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Today’s topics

e Motivation
eReview probability theory

eBayesian inference
—From the joint distribution
—Using independence/factoring
—From sources of evidence

e Naive Bayes algorithm for inference and
classification tasks



Motivation: causal reasoning m

e As the sun rises, the rooster crows
—Does this correlation imply causality?
—If so, which way does it go?

e The evidence can come from
—Probabilities and Bayesian reasoning
—Common sense knowledge
—Experiments

e Bayesian Belief Networks (BBNs) are useful
for modeling causal reasoning



https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Causal_reasoning

Motivation: logic isn’t enough

e Classical logic is designed to work with
certainties

e Getting a positive result on a COVID test
doesn’t necessarily mean you are infected

e And a negative result doesn’t necessarily
mean you are not infected

*You need to know the true/false positive
and true/false negative rates of the test
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Decision making with uncertainty =

Rational behavior: for each possible action:

e |dentify possible outcomes and for each
—Compute probability of outcome

—Compute utility of outcome
—Compute probability-weighted (expected) utility of

outcome

eSelect action with the highest expected utility
(principle of Maximum Expected Utility)
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eYour house has an alarm system

e |t should go off if a burglar breaks
into the house

e |t can also go off if there is an earthquake

e How can we predict what’s happened if the
alarm goes off?

—Someone has broken in!
—It’s a minor earthquake



Probability theory 101

e Random variables: e Alarm, Burglary, Earthquake
— Domain Boolean (these) or discrete (0-9), continuous (float)
e Atomic event: e Alarm=TABurglary=TAEarthquake=F
complete specification alarm A burglary A —earthquake
of state
e Prior probability: e P(Burglary) =0.1
degree of belief P(Alarm) =0.1
without any other P(earthquake) = 0.000003
evidence or info
e Joint probability: * P(Alarm, Burglary) =

matrix of combined
probabilities of set of
variables

alarm | -alarm
burglary .09 .01
-burglary 1 .8




alarm | -alarm

Probability theory 101 | burglary | 09 | .01

-burglary 1 .8

e Conditional probability: prob. e P(burglary | alarm) = .47

of effect given causes P(alarm | burglary) =.9
e Computing conditional probs: e P(burglary | alarm) =
— P(a| b)=P(a A b)/P(b) P(burglary A alarm) / P(alarm)
— P(b): normalizing constant =.09/.19 = .47
e Product rule: e P(burglary A alarm) =
— P(anb)=P(a | b)*P(b) P(burglary | alarm) * P(alarm)
= .47 *.19=.09
e Marginalizing: e P(alarm) =
— P(B) =2,P(B, a) P(alarm A burglary) +
— P(B) =2,P(B | a) P(a) P(alarm A -burglary)

(conditioning) =.09+.1=.19
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alarm | fpalarm
Probability theory 101 | busglary || 09 || .01
-burglary 1 .8
e Conditional probability: prob. e P(burglary | alarm) = .47
of effect given causes P(alarm | burglary) =.9
e Computing conditional probs: |e P(burglary | alarm) =
| — P(a | b)=P(a A b)/P(b) | P(burglary A alarm) / P(alarm)
— P(b): normalizing constant =.09/.19 = .47
e Product rule: e P(burglary A alarm) =
— P(anb)=P(a | b)*P(b) P(burglary | alarm) * P(alarm)
= .47 *.19=.09
e Marginalizing: e P(alarm) =
— P(B) = 2,P(B, a) P(alarm A burglary) +

— P(B)=2,P(B | a) P(a)
(conditioning) =.09+.1=.19

P(alarm A =burglary)
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Example: Inference from the joint

alarm -alarm

earthquake | -earthquake | earthquake -earthquake

burglary 01 .08 .001 .009

~burglary 01 .09 .01 79

P(burglary | alarm) = a P(burglary, alarm)

= o [P(burglary, alarm, earthquake) + P(burglary, alarm, —earthquake)
=a[(.01,.01) + (.08, .09) ]
=a[(.09,.1)]

Since P(burglary | alarm) + P(-=burglary | alarm) =1, o = 1/(.09+.1) = 5.26
(i.e., P(alarm) = 1/a = .19 — quizlet: how can you verify this?)

