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Today’s topics
•Motivation
•Review probability theory
•Bayesian inference

–From the joint distribution
–Using independence/factoring
–From sources of evidence

•Naïve Bayes algorithm for inference and 
classification tasks



Motivation: causal reasoning

•As the sun rises, the rooster crows
– Does this correlation imply causality?
– If so, which way does it go?

•The evidence can come from
– Probabilities and Bayesian reasoning
– Common sense knowledge
– Experiments

•Bayesian Belief Networks (BBNs) are useful 
for modeling causal reasoning

https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Causal_reasoning


Motivation: logic isn’t enough

•Classical logic is designed to work with 
certainties

•Getting a positive result on a COVID test 
doesn’t necessarily mean you are infected

•And a negative result doesn’t necessarily 
mean you are not infected

•You need to know the true/false positive 
and true/false negative rates of the test
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Decision making with uncertainty 🤔
Rational behavior: for each possible action:

•Identify possible outcomes and for each
–Compute probability of outcome

–Compute utility of outcome
– Compute probability-weighted (expected) utility of 

outcome

•Select action with the highest expected utility 
(principle of Maximum Expected Utility)



Consider
•Your house has an alarm system
•It should go off if a burglar breaks

into the house
•It can also go off if there is an earthquake
•How can we predict what’s happened if the 

alarm goes off?
–Someone has broken in!
–It’s a minor earthquake



Probability theory 101
• Random variables:

– Domain

• Atomic event: 
complete specification 
of state

• Prior probability: 
degree of belief 
without any other 
evidence or info

• Joint probability: 
matrix of combined 
probabilities of set of 
variables

• Alarm, Burglary, Earthquake
Boolean (these) or discrete (0-9), continuous (float)

• Alarm=TÙBurglary=TÙEarthquake=F
alarm Ù burglary Ù ¬earthquake

• P(Burglary) = 0.1
P(Alarm) = 0.1
P(earthquake) = 0.000003
 

• P(Alarm, Burglary) =

alarm ¬alarm
burglary .09 .01

¬burglary .1 .8
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Probability theory 101

• Conditional probability: prob. 
of effect given causes

• Computing conditional probs:
– P(a | b) = P(a Ù  b) / P(b)
– P(b): normalizing constant

• Product rule:
– P(a Ù b) = P(a | b) * P(b)

• Marginalizing:
– P(B) = ΣaP(B, a)
– P(B) = ΣaP(B | a) P(a) 

(conditioning)

• P(burglary | alarm) = .47
P(alarm | burglary) = .9

• P(burglary | alarm) =
  P(burglary Ù alarm) / P(alarm)
    = .09/.19 = .47

• P(burglary Ù alarm) = 
  P(burglary | alarm) * P(alarm)
    =  .47 * .19 = .09

• P(alarm) =
   P(alarm Ù burglary) +
   P(alarm Ù ¬burglary)
   = .09+.1 = .19

alarm ¬alarm
burglary .09 .01

¬burglary .1 .8



11

Probability theory 101

• Conditional probability: prob. 
of effect given causes

• Computing conditional probs:
– P(a | b) = P(a Ù  b) / P(b)
– P(b): normalizing constant

• Product rule:
– P(a Ù b) = P(a | b) * P(b)

• Marginalizing:
– P(B) = ΣaP(B, a)
– P(B) = ΣaP(B | a) P(a) 

(conditioning)

• P(burglary | alarm) = .47
P(alarm | burglary) = .9

• P(burglary | alarm) =
  P(burglary Ù alarm) / P(alarm)
    = .09/.19 = .47

• P(burglary Ù alarm) = 
  P(burglary | alarm) * P(alarm)
    =  .47 * .19 = .09

• P(alarm) =
   P(alarm Ù burglary) +
   P(alarm Ù ¬burglary)
   = .09+.1 = .19

alarm ¬alarm
burglary .09 .01

¬burglary .1 .8



Example: Inference from the joint
alarm ¬alarm

earthquake ¬earthquake earthquake ¬earthquake
burglary .01 .08 .001 .009

¬burglary .01 .09 .01 .79

P(burglary | alarm) = α P(burglary, alarm)
     = α [P(burglary, alarm, earthquake) + P(burglary, alarm, ¬earthquake)
     = α [ (.01, .01) + (.08, .09) ]
     = α [ (.09, .1) ]

Since P(burglary | alarm) + P(¬burglary | alarm) = 1, α = 1/(.09+.1) = 5.26
    (i.e., P(alarm) = 1/α = .19 – quizlet: how can you verify this?)

