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KA2: Structuring Bayesian Belief 
Network

Lung
Tumor

SmokingExposure
to Toxic

GenderAge
Network structure corresponding
to “causality” is usually good.

Cancer Genetic
Damage

Initially this uses the designer’s
knowledge but can be checked 
with data
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KA3: The Numbers

{ }heavylightnoS ,,Î
{ }malignantbenignnoneC ,,Î

CancerSmoking

smoking priors
no 0.80

light 0.15

heavy 0.05

smoking
cancer no light heavy

none 0.96 0.88 0.60

benign 0.03 0.08 0.25

malignant 0.01 0.04 0.15

• For each variable we have a table of probability 
of its value for values of its parents

• For variables w/o parents, we have prior 
probabilities
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Three (Four) kinds of reasoning

BBNs support three main kinds of reasoning:
• Predicting conditions given predispositions
• Diagnosing conditions given symptoms (and 

predisposing)
• Explaining a condition by one or more 

predispositions
To which we can add a fourth:
• Deciding on an action based on probabilities 

of the conditions
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Predictive Inference

How likely are elderly males
to get malignant cancer?

P(C=malignant | Age>60, Gender=male)

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics
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Predictive and diagnostic combined

How likely is an elderly 
male patient with high 
Serum Calcium to have 
malignant cancer?

P(C=malignant | Age>60, 
   Gender= male, Serum Calcium  = high)

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics
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Explaining away

Smoking

GenderAge

Cancer

Lung
Tumor

Serum
Calcium

Exposure
to Toxics

• If we see a lung tumor, 
the probability of heavy 
smoking and of exposure 
to toxics both go up

• If we then observe heavy 
smoking, the probability of 
exposure to toxics goes 
back down

Smoking
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Decision making

• A decision is a medical domain might be a 
choice of treatment (e.g., radiation or 
chemotherapy)

• Decisions should be made to maximize 
expected utility

• View decision making in terms of
– Beliefs/Uncertainties
– Alternatives/Decisions
– Objectives/Utilities
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Decision Problem

Should I have my party
inside or outside?

in

out

Regret

Relieved

Perfect!

Disaster 

dry

wet

dry

wet
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Decision Making with BBNs

• Today’s weather forecast might be either 
sunny, cloudy or rainy

• Should you take an umbrella when you leave?
• Your decision depends only on the forecast

– The forecast “depends on” the actual weather
• Your satisfaction depends on your decision 

and the weather
– Assign a utility to each of four situations: (rain|no

rain) x (umbrella, no umbrella)
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Decision Making with BBNs

• Extend BBN framework to include two new 
kinds of nodes: decision and utility

• Decision node computes the expected utility 
of a decision given its parent(s) (e.g., forecast) 
and a valuation

• Utility node computes utility value given its 
parents, e.g. a decision and weather
• Assign utility to each situations: (rain|no rain) x 

(umbrella, no umbrella)
• Utility value assigned to each is probably subjective
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Fundamental Inference & Learning 
Question

• Compute posterior probability of a node given 
some other nodes

!(#|%!, … , %")
• Some techniques
– MLE (maximum likelihood estimation)/MAP 

(maximum a posteriori) [covered 2nd]
– Variable Elimination [covered 1st]
– (Loopy) Belief Propagation ((Loopy) BP)
– Monte Carlo
– Variational methods
– …
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Variable Elimination

• Inference: Compute posterior probability of a 
node given some other nodes

!(#|%!, … , %")
• Variable elimination: An algorithm for exact 

inference
– Uses dynamic programming
– Not necessarily polynomial time!
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Variable Elimination (High-level)

Goal: !(#|%!, … , %")
(The word “factor” is used for each CPT.)
1.Pick one of the non-conditioned, MB variables
2.Eliminate this variable by marginalizing 

(summing) it out from all factors (CPTs) that 
contain it

3.Go back to 1 until no (MB) variables remain
4.Multiply the remaining factors and normalize.
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Variable Elimination: Example

(The word “factor” is used 

for each CPT.)

