FP) = 1
True Negative
\((\mathrm{TN})=1\)

\title{
Classification Evaluation: Accuracy, Precision, and Recall
}

Accuracy: \% of items correct TP + TN
\(\overline{T P+F P+F N+T N}\)
\begin{tabular}{|c|c|c|}
\cline { 2 - 3 } & Actually Correct & Actually Incorrect \\
\hline Selected/Guessed & True Positive (TP) & False Positive (FP) \\
\hline Not select/not guessed & False Negative (FN) & True Negative (TN) \\
\hline 94 \\
\hline
\end{tabular}

\section*{Classification Evaluation: Accuracy, Precision, and Recall}

Accuracy: \% of items correct TP + TN
\[
\overline{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
\]

Precision: \% of selected items that are correct
\(\frac{T P}{T P+F P}\)
\begin{tabular}{|c|c|c|}
\cline { 2 - 3 } & Actually Correct & Actually Incorrect \\
\hline Selected/Guessed & True Positive (TP) & False Positive (FP) \\
\hline Not select/not guessed & False Negative (FN) & True Negative (TN) \({ }_{95}\) \\
\hline
\end{tabular}

\section*{Classification Evaluation:}

\section*{Accuracy, Precision, and Recall}

Accuracy: \% of items correct TP + TN
\[
\overline{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
\]

Precision: \% of selected items that are correct
\(\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}}\)

Recall: \% of correct items that are selected
TP
\(\overline{T P+F N}\)
\begin{tabular}{|c|l|l|}
\hline \multicolumn{4}{|c|}{} & Actually Correct & Actually Incorrect \\
\hline Selected/Guessed & True Positive (TP) & False Positive (FP) \\
\hline Not select/not guessed & False Negative (FN) & True Negative (TN) \\
\hline 96 \\
\hline
\end{tabular}

\section*{Classification Evaluation:}

\section*{Accuracy, Precision, and Recall}

Accuracy: \% of items correct
\[
\frac{\mathrm{TP}+\mathrm{TN}}{\mathrm{TP}+\mathrm{FP}+\mathrm{FN}+\mathrm{TN}}
\]

Precision: \% of selected items that are correct TP
\[
\overline{\mathrm{TP}+\mathrm{FP}}
\]

Min: 0 :
Max: 1 -

Recall: \% of correct items that are selected

TP
\(\overline{\mathrm{TP}+\mathrm{FN}}\)
\begin{tabular}{|c|l|l|}
\hline \multicolumn{4}{|c|}{} & Actually Correct & Actually Incorrect \\
\hline Selected/Guessed & True Positive (TP) & False Positive (FP) \\
\hline Not select/not guessed & False Negative (FN) & True Negative (TN) \\
\hline 97 \\
\hline
\end{tabular}

\section*{Precision and Recall Present a Tradeoff}


Q: Where do you want your ideal model ?

\section*{Precision and Recall Present a Tradeoff}


\title{
Measure this Tradeoff: Area Under the Curve (AUC)
}

AUC measures the area under
 this tradeoff curve

\section*{Min AUC: 0 : \\ Max AUC: 1 :}

\title{
Measure this Tradeoff: Area Under the Curve (AUC)
}

AUC measures the area under


Min AUC: 0 :
Max AUC: 1 :
this tradeoff curve
1. Computing the curve You need true labels \& predicted labels with some score/confidence estimate

Threshold the scores and for each threshold compute precision and recall

\section*{Measure this Tradeoff: Area Under the Curve (AUC)}

AUC measures the area under this tradeoff curve


Min AUC: 0 : Max AUC: 1 :
1. Computing the curve You need true labels \& predicted labels with some score/confidence estimate Threshold the scores and for each threshold compute precision and recall
2. Finding the area

How to implement: trapezoidal rule (\& others)

In practice: external library like the sklearn.metrics module

\section*{Measure A Slightly Different Tradeoff: ROC-AUC}

AUC measures the area under this tradeoff curve


Min ROC-AUC: 0.5 : Max ROC-AUC: 1 :

\section*{A combined measure: \(F\)}

Weighted (harmonic) average of Precision \& Recall
\[
F=\frac{1}{\alpha \frac{1}{P}+(1-\alpha) \frac{1}{R}}
\]

\section*{A combined measure: \(F\)}

Weighted (harmonic) average of Precision \& Recall
\[
F=\frac{1}{\alpha \frac{1}{P}+(1-\alpha) \frac{1}{R}}=\frac{\left(1+\beta^{2}\right) * P * R}{\left(\beta^{2} * P\right)+R}
\]

\section*{A combined measure: \(F\)}

Weighted (harmonic) average of Precision \& Recall
\[
F=\frac{\left(1+\beta^{2}\right) * P * R}{\left(\beta^{2} * P\right)+R}
\]

Balanced F1 measure: \(\beta=1\)
\[
F_{1}=\frac{2 * P * R}{P+R}
\]

\section*{\(P / R / F\) in a Multi-class Setting: Micro- vs. Macro-Averaging}

If we have more than one class, how do we combine multiple performance measures into one quantity?

