CMSC 471: Artificial Intelligence
Fall 2023

Propositional and First-Order Logic

KMA Solaiman — ksolaima@umbc.edu

Many slides courtesy Tim Finin from UMBC and Percy Liang from Stanford University

mailto:ksolaima@umbc.edu

First-order logic

* First-order logic (FOL) models the world in terms of
which are things with individual identities
of objects that distinguish them from others
that hold among sets of objects
a subset of relations where there is only one
“value” for any given “input”

* Examples:

* Objects: students, lectures, companies, cars ...

* Relations: brother-of, bigger-than, outside, part-of, has-
color, occurs-after, owns, visits, precedes, ...

* Properties: blue, oval, even, large, ...
* Functions: father-of, best-friend, more-than ...

Quantifiers: ¥V and =

quantification

* (Vx)P(X) means P holds for all values of X
in the domain associated with variable!

e E.g., (VX) dolphin(X) > mammal(X)
quantification

* (Ax)P(X) means P holds for some value of
X in domain associated with variable

e E.g., (AX) mammal(X) A lays_eggs(X)
* This lets us make statements about an
object without identifying it

La variable’s domain is often not explicitly stated and is assumed by the context

Universal Quantifier: V

* Universal quantifiers typically used with
implies to form rules:
Logic: (VX) student(X) — smart(X)
Means: All students are smart

* Universal quantification rarely used without
implies:
Logic: (VX) student(X) A smart(X)
Means: Everything is a student and is smart

Existential Quantifier: =

* Existential quantifiers usually used with and to
specify a list of properties about an individual
Logic: (7 X) student(X) A smart(X)
Meaning: There is a student who is smart

* Common mistake: represent this in FOL as:
Logic: (7 X) student(X) — smart(X)
Meaning: ?

Existential Quantifier: =

* Existential quantifiers usually used with and to
specify a list of properties about an individual
Logic: (7 X) student(X) A smart(X)
Meaning: There is a student who is smart

* Common mistake: represent this in FOL as:
Logic: (7 X) student(X) — smart(X)
P—>Q="PvQ
F X student(X) — smart(X) = 7 X ~student(X) v smart(X)

Meaning: There’s something that is either not a
student or is smart

Quantifier Scope

* FOL sentences have structure, like programs
* In particular, variables in a sentence have a scope

* Suppose we want to say “everyone who is alive loves
someone”

(VX) alive(X) — (3 Y) loves(X, Y)
* Here’s how we scope the variables

(VX) alive(X) — (3Y) loves(X, Y)

Scope of x
Scope of y

Quantifier Scope

* Switching order of universal quantifiers does not
change the meaning

o (VX)(VY)P(X)Y)© (VY)(VX) P(X,Y)
* Dogs hate cats (i.e., all dogs hate all cats)
* You can switch order of existential quantifiers
o (IX)(IY)P(X,Y) « (Y)(IX) P(X,Y)
* A cat killed a dog
* Switching order of universal and existential
quantifiers does change meaning:

* Everyone likes someone: (VX)(3Y) likes(X,Y)
 Someone is liked by everyone: (3Y)(VX) likes(X,Y)

Procedural example 1

(Illustrative only!)
def verifyl():
Everyone likes someone: (Vx)(3y) likes(x,y)
for plin people():

foundLike = False
Every person has at

for p2 in people():
P2 n people() least one individual that

if likes(p1, p2):
foundLike = True they like.
break
if not foundLike:
print(p1, ‘does not like anyone ®’)
return False
return True

Procedural example 2
def verify2() (Illustrative only!)

Someone is liked by everyone: (3y)(Vx) likes(x,y)
for p2 in people():
foundHater = False
for pl in people():
if not likes(p1, p2): There is a person who is
foundHater = True liked by every person in
break the universe.
if not foundHater
print(p2, ‘is liked by everyone ©’)
return True
return False

Connections between VY and =

* We can relate sentences involving V and 3
using extensions to De Morgan’s laws:
1. (Vx) P(x) © —=(3dx) = P(x)
2. —(Vx) P(x) © (3x) =P(x)
3. (3 x) P(x) © = (V x) =P(x)
4. —(3dx) P(x) © (Vx) =P(x)

* Examples
1. All dogs don’t like cats © No dog likes cats
2. Not all dogs bark © There is a dog that doesn’t bark
3. All dogs sleep < There is no dog that doesn’t sleep
4. There is a dog that talks © Not all dogs can’t talk

http://en.wikipedia.org/wiki/De_Morgan's_laws

Notational differences

* Different symbols for and, or, not, implies, ...

e Vd=> < AV 6D
*pv(ghr)
*p+(q*r)
* Prolog
cat(X) :- furry(X), meows (X), has(X, claws)

* Lisp notations
(forall ?x (implies (and (furry ?x)
(meows ?x)
(has ?x claws))

(cat ?x)))

ranslating English to FOL

Every gardener likes the sun

All purple mushrooms are poisonous

ranslating English to FOL

Every gardener likes the sun
Vx gardener(x) — likes(x,Sun)