P(burglary | alarm)    = .09 * 5.26  = .474

P(¬burglary | alarm)  = .1 * 5.26    = .526



Consider
•A student has to take an exam

– She might be smart
– She might have studied
– She may be prepared for the exam

•How are these related?
•We can collect joint probabilities for the 

three events
– Measure “prepared” as “got a passing grade”



Each of the 8 highlighted boxes has the joint probability
for the three values of smart, study, prepared
Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of
prepared, given study and smart?

p(smart Ù study 
Ù prepared)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072

Exercise: Inference from the joint

Standard way 
to show joint 
probabilities 
of 3 variables 
as a 2D table

https://en.wikipedia.org/wiki/Prior_probability
https://en.wikipedia.org/wiki/Conditional_probability


15

Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 

study and smart?
p(smart) = .432 + .16 + .048 + .16  = 0.8

p(smart Ù study 
Ù prepared)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 

study and smart?

p(smart Ù study 
Ù prepared)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 

study and smart?
p(study) = .432 + .048 + .084 + .036 = 0.6

p(smart Ù study 
Ù prepared)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given 

study and smart?

p(smart Ù study 
Ù prepared)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise:
Inference from the joint

Queries:
– What is the prior probability of smart?
– What is the prior probability of study?
– What is the conditional probability of prepared, given study 

and smart?
p(prepared|smart,study)= p(prepared,smart,study)/p(smart, study) 
= .432 / (.432 + .048) 
= 0.9

p(smart Ù study 
Ù prepared)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072



Independence
• When variables don’t affect each others’ probabilities, 

they are independent; we can easily compute their 
joint & conditional probability:
Independent(A, B)  →  P(AÙB) = P(A) * P(B);   P(A|B) = P(A)

• {moonPhase, lightLevel} might be independent of 
{burglary, alarm, earthquake}
– Maybe not: burglars may be more active during a new moon 

because darkness hides their activity
– But if we know light level, moon phase doesn’t affect whether 

we are burglarized
– If burglarized, light level doesn’t affect if alarm goes off

• Need a more complex notion of independence and 
methods for reasoning about the relationships
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Exercise: Independence

Queries:
– Q1: Is smart independent of study?
– Q2: Is prepared independent of study?

How can we tell? 

p(smart Ù study 
Ù prepared)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072



Exercise: Independence

Q1: Is smart independent of study?
• You might have some intuitive beliefs based on 

your experience
• You can also check the data

Which way to answer this is better?

p(smart Ù study 
Ù prepared)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072



Exercise: Independence

Q1: Is smart independent of study?
Q1 true iff p(smart|study) == p(smart)

p(smart) = .432 + 0.048 + .16 + .16 = 0.8

p(smart|study) = p(smart,study)/p(study) 
   = (.432 + .048) / .6   =  0.48/.6 = 0.8
0.8 == 0.8  ∴ smart is independent of study

p(smart Ù study 
Ù prepared)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072
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Exercise: Independence

Q2: Is prepared independent of study?
•What is prepared?
•Q2 true iff 

p(smart    Ù
        study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072



Exercise: Independence

Q2: Is prepared independent of study?
Q2 true iff p(prepared|study) == p(prepared)
p(prepared) = .432 + .16 + .84 + .008 = .684
p(prepared|study) = p(prepared,study)/p(study)
   = (.432 + .084) / .6 = .86
0.86 ≠ 0.684, ∴ prepared not independent of study

p(smart    Ù
        study Ù prep)

smart ¬smart

study ¬study study ¬study

prepared .432 .16 .084 .008

¬prepared .048 .16 .036 .072



Absolute & conditional independence
• Absolute independence:

– A and B are independent if P(A Ù B) = P(A) * P(B); 
equivalently, P(A) = P(A | B) and P(B)  = P(B | A)

• A and B are conditionally independent given C if
– P(A Ù B | C) = P(A | C) * P(B | C)

   If it holds, lets us decompose the joint distribution:
– P(A Ù B Ù C) = P(A | C) * P(B | C) * P(C)

• Moon-Phase and Burglary are conditionally 
independent given Light-Level

• Conditional independence is weaker than absolute 
independence, but useful in decomposing full joint 
probability distribution



Conditional independence
•Conditional independence often

comes from causal relations
– FullMoon causally affects LightLevel

at night as does StreetLights

•In burglary scenario, FullMoon
doesn’t affect anything else

•Knowing LightLevel, we can ignore 
FullMoon and StreetLights when
predicting if alarm suggests
Burglary

Light level

StreetLightsFullMoon

burglary

burglary

StreetLightsFullMoon



Bayes’ rule
Derived from the product rule:

– P(A, B) = P(A|B) * P(B) # from definition of conditional probability

– P(B, A) = P(B|A) * P(A) # from definition of conditional probability

– P(A, B) = P(B, A)            # since order is not important

So…

P(A|B) = P(B|A) * P(A)
                        P(B)

relates P(A|B) 
and P(B|A)