P(burglary | alarm) =.09 * 5.26 =.474
P(-burglary | alarm) =.1 *5.26 =.526



Consider

e A student has to take an exam
—She might be smart
—She might have studied

—She may be prepared for the exam
eHow are these related?

e \We can collect joint probabilities for the
three events

—Measure “prepared” as “got a passing grade”
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Exercise: Inference from the joint (¥
smart —smart =
p(smart A study
A prepared) study | —study study —study
prepared 432 .16 .084 .008
—prepared .048 .16 .036 .072

Each of the 8 highlighted boxes has the joint probability
for the three values of smart, study, prepared

Queries:

—What is the prior probability of smart?

—What is the prior probability of study?

—What is the conditional probability of

prepared, given study and smart?

-

Standard way
to show joint
probabilities

of 3 variables
as a 2D table



https://en.wikipedia.org/wiki/Prior_probability
https://en.wikipedia.org/wiki/Conditional_probability

Exercise:
Inference from the joint

p(smart A study
A prepared)

prepared 084 008
—prepared 036 072
Queries:

— What is the prior probability of smart?
— What is the prior probability of study?

— What is the conditional probability of prepared, given
study and smart?

p(smart) =.432 + .16 + .048 + .16 =0.8
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Exercise:
Inference from the joint

smart
p(smart A study
A prepared) study —study
prepared 432 .16 .084 .008
—prepared .048 .16 .036 .072

Queries:
— What is the prior probability of smart?
— What is the prior probability of study?

— What is the conditional probability of prepared, given
study and smart?
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Exercise:
Inference from the joint

smart
p(smart A study
A prepared) study —study
prepared 432 .16
—prepared .048 .16

Queries:
— What is the prior probability of smart?
— What is the prior probability of study?

— What is the conditional probability of prepared, given
study and smart?

p(study) =.432 +.048 + .084 + .036 = 0.6
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Exercise:
Inference from the joint

smart
p(smart A study
A prepared) study —study
prepared 432 .16 .084 .008
—prepared .048 .16 .036 .072

Queries:
— What is the prior probability of smart?
— What is the prior probability of study?

— What is the conditional probability of prepared, given
study and smart?
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Exercise:

Inference from the joint

smart
p(smart A study
A prepared) study —study
prepared .16 .084 .008
—prepared .16 .036 .072
Queries:

— What is the prior probability of smart?
— What is the prior probability of study?
— What is the conditional probability of prepared, given study

and smart?

p(prepared|smart,study)= p(prepared,smart,study)/p(smart, study)

=.432 /(.432 +.048)
=0.9
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Independence

e When variables don’t affect each others’ probabilities,
they are independent; we can easily compute their
joint & conditional probability:

Independent(A, B) > P(AAB) =P(A) * P(B); P(A|B)=P(A)

e {moonPhase, lightLevel} might be independent of

{burglary, alarm, earthquake}

— Maybe not: burglars may be more active during a new moon
because darkness hides their activity

— But if we know light level, moon phase doesn’t affect whether
we are burglarized

— If burglarized, light level doesn’t affect if alarm goes off

e Need a more complex notion of independence and
methods for reasoning about the relationships



Exercise: Independence

smart —smart
p(smart A study
A prepared) study | —study study —study
prepared 432 .16 .084 .008
—prepared .048 .16 .036 .072

Queries:
—Q1: Is smart independent of study?
—Q2: Is prepared independent of study?

How can we tell?
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Exercise: Independence

smart —smart
p(smart A study
A prepared) study | —study study —study
prepared 432 .16 .084 .008
—prepared .048 .16 .036 .072

Q1: Is smart independent of study?

* You might have some intuitive beliefs based on
your experience

* You can also check the data
Which way to answer this is better?