All purple mushrooms are poisonous

ranslating English to FOL

Every gardener likes the sun
Vx gardener(x) — likes(x,Sun)

All purple mushrooms are poisonous
Vx (mushroom(x) A purple(x)) — poisonous(x)

ranslating English to FOL
Every gardener likes the sun

Vx gardener(x) — likes(x,Sun)

All purple mushrooms are poisonous
Vx (mushroom(x) A purple(x)) — poisonous(x)

No purple mushroom is poisonous (two ways)

ranslating English to FOL

Every gardener likes the sun
Vx gardener(x) — likes(x,Sun)

All purple mushrooms are poisonous
Vx (mushroom(x) A purple(x)) — poisonous(x)

No purple mushroom is poisonous (two ways)
—dx purple(x) A mushroom(x) A poisonous(x)

ranslating English to FOL

Every gardener likes the sun
Vx gardener(x) — likes(x,Sun)

All purple mushrooms are poisonous
Vx (mushroom(x) A purple(x)) — poisonous(x)

No purple mushroom is poisonous (two ways)
—dx purple(x) A mushroom(x) A poisonous(x)
Vx (mushroom(x) A purple(x)) — —poisonous(x)

English to FOL: Counting

Use = predicate to identify different individuals

* There are at least two purple mushrooms

dx Ay mushroom(x) A purple(x) A mushroom(y) A
purple(y) A —(x=y)

* There are exactly two purple mushrooms

dx Ay mushroom(x) A purple(x) A mushroom(y) A

purple(y) A —(x=y) A
Yz (mushroom(z) A purple(z)) = ((x=z) v (y=2))

Saying there are 802 different Pokemon will be
hard!

Translating English to FOL

What do these mean?

* You can fool some of the people all of the time

* You can fool all of the people some of the time

Translating English to FOL

What do these mean?
Both English statements are ambiguous

* You can fool some of the people all of the time

There is a nonempty subset of people so easily
fooled that you can fool that subset every time*

For any given time, there is a non-empty subset at
that time that you can fool
* You can fool all of the people some of the time

There are one or more times when it’s possible to
fool everyone*

Everybody can be fooled at some point in time

* Most common interpretation, | think

Some terms we will need

e person(x): True iff x is a person

e time(t): True iff tis a point in time

e canFool(x, t): True iff x can be fooled at time t

Note: iff = ifandonly if = &

Translating English to FOL

You can fool some of the people all of the time

There is a nonempty group of people so easily fooled
that you can fool that group every time*

= There’s (at least) one person you can fool every time
dx Vt person(x) A time(t) —» canFool(x, t)

For any given time, there is a non-empty group at that
time that you can fool

= For every time, there’s a person at that time that you
can fool

vVt dx person(x) A time(t) — canFool(x, t)

* Most common interpretation, | think

Translating English to FOL

You can fool all of the people some of the time
There’s at least one time when you can fool everyone*
Jt Vx time(t) A person(x) — canFool(x, t)

Everybody can be fooled at some point in time
Vx dt person(x) A time(t) — canFool(x, t)

* Most common interpretation, | think

Limits of classical logic

20

Note that there’s no easy, natural way to talk about a few, many, most,
almost all ...

This is natural in human languages
* There are many people you can fool most of the time
* There are a few people you can fool almost every time

We also can’t have exceptions naturally as in human languages
» All birds can fly, except for penguins, ostriches and a few other species

* This can be represented in FOL, but it may be challenging — lot of new relations,
paraphrasing, and conditions needed.

e "For all entities x, if x is a bird and x is not a penguin, not an ostrich, and not one of the
specified other species, then x can fly."

There are non-classical logic systems that can handle these problems

Limits of classical logic

20

Note that there’s no easy, natural way to talk about a few, many, most,
almost all ...

This is natural in human languages
* There are many people you can fool most of the time
* There are a few people you can fool almost every time

We also can’t have exceptions naturally as in human languages
» All birds can fly, except for penguins, ostriches and a few other species

* This can be represented in FOL, but it may be challenging — lot of new relations,
paraphrasing, and conditions needed.

e "For all entities x, if x is a bird and x is not a penguin, not an ostrich, and not one of the
specified other species, then x can fly."

There are non-classical logic systems that can handle these problems

Va (B(xz) A —(Penguin(z) V Ostrich(z) v OtherSpecies(z)) — F(z))

Representation Design

* Many options for representing even a simple fact,
e.g., something’s color as red, green or blue, e.g.:
* green(kermit)
 color(kermit, green)
* hasProperty(kermit, color, green)

* Choice can influence how easy it is to use

e Last option of representing properties & relations
as triples used by modern knowledge graphs

e Easy to ask: What color is Kermit? What are Kermit’s
properties?, What green things are there? Tell me
everything you know, ...