P(A,B) is probability of both A and B being true, so P(A,B) = P(B,A)

https://en.wikipedia.org/wiki/Bayes%27_theorem


Useful for diagnosis!
•C is a cause, E is an effect:

– P(C|E) = P(E|C) * P(C) / P(E)

•Useful for diagnosis: 
– E are (observed) effects and C are (hidden) causes, 
– Often have model for how causes lead to effects P(E|C)
– We may have info (based on experience) on frequency 

of causes (P(C))
– Which allows us to reason abductively from effects to 

causes (P(C|E))
– Recall, abductive reasoning: from A => B and B, infer 

(maybe?) A

https://en.wikipedia.org/wiki/Abductive_reasoning
https://en.wikipedia.org/wiki/Abductive_reasoning


Example: meningitis and stiff neck

•Meningitis (M) can cause stiff neck (S), though 
there are other causes too

•Use S as a diagnostic symptom & estimate p(M|S)
•Studies can estimate p(M), p(S) & p(S|M), e.g.      

p(S|M)=0.7,  p(S)=0.01,  p(M)=0.00002
•Harder to directly gather data on p(M|S)
•Applying Bayes’ Rule:

p(M|S) = p(S|M) * p(M) / p(S) = 0.0014

30
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From multiple evidence to a cause 
In the setting of diagnostic/evidential reasoning

– Know prior probability of hypothesis  
        conditional probability 
– Want to compute the posterior probability

Bayes’s theorem:

onsanifestatievidence/m                                      

hypotheses                                             

1 mj

i

EEE

 H

P(Hi | Ej ) = P(Hi )*P(Ej |Hi ) / P(Ej )

)( iHP

)|( ij HEP

)|( ij HEP

)|( ji EHP

)( iHP

symptom

cause
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Bayesian diagnostic reasoning
•Knowledge base:

–Evidence / manifestations: E1, … Em

– Hypotheses / disorders: H1, … Hn

Note: Ej and Hi binary; hypotheses mutually exclusive 
(non-overlapping) & exhaustive (cover all possible cases)

– Conditional probabilities: P(Ej | Hi), i = 1, … n; j = 1, … m

•Cases (evidence for particular instance): E1, …, El

•Goal: Find hypothesis Hi with highest posterior
– Maxi P(Hi | E1, …, El)
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Bayesian diagnostic reasoning (2)
•Prior vs. posterior probability

– Prior: probability before we know the evidence, e.g., 0.005 for 
having COVID)

– Posterior: probability after knowing evidence, e.g., 0.9 if 
patient tests positive for COVID

•Goal: find hypothesis Hi with highest posterior
– Maxi P(Hi | E1, …, Em)

•Requires knowing joint evidence probabilities
P(Hi | E1… Em) = P(E1…Em | Hi) P(Hi) / P(E1… Em)

• Having many Ei  is a big data collection problem!
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Simplifying Bayesian diagnostic reasoning

• Having many Ei  is a big data collection problem!
• Two ways to address this
• #1 use conditional independence to effect 

“causal reasoning” and eliminate some Ei 
– Knowing LightLevel, we can ignore FullMoon and 

StreetLights when predicting if alarm suggests Burglary
– More on this later as Bayesian Believe Networks

• #2 Use a Naïve Bayes approximation that 
assumes evidence variables are all mutually 
independent

https://en.wikipedia.org/wiki/Bayesian_network
https://en.wikipedia.org/wiki/Naive_Bayes_classifier


Simple Bayesian diagnostic reasoning

• Bayes’ rule:

𝑃(𝐻!	|	𝐸1… 	𝐸𝑚) 	= 	𝑃(𝐸1…𝐸𝑚	|𝐻!)	𝑃(𝐻!)	/	𝑃(𝐸1… 	𝐸𝑚)

• Assume each evidence Ei is conditionally independent of the 

others, given a hypothesis Hi, then:

𝑃 𝐸1…𝐸𝑚	 𝐻!) 	=(
"#$

%

𝑃 𝐸𝑗	 𝐻!)

• If only care about relative probabilities for Hi, then:

𝑃(𝐻!	|	𝐸1…𝐸𝑚) 	= 	𝛼	𝑃(𝐻!)(
"#$

%

𝑃 𝐸𝑗	 𝐻!)
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Naive Bayes: Example
p(Wait | Cuisine, Patrons, Rainy?)  = 

 
 = α � p(Wait) � p(Cuisine|Wait) � p(Patrons|Wait) � p(Rainy?|Wait)

 = p(Wait) � p(Cuisine|Wait) � p(Patrons|Wait) � p(Rainy?|Wait)
                             p(Cuisine) � p(Patrons) � p(Rainy?)