1. Pick one of the non-

conditioned, MB 

variables

2. Eliminate this variable 

by marginalizing 

(summing) it out from 

all factors (CPTs) that 

contain it

3. Go back to 1 until no 

(MB) variables remain

4. Multiply the remaining 

factors and normalize.
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Variable Elimination: Example

(The word “factor” is used 

for each CPT.)

1. Pick one of the non-

conditioned, MB 

variables 

2. Eliminate this variable 

by marginalizing 

(summing) it out from 

all factors (CPTs) that 

contain it

3. Go back to 1 until no 

(MB) variables remain

4. Multiply the remaining 

factors and normalize.
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Variable Elimination: Example

(The word “factor” is used 

for each CPT.)

1. Pick one of the non-

conditioned, MB 

variables 

2. Eliminate this variable 

by marginalizing 

(summing) it out from 

all factors (CPTs) that 

contain it

3. Go back to 1 until no 

(MB) variables remain

4. Multiply the remaining 

factors and normalize.
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Task: Eliminate Fire



Variable Elimination: Example

(The word “factor” is used 

for each CPT.)

1. Pick one of the non-

conditioned, MB 

variables 

2. Eliminate this variable 

by marginalizing 

(summing) it out from 

all factors (CPTs) that 

contain it

3. Go back to 1 until no 

(MB) variables remain

4. Multiply the remaining 

factors and normalize.
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f1(Fire)

f2(Tampering, Fire, Alarm) 
f3(Fire)

f6(Tampering, Alarm) =

=$
!
%" Fire = * %# +, - = *, . %$(- = *)

=$
!
1 Fire = * 1 .	|	+, - = * 1 4 = 5	 - = *)



Variable Elimination: Example

(The word “factor” is used 

for each CPT.)

1. Pick one of the non-

conditioned, MB 

variables 

2. Eliminate this variable 

by marginalizing 

(summing) it out from 

all factors (CPTs) that 

contain it

3. Go back to 1 until no 

(MB) variables remain

4. Multiply the remaining 

factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

f6(Tampering, Alarm) =

=$
!
1 Fire = * 1 .	|	+, - = * 1 4 = 5	 - = *)

= 1 Fire = 5 1 .	|	+, - = 5 1 4 = 5	 - = 5) +
1 Fire = 7 1 .	|	+, - = 7 1 4 = 5	 - = 7)



Variable Elimination: Example

(The word “factor” is used 

for each CPT.)

1. Pick one of the non-

conditioned, MB 

variables 

2. Eliminate this variable 

by marginalizing 

(summing) it out from 

all factors (CPTs) that 

contain it

3. Go back to 1 until no 

(MB) variables remain

4. Multiply the remaining 

factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

f6(Tampering, Alarm) =

=$
!
1 Fire = * 1 .	|	+, - = * 1 4 = 5	 - = *)

Tamp. Alarm f6
Yes Yes ! Fire = ' ! ( = ' | * = ' , , = ' ! - = ' , = ') +

! Fire = 0 ! ( = '| * = ', , = 0 ! - = ' , = 0)
Yes No …

No No …

No Yes …



Variable Elimination: Example

(The word “factor” is used 

for each CPT.)

1. Pick one of the non-

conditioned, MB 

variables 

2. Eliminate this variable 

by marginalizing 

(summing) it out from 

all factors (CPTs) that 

contain it

3. Go back to 1 until no 

(MB) variables remain

4. Multiply the remaining 

factors and normalize.
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Variable Elimination: Example

(The word “factor” is used 

for each CPT.)

1. Pick one of the non-

conditioned, MB 

variables 

2. Eliminate this variable 

by marginalizing 

(summing) it out from 

all factors (CPTs) that 

contain it

3. Go back to 1 until no 

(MB) variables remain

4. Multiply the remaining 

factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

…other computations not 

shown---see the book or 

lecture… 

PM example 9.27



Variable Elimination: Example

(The word “factor” is used 

for each CPT.)