Macroaveraging: Compute performance for each class, then average.

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

\section*{\(P / R / F\) in a Multi-class Setting: Micro- vs. Macro-Averaging}

Macroaveraging: Compute performance for each class, then average.
\[
\text { macroprecision }=\sum_{c} \frac{\mathrm{TP}_{\mathrm{c}}}{\mathrm{TP}_{\mathrm{c}}+\mathrm{FP}_{\mathrm{c}}}=\sum_{c} \text { precision }_{c}
\]

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.
\[
\text { microprecision }=\frac{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}}{\sum_{\mathrm{c}} \mathrm{TP}_{\mathrm{c}}+\sum_{\mathrm{c}} \mathrm{FP}_{\mathrm{c}}}
\]

\section*{\(P / R / F\) in a Multi-class Setting: Micro- vs. Macro-Averaging}

Macroaveraging: Compute performance for each class, then average.
macroprecision \(=\sum_{c} \frac{\mathrm{TP}_{\mathrm{c}}}{\mathrm{PP}_{\mathrm{c}}+\mathrm{FP}_{\mathrm{c}}}=\sum_{c}\) precision \(_{c}\)

Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.
when to prefer the macroaverage?

\section*{Micro- vs. Macro-Averaging: Example}

Class 1
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Truth \\
:yes
\end{tabular} & \begin{tabular}{c} 
Truth \\
: no
\end{tabular} \\
\hline \begin{tabular}{c} 
Classifier: \\
yes
\end{tabular} & 10 & 10 \\
\hline \begin{tabular}{c} 
Classifier: \\
no
\end{tabular} & 10 & 970 \\
\hline
\end{tabular}

Class 2
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Truth \\
:yes
\end{tabular} & \begin{tabular}{c} 
Truth \\
:no
\end{tabular} \\
\hline \begin{tabular}{c} 
Classifier: \\
yes
\end{tabular} & 90 & 10 \\
\hline \begin{tabular}{c} 
Classifier: \\
no
\end{tabular} & 10 & 890 \\
\hline
\end{tabular}

Micro Ave. Table
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{c} 
Truth \\
:yes
\end{tabular} & \begin{tabular}{c} 
Truth \\
:no
\end{tabular} \\
\hline \begin{tabular}{c} 
Classifier: \\
yes
\end{tabular} & 100 & 20 \\
\hline \begin{tabular}{c} 
Classifier: \\
no
\end{tabular} & 20 & 1860 \\
\hline
\end{tabular}

Macroaveraged precision: \((0.5+0.9) / 2=0.7\)
Microaveraged precision: 100/120 = . 83
Microaveraged score is dominated by score on frequent classes

Confusion Matrix: Generalizing the 2-by-2 contingency table

\section*{Correct Value}


\#
\#
\#

\#
\#
\#

Confusion Matrix: Generalizing the 2-by-2 contingency table

\section*{Correct Value}
\begin{tabular}{|c|c|c|}
\hline & & \(\square\) \\
\hline 80 & 9 & 11 \\
\hline 7 & 86 & 7 \\
\hline 2 & 8 & 9 \\
\hline
\end{tabular}

Q: Is this a good result?

Confusion Matrix: Generalizing the 2-by-2 contingency table

\section*{Correct Value}
\begin{tabular}{|c|c|c|c|c|}
\hline & & 30 & 40 & 30 \\
\hline \multirow{2}{*}{\begin{tabular}{c} 
Guessed \\
Value
\end{tabular}} & \(\bigcirc\) & 25 & 30 & 50 \\
\cline { 2 - 5 } & & 30 & 35 & 35 \\
\hline
\end{tabular}

Confusion Matrix: Generalizing the 2-by-2 contingency table

\section*{Correct Value}
\begin{tabular}{|l|l|l|}
\hline & & \\
\hline 7 & 3 & 90 \\
\hline 4 & 8 & 88 \\
\hline 3 & 7 & 90 \\
\hline
\end{tabular}

\section*{Q: Is this a good result?}```

