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Decision Trees (DTs)
• Supervised learning method used for 

classification and regression
• Given a set of training tuples, learn model 

to predict one value from the others
– Learned value typically a class (e.g., goodRisk)

•  Resulting model is simple to understand, 
interpret, visualize, and apply

• One of the oldest ML algorithms, but still 
useful for many problems

https://en.wikipedia.org/wiki/Decision_tree_learning


Learning a Concept

Shape Attributes
• Size: large, small
• Color: red, green, blue
• Shape: square, circle

The red groups are negative examples, blue positive

Task
Classify new object with 
a size, color & shape as 
positive or negative



Training data

Size Color Shape class
Large Green Square Negative
Large Green Circle Negative
Small Green Square Positive
Small Green Circle Positive
Large Red Square Positive
Large Red Circle Positive
Small Red Square Positive
Small Red Circle Positive
Large Blue Square Negative
Small Blue Square Positive
Large Blue Circle Positive
Small Blue Circle Positive

attributes

example
instances

Attribute to be 
learned



A decision tree-induced partition
The red groups are negative examples, blue positive

Negative things are  
big, green shapes and 
big, blue squares



Learning decision trees
• Goal: Build decision tree to classify examples as 

positive or negative instances of concept using 
supervised learning from training data
• A decision tree is a tree in which
–  non-leaf nodes have an

attribute (feature)
– leaf nodes have a classification

(+ or -)
– arcs have a possible value of

its attribute 
• Generalization: allow for >2 classes
– e.g., classify stocks as {sell, hold, buy}
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Expressiveness of Decision Trees
• Can express any function of input attributes, e.g., for 

Boolean functions, truth table row → path to leaf:

• There’s a consistent decision tree for any training set 
with one path to leaf for each example, but it 
probably won't generalize to new examples

• Prefer more compact decision trees



Inductive learning and bias

• Suppose that we want to learn a function f(x) = y and 
we’re given sample (x,y) pairs, as in figure (a)

• Can make several hypotheses about f, e.g.: (b), (c) & (d)
• Preference reveals learning technique bias, e.g.:

– prefer piece-wise linear functions (b)
– prefer a smooth function (c)
– prefer a simpler function and treat outliers as noise (d)

https://en.wikipedia.org/wiki/Piecewise_linear_function


Preference bias: Occam’s Razor

• William of Ockham (1285-1347)
–non sunt multiplicanda entia praeter necessitatem 
–entities are not to be multiplied beyond necessity 

• Simplest consistent explanation is the best
• Smaller decision trees correctly classifying 

training examples preferred over larger ones
• Finding the smallest decision tree is NP-hard, 

so we use algorithms that find reasonably small 
ones

https://en.wikipedia.org/wiki/Occam%27s_razor
https://en.wikipedia.org/wiki/William_of_Ockham


Issues
• It’s like 20 questions
• We can generate many decision trees 

depending on what attributes we ask about 
and in what order

• How do we decide?
• What makes one decision tree better than 

another: number of nodes? number of 
leaves? maximum depth?

https://en.wikipedia.org/wiki/Twenty_Questions


ID3 / C4.5 / J48 Algorithm
• Greedy algorithm for decision tree construction 

developed by Ross Quinlan  1987-1993 
• Top-down construction of tree by recursively 

selecting best attribute to use at current node
–Once attribute selected for current node, generate 

child nodes, one for each possible attribute value
–Partition examples using values of attribute, & assign 

these subsets of examples to the child nodes
–Repeat for each child node until examples associated 

with a node are all positive or negative

https://en.wikipedia.org/wiki/ID3_algorithm
https://en.wikipedia.org/wiki/C4.5_algorithm
https://en.wikipedia.org/wiki/Ross_Quinlan


Choosing best attribute
• Key problem: choose attribute to split given set 

of examples
• Possibilities for choosing attribute:
–Random: Select one at random 
–Least-values: one with smallest # of possible values 
–Most-values: one with largest # of possible values 
–Max-gain: one with largest expected information gain
–Gini impurity: one with smallest gini impurity value

• The last two measure the homogeneity of the 
target variable within the subsets

• The ID3 and C4.5 algorithms uses max-gain

https://en.wikipedia.org/wiki/Information_gain_in_decision_trees
https://en.wikipedia.org/wiki/Decision_tree_learning


A Simple Example
For this data, is it better to start the tree by 
asking about the restaurant type or its 
current number of patrons?