1. Pick one of the non-

conditioned, MB 

variables 

2. Eliminate this variable 

by marginalizing 

(summing) it out from 

all factors (CPTs) that 

contain it

3. Go back to 1 until no 

(MB) variables remain

4. Multiply the remaining 

factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

Task: Normalize in order 

to compute p(Tampering)

We’ll have a single factor f9(Tampering):

1 + = * =
%%(+ = *)
∑& %%(+ = 9)



Variable Elimination: Example

(The word “factor” is used 

for each CPT.)

1. Pick one of the non-

conditioned, MB 

variables 

2. Eliminate this variable 

by marginalizing 

(summing) it out from 

all factors (CPTs) that 

contain it

3. Go back to 1 until no 

(MB) variables remain

4. Multiply the remaining 

factors and normalize.
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Goal: P(Tampering ∣ Smoke=true ∧ Report=true)

Task: Normalize in order to 

compute p(Tampering)

We’ll have a single factor f9(Tampering):

1 + = 5:; =
%%(+ = 5:;)

%% + = 5:; + %%(+ = 7<)



Variable Elimination: Example

• The posterior distribution 
over Tampering is given by

) *+,!-./01 = 3 4#(*+,!-./01 = 3)
∑$ ) *+,!-./01 = 6 4#(*+,!-./01 = 6)
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Learning Bayesian networks 

• Given training set
• Find graph that best matches D

– model selection 
– parameter estimation
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Learning Bayesian Networks

•Describe a BN by specifying its (1) structure and (2) 
conditional probability tables (CPTs)
• Both can be learned from data, but

–learning structure much harder than learning parameters
–learning when some nodes are hidden, or with missing data 
harder still

• Four cases:
Structure Observability Method
Known Full             Maximum Likelihood Estimation
Known Partial          EM (or gradient ascent)
Unknown Full             Search through model space 
Unknown Partial          EM + search through model 
space 
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Variations on a theme

• Known structure, fully observable: only need to 
do parameter estimation

• Unknown structure, fully observable: do heuristic 
search through structure space, then parameter 
estimation

• Known structure, missing values: use expectation 
maximization (EM) to estimate parameters

• Known structure, hidden variables: apply adaptive 
probabilistic network (APN) techniques

• Unknown structure, hidden variables: too hard to 
solve!
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Fundamental Inference Question

• Compute posterior probability of a node given 
some other nodes

!(#|%!, … , %")
• Some techniques
– MLE (maximum likelihood estimation)/MAP 

(maximum a posteriori) [covered 2nd]
– Variable Elimination [covered 1st]
– (Loopy) Belief Propagation ((Loopy) BP)
– Monte Carlo
– Variational methods
– …

31

Advanced 
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Parameter estimation
• Assume known structure
• Goal: estimate BN parameters q
– entries in local probability models, P(X | Parents(X))

• A parameterization q is good if it is likely to 
generate the observed data:

• Maximum Likelihood Estimation (MLE) Principle: 
Choose q* so as to maximize L

Õ==
m

mxPDPDL )|][()|():( qqq

i.i.d. samples
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Parameter estimation II

• The likelihood decomposes according to the structure 
of the network
→ we get a separate estimation task for each parameter

• The MLE (maximum likelihood estimate) solution for 
discrete data & RV values:
– for each value x of a node X
– and each instantiation u of Parents(X)

– Just need to collect the counts for every combination of 
parents and children observed in the data

– MLE is equivalent to an assumption of a uniform prior over 
parameter values

)(
),(*

| uN
uxN

ux =q sufficient statistics
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Estimating Probability of Heads 
X=1 X=0 



Estimating θ = P(X=1) 
Test A:  
  100 flips: 51 Heads (X=1), 49 Tails (X=0) 
 
 
Test B:  
  3 flips:  2 Heads (X=1), 1 Tails (X=0) 

X=1 X=0 



Maximum Likelihood Estimation 
P(X=1) = θ        P(X=0) = (1-θ) 
 
Data D:  
 
 
 
 
Flips produce data D with        heads,        tails 
•  flips are independent, identically distributed 1’s and 0’s 

(Bernoulli) 
•        and        are counts that sum these outcomes (Binomial) 

X=1 X=0 



Maximum Likelihood Estimate for Θ 

[C. Guestrin]  



hint: 