Exercise: Independence

smart —smart
p(smart A study
A prepared) study | —study study —study
prepared .084 .008
—prepared .036 .072

Q1: Is smart independent of study?
Q1 true iff p(smart|study) == p(smart)

p(smart) =.432+0.048 + .16 + .16 = 0.8

p(smart|study) = p(smart,study)/p(study)
=(.432+.048)/.6 = 0.48/.6=0.8

0.8 == 0.8 .~ smart is independent of study



Exercise: Independence

smart —smart
p(smart A
study A prep) | study | —study study —study
prepared 432 .16 .084 .008
—prepared .048 .16 .036 .072

Q2: Is prepared independent of study?
* What is prepared?
*Q2 true iff
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Exercise: Independence

smart

p(smart A

study A prep) | study | —study

prepared 432 .16 .084 .008
—prepared .048 .16 .036 .072

Q2: Is prepared independent of study?
Q2 true iff p(prepared|study) == p(prepared)

p(prepared) =.432 + .16 + .84 + .008 = .684

p(prepared|study) = p(prepared,study)/p(study)
=(.432 +.084) / .6 = .86

0.86 # 0.684, .. prepared not independent of study



Absolute & conditional independence

e Absolute independence:

— A and B are independent if P(A A B) = P(A) * P(B);
equivalently, P(A) = P(A | B) and P(B) =P(B | A)

e A and B are conditionally independent given C if
—P(AAB|C)=P(A| C)*P(B| C)
If it holds, lets us decompose the joint distribution:
—P(AABAC)=P(A|C)*P(B|C)*P(C)

e Moon-Phase and Burglary are conditionally
independent given Light-Level

e Conditional independence is weaker than absolute
independence, but useful in decomposing full joint
probability distribution



cond itional independence FullMoon StreetLights

e Conditional independence often
comes from causal relations

— FullMoon causally affects LightLevel burglary
at night as does StreetLights '

e|n burglary scenario, FullMoon
doesn,t affECt anyth|ng else FullMoon  StreetLights

e Knowing LightLevel, we can ignore
FullMoon and StreetlLights when
predicting if alarm suggests

Burglary ‘

burglary

Light level



P(AIB) |=(PBIAYPA)) ((B))

) PBIA) |=PAIB)P(B)) (P(R)
Bayes ru I e Prior probability
Likelihood

Derived from the product rule:  Posterior probabiity

- P(A, B) — P(A B) * P(B) # from definition of conditional probability

- P(B, A) = P(B A) * P(A) # from definition of conditional probability

— P(A, B) - P(B, A) # since order is not important
So...
P(A|B) =P(B|A) * P(A)

relates P(A|B)
P( B) and P(B|A)

P(A,B) is probability of both A and B being true, so P(A,B) = P(B,A)


https://en.wikipedia.org/wiki/Bayes%27_theorem

P(A[B)
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: e P(BIA) |=[P(AIB)P(B) (P
Useful for diagnosis! "0
Likelihood
eCis acause, E is an effect: pistesiar Brababiliy

—P(C|E) = P(E|C) * P(C) / P(E)
e Useful for diagnosis:

—E are (observed) effects and C are (hidden) causes,

— Often have model for how causes lead to effects P(E|C)

—We may have info (based on experience) on frequency

of causes (P(C))

—Which allows us to reason abductively from effects to

causes (P(C|E))

—Recall, abductive reasoning: from A => B and B, infer

(maybe?) A



https://en.wikipedia.org/wiki/Abductive_reasoning
https://en.wikipedia.org/wiki/Abductive_reasoning

Example: meningitis and stiff neck

symptom
e Meningitis (M) can cause stiff nec% (S), though

there are other causes too

eUse S as a diagnostic symptom & estimate p(M|S)

e Studies can estimate p(M), p(S) & p(S|M), e.g.
p(S|M)=0.7, p(S)=0.01, p(M)=0.00002

e Harder to directly gather data on p(M|S)

e Applying Bayes’ Rule:
p(M|S) = p(S[M) * p(M) / p(S) = 0.0014



From multiple evidence to a cause

In the setting of diagnostic/evidential reasoning

[cause %H . P(H,) hypotheses
/ l N(E,- |H))
E E. E evidence/manifestations
[symptom ? 1 ! "
— Know prior probability of hypothesis P(H;)
conditional probability P(E; | H))