Choosing an attribute
Idea: good attribute choice splits examples into 
subsets that are as close to all of one type as 
possible, e.g., for binary attributes, all T or all F

Which is better: asking about Patrons or Type?

stay

leave

Initially half 
T and half F

After asking 
Type, 4 sets



Choosing an attribute
Idea: good attribute choice splits examples into 
subsets that are as close to all of one type as 
possible, e.g., for binary attributes, all T or all F

• Patrons: for six examples we know the answer and 
for six we can predict with probability 0.67

• Type: our prediction is no better than chance (0.50)

stay

leave

Initially half 
T and half F

After asking 
Type, 4 sets



Choosing Patrons yields more information

The ID3 algorithm used this to decide what attribute to 
ask about next when building a decision tree



ID3-induced 
decision tree



Compare the two Decision Trees

Human-generated decision tree ID3-generated decision tree

• Intuitively, ID3 tree looks better: it’s shallower and has fewer nodes
• ID3 uses information theory to decide which question is best to ask next



Information gain in knowing an attribute

• Gain(X,T) = Info(T) - Info(X,T) is difference of
– Info(T): info needed to identify T’s class 
– Info(X,T): info needed to identify T’s class after 

attribute X’s value known

• This is gain in information due to knowing 
value of attribute X

• Used to rank attributes and build DT where 
each node uses attribute with greatest gain 
of those not yet considered in path from root

• goal: create small DTs to minimize questions



Information Gain
stay

leave

• IniCally half of examples are stay and half leave
• ADer knowing Type?, sCll half are stay and half leave

We are no wiser for knowing Type ☹
• ADer knowing Patrons?, we know the class for six and know a likely class for the other six

We’ve learned something, but need more info if Patrons=Full 😊

initial



Information Gain
stay

leave

I = -(.5*log2(.5) + .5*log2(.5)) = 0.5+0.5 => 1.0

I=0; P=1/6
I=0; P=1/3

I=-(1/3*log2(1/3)+2/3*log2(2/3)), 
P=6/12=1/2 => 0.91/2  = 0.46

I=1;P=1/6 I=1; P=1/6 I=1; P=2/6 I=1; P=2/6

Information gain = 1 - 1 => 0.0  

• Information gain for asking Patrons = 0.54, for asking Type = 0
• Note: If only one of the N categories has any instances, the information entropy is 

always 0

Information gain = 1 - 0.46 =>  0.54         

I = 6/6*1 => 1.0

I = Info(T) 
= −∑!#𝑝! 	 log"#𝑝! 	

Info(X, T)
= ∑#

|%!|
|%|

Info(𝑇#)



Extensions of ID3
• Using other selection metric gain ratios, e.g., gini 

impurity metric
• Handle real-valued data
• Noisy data and overfitting
• Generation of rules
• Setting parameters
• Cross-validation for experimental validation of 

performance
• C4.5: extension of ID3 accounting for unavailable 

values, continuous attribute value ranges, pruning 
of decision trees, rule derivation, etc.

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning


Real-valued data?
• Many ML systems work only on nominal data
• We often classify data into one of 4 basic types:
–Nominal data is named, e.g., representing restaurant 

type as Thai, French, Italian, Burger
–Ordinal data has a well-defined sequence: small, 

medium, large
–Discrete data is easily represented by integers
–Continuous data is captured by real numbers

• There are others, like intervals: age 0-3, 3-5, …
• Handling some types may need new techniques



Real-valued => Nominal Data
For ML systems that expect nominal data:
• Select thresholds defining intervals so each 

becomes a discrete value of a_ribute
• Use heuris`cs: e.g., always divide into quar`les
• Use domain knowledge: e.g., divide age into 

infant (0-2), toddler (2-5), school-aged (5-8)
•  Or treat this as another learning problem
– Try different ways to discre^ze con^nuous 

variable; see which yield be`er results w.r.t. some 
metric

– E.g., try midpoint between every pair of values



Avoiding Overfitting
• Remove obviously irrelevant features
– E.g., remove ‘year observed’, ‘month 

observed’, ‘day observed’, ‘observer 
name’from the attributes used

• Get more training data
• Pruning lower nodes in a decision tree
– E.g., if info. gain of best attribute at a node is 

below a threshold, stop and make this node a 
leaf rather than generating children nodes



Pruning decision trees
• Pruning a decision tree is done by replacing a whole 

subtree by a leaf node
• Replacement takes place if the expected error rate in 

the subtree is greater than in the single leaf, e.g.,
– Training data: 1 training red success and 2 training blue 

failures
– Validation data: 3 red failures and one blue success
– Consider replacing subtree by a single node indicating failure 

• After replacement, only 2 errors instead of 4

Color

1 success
0 failure

0 success
2 failures

red blue

Color

1 success
3 failure

1 success
1 failure

red blue 2 success
4 failure

FAILURETraining Valid. Pruned



Key Idea: “Wisdom of the crowd“
 groups of people can often make better decisions 
than individuals

Apply this to ML
 Learn multiple classifiers and combine their 
predictions

Ensembles

37



Train several classifiers and take majority of predictions

 For regression use mean or median of the 
predictions
 
 For ranking and collective classification use some 
form of averaging

Combining Mul,ple Classifiers by 
Vo,ng

A common family of approaches 
is called bagging

38



Bagging: Split the Data
Q: What can go wrong 

with option 1?Option 1: Split the data into K pieces and 
train a classifier on each

39



Bagging: Split the Data
Q: What can go wrong 

with opCon 1?