Summary:  
Maximum Likelihood Estimate 

X=1 X=0 
P(X=1) = θ 

P(X=0) = 1-θ 
(Bernoulli) 

 



Learning:
Maximum Likelihood Estimation (MLE)

Core concept in intro statistics:
• Observe some data 7
• Compute some distribution 1(7) to {predict, 

explain, generate} 7
• Assume 1 is controlled by parameters 8, i.e., 
1%(7)
– Sometimes written !(#;%)

• Learning appropriate value(s) of 8 allows you to 
GENERALIZE about 7



Learning:
Maximum Likelihood Estimation (MLE)

Central to machine learning:
• Observe some data (7,9)
• Compute some function 4(7) to {predict, explain, 

generate} 9
• Assume 4 is controlled by parameters :, i.e., 4&(7)

– Sometimes written '(#; ()



Learning Parameters for the Die Model

) *!, *", … , *# = ) *! ) *" ⋯) *# =/
$
) *$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing log-

likelihood a reasonable 

thing to do?



Learning Parameters for the Die Model

) *!, *", … , *# = ) *! ) *" ⋯) *# =/
$
) *$

maximize (log-) likelihood to learn the probability parameters

Q: Why is maximizing log-

likelihood a reasonable 

thing to do?

A: Develop a good model 

for what we observe



Learning Parameters for the Die Model: 
Maximum Likelihood (Intuition)

) *!, *", … , *# = ) *! ) *" ⋯) *# =/
$
) *$

maximize (log-) likelihood to learn the probability parameters

p(1) = ?

p(3) = ?

p(5) = ?

p(2) = ?

p(4) = ?

p(6) = ?

If you observe 
these 9 rolls…

…what are “reasonable” 
estimates for p(w)?



Learning Parameters for the Die Model: 
Maximum Likelihood (Intuition)

p(1) = 2/9

p(3) = 1/9

p(5) = 1/9

p(2) = 1/9

p(4) = 3/9

p(6) = 1/9

maximum 

likelihood 

estimates

) *!, *", … , *# = ) *! ) *" ⋯) *# =/
$
) *$

maximize (log-) likelihood to learn the probability parameters

If you observe 
these 9 rolls…

…what are “reasonable” 
estimates for p(w)?



Learning:
Maximum Likelihood Estimation (MLE)
Core concept in intro statistics:
• Observe some data !
• Compute some distribution 
"(!) to {predict, explain, 
generate}!

• Assume " is controlled by 
parameters %, i.e., "=(!)
– Sometimes written %(';))

• Learning appropriate 
value(s) of % allows you to 
GENERALIZE about !

How do we “learn 
appropriate value(s) 

of !?”
Many different options: a 
common one is maximum 
likelihood estimation (MLE)
• Find values % s.t.
"=(! = {(>, … , (?}) is 
maximized

• Independence assumptions 
are very useful here!

• Logarithms are also useful!



Learning:
Maximum Likelihood Estimation (MLE)
Core concept in intro statistics:
• Observe some data !
• Compute some distribution 
"(!) to {predict, explain, 
generate}!

• Assume " is controlled by 
parameters %, i.e., "=(!)
– Sometimes written %(';))

• MLE: Find values % s.t.
"=(! = {(>, … , (?}) is 
maximized

Example: How much does it 
snow?
• ! = (>, (@, … , (? are 

snowfall values from the 
previous N storms

• Goal: learn % such that "
correctly models, as 
accurately as possible, the 
amount of snow likely



Learning:
Maximum Likelihood 

Estimation (MLE)
Core concept in intro statistics:
• Observe some data !
• Compute some distribution 
"(!) to {predict, explain, 
generate}!

• Assume " is controlled by 
parameters %, i.e., "=(!)
– Sometimes written %(';))

• MLE: Find values % s.t.
"=(! = {(>, … , (?}) is 
maximized

Example: How much does it 
snow?
• ! = (>, (@, … , (? are 

snowfall values from the 
previous N storms

• Goal: learn % such that "
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each (A is 
independent from all others

max
=

/
AB>

?

log "=((A)

Advanced 

topic



MLE Snowfall Example

Example: How much does it 
snow?
• ! = #!, #", … , ## are 

snowfall values from the 
previous N storms

• Goal: learn & such that '
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each #$ is 
independent from all 
others

max
%

+
$&!