— Want to compute the posterior probability P(H;|E})
Bayes s theorem:

P(H,\E,)=P(H,)*P(E,|H,)/ P(E,)



Bayesian diagnhostic reasoning

e Knowledge base:

—Evidence / manifestations: E;, ... E,,

—Hypotheses / disorders: Hy, ... H,

Note: E; and H; binary; hypotheses mutually exclusive
(non-overlapping) & exhaustive (cover all possible cases)

— Conditional probabilities: P(E; | H;),i=1,..n;j=1, .. m

e Cases (evic

e Goal: Find
—Max; P(H,

ence for particular instance): E, ..., E
nypothesis H, with highest posterior

Ey, oo, E))
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Bayesian diagnostic reasoning (2)

e Prior vs. posterior probability

— Prior: probability before we know the evidence, e.g., 0.005 for
having COVID)

— Posterior: probability after knowing evidence, e.g., 0.9 if
patient tests positive for COVID

e Goal: find hypothesis H. with highest posterior
— Max; P(H; | E, ..., E,,)

e Requires knowing joint evidence probabilities
P(H, | E;... E,) = P(E;...E, | H) P(H,) / P(E;... E,,)

e Having many E. is a big data collection problem!
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Simplifying Bayesian diagnostic reasoning

e Having many E. is a big data collection problem!
e Two ways to address this

e ##1 use conditional independence to effect
“causal reasoning” and eliminate some E.

— Knowing LightLevel, we can ignore FullMoon and
StreetlLights when predicting if alarm suggests Burglary

— More on this later as Bayesian Believe Networks

e ##2 Use a Naive Bayes approximation that
assumes evidence variables are all mutually
independent

34
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Simple Bayesian diaghostic reasoning

e Bayes’ rule:
P(H; |E,.. E,) = P(E,..E,|H;) P(H;) /] P(E;... E,)
e Assume each evidence E; is conditionally independent of the

others, given a hypothesis H,, then:

m
P(Ey - En |H) = | | PGE)1H)
j=1

e |f only care about relative probabilities for H,, then:

P(H; | Ey..E,;) = a P(H)]| | P 1)
j=1



Naive Bayes: Example
p(Wait | Cuisine, Patrons, Rainy?) =

= o ® p(Wait) ® p(Cuisine | Wait) ® p(Patrons|Wait) ® p(Rainy? | Wait)

= p(Wait) ® p(Cuisine|Wait) ® p(Patrons|Wait) ® p(Rainy? | Wait)
p(Cuisine) ® p(Patrons) ® p(Rainy?)

We can estimate all of the parameters p(P) and p(C)
just by counting from the training examples



Naive Bayes: Analysis

e Naive Bayes is amazingly easy to implement
(once you understand the math behind it)

e Naive Bayes can outperform many much
more complex algorithms—it’s a baseline
that should be tried or used for comparison

e Naive Bayes can’t capture
interdependencies between variables
(obviously)—for that, we need Bayes nets!



Bag of Words Classifier

seen 2 classifier
sweet 1
Y( whimsical ] ) — C
recommend |
happy 1 &
classifier . . ?



Naive Bayes (NB) Classifier

argmaxyp(X | Y) x p(Y)

label text



Naive Bayes (NB) Classifier

label each word
argmaxy 1_[ p(Xc|Y) *p(Y)
[terate through

possible vocab
words



Learning for a Naive Bayes Classifier

Assuming V vocab types wyq, ..., wy and L classes ¢4, ..., ¢;(and
appropriate corpora)



Learning for a Naive Bayes Classifier

Assuming V vocab types wyq, ..., wy and L classes ¢4, ..., ¢;(and
appropriate corpora)

Q: What parameters

(values/weights) must
be learned?