We can estimate all of the parameters p(P) and p(C) 
just by counting from the training examples
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Naive Bayes: Analysis

•Naive Bayes is amazingly easy to implement 
(once you understand the math behind it)

•Naive Bayes can outperform many much 
more complex algorithms—it’s a baseline 
that should be tried or used for comparison

•Naive Bayes can’t capture 
interdependencies between variables 
(obviously)—for that, we need Bayes nets!
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Bag of Words Classifier

γ( )=c
seen 2
sweet 1

whimsical 1
recommend 1
happy 1
... ...classifier

classifier



Naïve Bayes (NB) Classifier

Start with Bayes Rule
label text

argmax!𝑝 𝑋	 𝑌) ∗ 𝑝(𝑌)



Naïve Bayes (NB) Classifier

argmax!-
"

𝑝(𝑋"|𝑌) ∗ 𝑝(𝑌)

Adopt naïve bag of words representation Xt

Assume position doesn’t matter

label each word

Iterate through 
possible vocab 

words



Learning for a Naïve Bayes Classifier
Assuming V vocab types 𝑤", … , 𝑤# and L classes 𝑐", … , 𝑐$(and 
appropriate corpora)
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Learning for a Naïve Bayes Classifier
Assuming V vocab types 𝑤", … , 𝑤# and L classes 𝑐", … , 𝑐$(and 
appropriate corpora)

Q: What parameters 
(values/weights) must 

be learned?
A: 𝑝 𝑤% 𝑐& , 𝑝(𝑐&)

Q: How many 
parameters must be 

learned?
A: 𝐿𝑉 + 𝐿

Q: What distributions 
need to sum to 1?

A: Each 𝑝 ⋅ 𝑐& , and 
the prior



Multinomial Naïve Bayes: Learning

Calculate P(cj) terms
For each cj in C do

docsj = all docs with  class =cj

Calculate P (wk | cj ) terms
Textj = single doc containing all docsj
For each word wk in Vocabulary
    nk = # of occurrences of wk in Textj

From training corpus, extract Vocabulary

𝑝 𝑐! =
|𝑑𝑜𝑐𝑠!|
#	𝑑𝑜𝑐𝑠 𝑝 𝑤"|	𝑐!

∝ count(word	𝑤" 	in	doc	
labeled	with	 𝑐!)



Naive Bayes: Analysis

•Naive Bayes is amazingly easy to implement 
(once you understand the math behind it)

•Naive Bayes can outperform many much 
more complex algorithms—it’s a baseline 
that should be tried or used for comparison

•Naive Bayes can’t capture 
interdependencies between variables 
(obviously)—for that, we need Bayes nets!
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Brill and Banko (2001)
With enough data, the classifier may not matter



Naive Bayes: Analysis

•Naive Bayes is amazingly easy to implement 
(once you understand the math behind it)

•Naive Bayes can outperform many much 
more complex algorithms—it’s a baseline 
that should be tried or used for comparison

•Naive Bayes can’t capture 
interdependencies between variables 
(obviously)—for that, we need Bayes nets!
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Limitations
•Can’t easily handle multi-fault situations or

cases where intermediate (hidden) causes exist:
– Disease D causes syndrome S, which causes 

correlated manifestations M1 and M2

•Consider composite hypothesis H1ÙH2, where H1 & 
H2 independent. What’s relative posterior?
P(H1 Ù H2 | E1, …, El) = α P(E1, …, El | H1 Ù H2) P(H1 Ù 
H2)
 = α P(E1, …, El | H1 Ù H2) P(H1) P(H2)
 = α Õl

j=1 P(Ej | H1 Ù H2) P(H1) P(H2)
•How do we compute P(Ej | H1ÙH2) ?
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Limitations
• Assume H1 and H2 independent, given E1, …, El?

– P(H1 Ù H2 | E1, …, El) = P(H1 | E1, …, El) P(H2 | E1, …, El)

• Unreasonable assumption
– Earthquake & Burglar independent, but not given Alarm:

P(burglar | alarm, earthquake) << P(burglar | alarm)

• Doesn’t allow causal chaining:
– A: 2017 weather; B: 2017 corn production; C: 2018 corn price
– A influences C indirectly:  A→ B → C
– P(C | B, A) = P(C | B)

• Need richer representation for interacting hypoteses, 
conditional independence & causal chaining

• Next: Bayesian Belief networks!



Summary
•Probability a rigorous formalism for uncertain 

knowledge
•Joint probability distribution specifies probability 

of every atomic event
•Answer queries by summing over atomic events
•Must reduce joint size for non-trivial domains
•Bayes rule: compute from known conditional 

probabilities, usually in causal direction
•Independence & conditional independence 

provide tools
•Next: Bayesian belief networks