#
log '%(#$)

Q: Why is taking logarithms 
okay?

Q: What other assumptions, 
or decisions, do we need to 
make?

Advanced 

topic



MLE Snowfall Example

Example: How much does it 
snow?
• ! = (>, (@, … , (? are 

snowfall values from the 
previous N storms

• Goal: learn % such that "
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each (A is 
independent from all 
others, but all from g

max
=

/
AB>

?

log "=((A)

Q: Why is taking logarithms 
okay?

Q: What other assumptions, or 
decisions, do we need to 
make?

(A is positive, real-valued. 
What’s a faithful probability 
distribution for (A?
• Normal? ✘
• Gamma? ✓
• Exponential? ✓
• Bernoulli? ✘
• Poisson? ✘

Advanced 

topic



MLE Snowfall Example

Example: How much does it 
snow?
• ! = (>, (@, … , (? are 

snowfall values from the 
previous N storms

• Goal: learn % such that "
correctly models, as 
accurately as possible, the 
amount of snow likely

• Assumption: each (A is 
independent from all 
others, but all from g

max
=

/
AB>

?

log "=((A)

Q: Why is taking logarithms 
okay?

Q: What other assumptions, or 
decisions, do we need to 
make?

(A is positive, real-valued. 
What’s a faithful probability 
distribution for (A?
• Normal? ✘
• Gamma? ✓
• Exponential? ✓
• Bernoulli? ✘
• Poisson? ✘

1 C = D =
D'("exp(−HI )

I'Γ(H)

Advanced 

topic



MLE Snowfall Example

Example: How much does it 
snow?

• # = %!, %", … , %# are 
snowfall values from the 
previous N storms

• Goal: learn ( such that )
correctly models, as accurately 
as possible, the amount of 
snow likely

• Assumption: each %$ is 
independent from all others, 
but all from g

max
%

-
$&!

#
log )%(%$)

Q: Why is taking logarithms okay?

Q: What other assumptions, or 
decisions, do we need to make?

%$ is positive, real-valued. What’s 
a faithful/nice-to-compute-and-
good-enough probability 
distribution for %$?
• Normal? ✘✓
• Gamma? ✓ ?

• Exponential? ✓ ?

• Bernoulli? ✘✘
• Poisson? ✘✘

' ( = * =
1
2-. exp(

− * − 4 1

2.1 )

Advanced 

topic



MLE Snowfall Example

Example: How much does 
it snow?

• # = %!, %", … , %# are 
snowfall values from 
the previous N storms

• Goal: learn ( such that 
) correctly models, as 
accurately as possible, 
the amount of snow 
likely

• Assumption: each %$ is 
independent from all 
others, but all from g

max% -
$&!

#
log )%(%$)

%$ ~Normal 6, 7"

max
(6,8))

-
$&!

#
logNormal6,8)(%$) =

Advanced 

topic



MLE Snowfall Example

Example: How much does 
it snow?

• # = %!, %", … , %# are 
snowfall values from 
the previous N storms

• Goal: learn ( such that 
) correctly models, as 
accurately as possible, 
the amount of snow 
likely

• Assumption: each %$ is 
independent from all 
others, but all from g

max% -
$&!

#
log )%(%$)

%$ ~Normal 6, 7"

max
(6,8))

-
$&!

#
logNormal6,8)(%$) =

max
(6,8))

-
$&!

# − %$ − 6 "

7" −9 log 7 = :

Advanced 

topic



MLE Snowfall Example

Example: How much does 
it snow?

• # = %!, %", … , %# are 
snowfall values from 
the previous N storms

• Goal: learn ( such that 
) correctly models, as 
accurately as possible, 
the amount of snow 
likely

• Assumption: each %$ is 
independent from all 
others, but all from g

max% -
$&!

#
log )%(%$)

%$ ~Normal 6, 7"

max
(6,8))

-
$&!