Learning for a Naive Bayes Classifier

Assuming V vocab types wyq, ..., wy and L classes ¢4, ..., ¢;(and
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Q: What parameters

(values/weights) must
be learned?




Learning for a Naive Bayes Classifier

Assuming V vocab types wyq, ..., wy and L classes ¢4, ..., ¢;(and
appropriate corpora)

Q: What parameters
(values/weights) must
be learned?

Q: How many
parameters must be
learned?




Learning for a Naive Bayes Classifier

Assuming V vocab types wyq, ..., wy and L classes ¢4, ..., ¢;(and
appropriate corpora)

Q: What parameters
(values/weights) must
be learned?

Q: How many
parameters must be
learned?




Learning for a Naive Bayes Classifier

Assuming V vocab types wyq, ..., wy and L classes ¢4, ..., ¢;(and
appropriate corpora)

Q: What parameters
(values/weights) must
be learned?

Q: How many

parameters must be
learned?

Q: What distributions
need to sum to 1?




Learning for a Naive Bayes Classifier

Assuming V vocab types wyq, ..., wy and L classes ¢4, ..., ¢;(and
appropriate corpora)

Q: What parameters
(values/weights) must
be learned?

Q: How many

parameters must be
learned?

Q: What distributions
need to sum to 1?




Multinomial Naive Bayes: Learning

From training corpus, extract Vocabulary

Calculate P(c;) terms Calculate P (w; | ¢;) terms
For each ¢;in Cdo Text; = single doc containing all docs;
docs; = all docs with class =; For each word w, in Vocabulary

n, = # of occurrences of w, in Text;

|docs;|
p(e) = 57— p(wil ¢;)
« count(word wy, in doc
labeled with ¢;)




Naive Bayes: Analysis

e Naive Bayes is amazingly easy to implement
(once you understand the math behind it)

e Naive Bayes can outperform many much
more complex algorithms—it’s a baseline
that should be tried or used for comparison

e Naive Bayes can’t capture
interdependencies between variables
(obviously)—for that, we need Bayes nets!
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Naive Bayes: Analysis

e Naive Bayes is amazingly easy to implement
(once you understand the math behind it)

e Naive Bayes can outperform many much
more complex algorithms—it’s a baseline
that should be tried or used for comparison

e Naive Bayes can’t capture
interdependencies between variables
(obviously)—for that, we need Bayes nets!



Limitations %

e Can’t easily handle multi-fault situations or
cases where intermediate (hidden) causes exist:

—Disease D causes syndrome S, which causes
correlated manifestations M; and M,

e Consider composite hypothesis H,AH,, where H, &
H, independent. What’s relative posterior?

P(HAH, | Ef, ..., E)=aP(E, ..., E, | HLAH,) P(H; A
H,)

=a P(E, ..., E, | H; A H,) P(H;) P(H,)

= H|j=1 P(E; | Hy A Hy) P(H;) P(H,)

* How do we compute P(E; | H;AH,) ?
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Limitations »l

e Assume H1 and H2 independent, given E1, ..., EI?
- P(Hl N\ H2 | El/ 1Y) EI) = P(Hl | El/ 1) EI) P(HZ | El/ 1Y) EI)
e Unreasonable assumption

— Earthquake & Burglar independent, but not given Alarm:
P(burglar | alarm, earthquake) << P(burglar | alarm)

e Doesn’t allow causal chaining:
— A: 2017 weather; B: 2017 corn production; C: 2018 corn price
— A influences Cindirectly: A> B > C
—P(C| B, A)=P(C | B)

e Need richer representation for interacting hypoteses,
conditional independence & causal chaining

e Next: Bayesian Belief networks!
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Summary =]

e Probability a rigorous formalism for uncertain
kcnowledge

e Joint probability distribution specifies probability
of every atomic event
e Answer queries by summing over atomic events

e Must reduce joint size for non-trivial domains

e Bayes rule: compute from known conditional
probabilities, usually in causal direction

e Independence & conditional independence
provide tools

e Next: Bayesian belief networks