A: Small sample à 
poor performance

Option 1: Split the data into K pieces and 
train a classifier on each

40



Option 2: Bootstrap 
aggregation (bagging) 
resampling

Bagging: Split the Data
Q: What can go wrong 

with option 1?

A: Small sample à 
poor performance

Op@on 1: Split the data into K pieces and 
train a classifier on each

41



Option 2: Bootstrap 
aggregation (bagging) 
resampling

Obtain datasets D1, D2, … , DN 

using bootstrap resampling 
from D

Bagging: Split the Data

sampling with 
replacement

Q: What can go wrong 
with option 1?

A: Small sample à 
poor performance

Option 1: Split the data into K pieces and 
train a classifier on each

Given a 
dataset D…

get new datasets D̂ by 
random sampling with 

replacement from D
Courtesy Hamed Pirsiavash42



Option 2: Bootstrap 
aggregation (bagging) 
resampling

Obtain datasets D1, D2, … , DN 

using bootstrap resampling 
from D
Train classifiers on each 
dataset and average their 
predictions

Bagging: Split the Data

sampling with 
replacement

Q: What can go wrong 
with option 1?

A: Small sample à 
poor performance

Op@on 1: Split the data into K pieces and 
train a classifier on each

Given a 
dataset D…

get new datasets D̂ by 
random sampling with 

replacement from D
Courtesy Hamed Pirsiavash
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Bagging Decision Trees

How would it work?

45



Bagging Decision Trees

How would it work?

Bootstrap sample S samples {(X1, Y1), …, (XS, YS)}
Train a tree ts on (Xs, Ys)

At test time: !𝑦 = avg(𝑡! 𝑥 , … 𝑡" 𝑥 )

46



Bagging trees with one modification

At each split point, choose a random subset of features 
of size k and pick the best among these

Train decision trees of depth d

Average results from multiple randomly trained trees

Random Forests

Q: What’s the difference 
between bagging decision 
trees and random forests?

Courtesy Hamed Pirsiavash
47



Bagging trees with one modifica>on

At each split point, choose a random subset of features 
of size k and pick the best among these

Train decision trees of depth d

Average results from mul>ple randomly trained trees

Random Forests

Q: What’s the difference 
between bagging decision 
trees and random forests?

Courtesy Hamed Pirsiavash

A: Bagging à highly 
correlated trees (reuse good 

features)

48



Summary: decision tree learning
• S^ll widely used learning methods in prac^ce for 

problems with rela^vely few features
• Strengths
– Fast and easy to implement
– Simple model: translate to a set of rules
– Useful: empirically valid in many commercial products
– Robust: handles noisy data
– Explainable: easy for people to understand

• Weaknesses
– Large decision trees may be hard to understand
– Requires fixed-length feature vectors 
– Non-incremental, adding one new feature requires 

rebuilding en@re tree



ADDED INFORMATION
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Information theory 101
• For n equally probable possible messages or data 

values, each has probability 1/n
• Def: Information of a message is –log2(p) = log2(n)

e.g., with 16 messages, then log(16) = 4 and we need 4 
bits to identify/send each message

• What if the messages are not equally likely?
• For probability distribution P (p1,p2…pn) for n mes-

sages, its information (H or information entropy) is:

I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))

http://en.wikipedia.org/wiki/Entropy_(information_theory)


Information entropy of a distribution
I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))
• Examples:
– If P is (0.5, 0.5) then I(P) = -(0.5*1 + 0.5*1) = 1
– If P is (1, 0) then I(P) = 1*0 + 0*log(0) = 0

• More uniform probability distribution, greater its 
information: more information is conveyed by a 
message telling you which event actually occurred

• Entropy is the average number of bits/message 
needed to represent a stream of messages



Gini Impurity Metric of a Dataset
• Number between 0-0.5, lower is be<er
• Indicates likelihood of new data item being misclassified if given 

random class label according to class distribuBon
• Very similar to informaBon gain, slightly faster to compute

DT to decide if someone a good credit risk based on 4 properties