#
logNormal6,8)(%$) =

max
(6,8))

-
$&!

# − %$ − 6 "

7" −9 log 7 = :

Q: How do we find 6, 7"?

Advanced 

topic



MLE Snowfall Example

Example: How much does it 

snow?

• ' = ,!, ,", … , ,# are 

snowfall values from the 

previous N storms

• Goal: learn ) such that %
correctly models, as 

accurately as possible, the 

amount of snow likely

• Assumption: each ,$ is 

independent from all 

others, but all from g

max% 2
$&!

#
log %%(,$)

,$ ~Normal 9, :"

max
((,*2)

2
$&!

#
logNormal(,*2(,$) =

max
((,*2)

2
$&!

# − ,$ − 9 "

:" − < log : = =

Q: How do we find 9, :"?

A: Differentiate and find that

>9 = ∑$ ,$
<

:" = ∑$ ,$ − >9 "

<

Advanced 

topic



Learning:
Maximum Likelihood Estimation (MLE)

Central to machine learning:
• Observe some data (",$)
• Compute some function &(") to {predict, explain, 

generate} $
• Assume & is controlled by parameters ', i.e., &&(")

– Sometimes written '(#; ()



Learning:
Maximum Likelihood Estimation (MLE)

Central to machine learning:
• Observe some data (),*)
• Compute some function +()) to {predict, explain, 

generate} *
• Assume + is controlled by parameters ,, i.e., +;())
– Sometimes written 1(!; 3)

• Parameters are learned to minimize error (loss) ℓ
Advanced topic



Learning:
Maximum Likelihood Estimation (MLE)
Example: Can I sleep in the next 
time it snows/is school canceled?

• # = %!, %", … , %# are 
snowfall values from the 
previous N storms

• < = =!, =", … , =# are 
closure results from the 
previous N storms

• Goal: learn > such that ?
correctly predicts, as 
accurately as possible, if 
UMBC will close in the next 
storm:
– '!"#∗ from (!"#

• If we assume the 
output of ' is a 
probability distribution
on 0|#…
Ø3 ! →
{5(yes|!), 5(no|!)}

• Then re: (, {predicting, 
explaining, generating} 
0 means… what?



Model selection

Goal: Select the best network structure, given 
the data

Input:
– Training data
– Scoring function

Output:
– A network that maximizes the score

54



Structure selection: Scoring

• Bayesian: prior over parameters and structure
– get balance between model complexity and fit to data as a 

byproduct

• Score (G:D) = log P(G|D) a log [P(D|G) P(G)]
• Marginal likelihood just comes from our parameter estimates
• Prior on structure can be any measure we want; typically a 

function of the network complexity

Same key property: Decomposability

Score(structure) = Si Score(family of Xi)

Marginal likelihood Prior

55



Some software tools

• Netica: Windows app for working with Bayes-
ian belief networks and influence diagrams
– Commercial product, free for small networks
– Includes graphical editor, compiler, inference 

engine, etc.
– To run in OS X or Linus you need Wire or Crossover

• Hugin: free demo versions for Linux, Mac, and 
Windows are available

• BBN.ipynb based on an AIMA notebook

http://www.norsys.com/
http://www.hugin.com/
https://colab.research.google.com/drive/1FPTgvim1F7M8bmyudPeC07dkEVe58mvu


Dyspnea is difficult or 
labored breathing



Predispositions or causes



Conditions or diseases



Functional Node



Symptoms or effects

Dyspnea is 
shortness of 
breath



Same BBN model in Hugin app

See the 4-minute HUGIN Tutorial on YouTube

https://www.youtube.com/watch?v=Fs4QZIs8Kj0


Python Code

See this AIMA notebook on colab showing how to 
construct this BBN Network in Python

Judea Pearl example
There’s is a house with a 

burglar alarm that can be 

triggered by a burglary or 

earthquake. If it sounds, 

one or both neighbors John 

& Mary, might call the 

owner to say the alarm is 

sounding.

https://colab.research.google.com/drive/1FPTgvim1F7M8bmyudPeC07dkEVe58mvu