21

https://en.wikipedia.org/wiki/Semantic_triple
https://en.wikipedia.org/wiki/Knowledge_Graph

Simple genealogy KB in FOL

Design a knowledge base using FOL that

* Has facts of immediate family relations, e.g.,
spouses, parents, etc.

* Defines more complex relations (ancestors,
relatives)

* Detect conflicts, e.g., you are your own parent

* Infers relations, e.g., grandparent from parent

* Answers queries about relationships between
people

22

How do we approach this?

* Design an initial ontology of types, e.g.
* e.g., person, man, woman, male, female

* Extend ontology by defining simple two
argument relations, e.g.

* spouse, has_child, has_parent
* Add general constraints to relations, e.g.
e spouse(X)Y)=>~X=Y
* spouse(X,Y) => person(X), person(Y)
* Add FOL sentences for inference, e.g.
* spouse(X,Y) <& spouse(Y,X)
* man(X) < person(X) A male(X)
* Add instance data
e e.g., spouse(djt, mt)

23

Example: A simple genealogy KB by FOL

Predicates:

e parent(x, y), child(x, y), father(x, y), daughter(x, y), etc.
e spouse(x, y), husband(x, y), wife(x,y)

e ancestor(x, y), descendant(x, y)

* male(x), female(y)

* relative(x, y)

Facts:

* husband(Joe, Mary), son(Fred, Joe)

* spouse(John, Nancy), male(John), son(Mark, Nancy)
e father(Jack, Nancy), daughter(Linda, Jack)

* daughter(Liz, Linda)

* etc.

Example Axioms

(Vx,y) parent(x, y) < child (y, x)

(Vx,y) father(x, y) © parent(x, y) A male(x) ;similar for mother(x, y)
(Vx,y) daughter(x, y) < child(x, y) A female(x) ;similar for son(x, y)
(Vx,y) husband(x, y) © spouse(x, y) A male(x) ;similar for wife(x, y)
(Vx,y) spouse(x, y) < spouse(y, x) ;spouse relation is symmetric
(Vx,y) parent(x, y) — ancestor(x, y)

(Vx,y)(dz) parent(x, z) A ancestor(z, y) — ancestor(x, y)

(Vx,y) descendant(x, y) © ancestor(y, x)

(Vx,y)(dz) ancestor(z, x) A ancestor(z, y) — relative(x, y)

(Vx,y) spouse(x, y) — relative(x, y) ;related by marriage
(Vx,y)(dz) relative(z, x) A relative(z, y) — relative(x, y) ,transitive

(Vx,y) relative(x, y) < relative(y, x) ;symmetric

25

Axioms, definitions and theorems

: facts and rules that capture (important) facts &
concepts in a domain; axioms are used to prove

 Mathematicians dislike unnecessary (dependent) axiomes, i.e.
ones that can be derived from others

* Dependent axioms can make reasoning faster, however
* Choosing a good set of axioms is a design problem

¢ A of a predicate is of the form “p(X) ¢ ...”
and can be decomposed into two parts
description: “p(x) = ...”
description “p(x) « ...”
* Some concepts have definitions (e.g., triangle) and some don’t
(e.g., person)

More on definitions

Example: define father(x, y) by parent(x, y) and
male(x)
e parent(x, y) is a necessary (but not sufficient)
description of father(x, y)
father(x, y) > parent(x, y)
e parent(x, y) » male(x) » age(x, 35) is a sufficient (but not
necessary) description of father(x, y):
father(x, y) < parent(x, y) » male(x) » age(x, 35)
e parent(x, y) » male(x) is a necessary and sufficient
description of father(x, y)
parent(x, y) * male(x) © father(x, y)

igher-order logic

* FOL only lets us quantify over variables, and
variables can only range over objects

* HOL allows us to quantify over relations, e.g.

“two functions are equal iff they produce the same
value for all arguments”

VE Vg (f=g) < (Vxf(x) =g(x))
 E.g.: (quantify over predicates)
V'r transitive(r) = (Vxyz) r(x,y) A r(y,z) = r(x,z))

* More expressive, but reasoning is undecide-
able, in general

Expressing unigueness

« Often want to say that there is a single, unique syntactic
object that satisfies a condition —
* There exists a unique x such that king(x) is true
e dx king(x) A Yy (king(y) — x=y)
e Ix king(x) A —3y (king(y) A xzy)
e 31 x king(x)

* Every country has exactly one ruler
e Yc country(c) = 3! rruler(c,r)

* |lota operator: 1 x P(x) means “the unique x such
that p(x) is true”
* The unique ruler of Freedonia is dead
e dead(1 x ruler(freedonia,x))

http://en.wikipedia.org/wiki/Syntactic_sugar
http://en.wikipedia.org/wiki/Syntactic_sugar

f
Examples of FOL in use E‘f‘
 Semantics of W3C’s Semantic Web stack
(RDF, RDFS, OWL) is defined in FOL
* OWL Full is equivalent to FOL

* Other OWL profiles support a subset of FOL
and are more efficient

* The semantics of schema.org is only defined
in natural language text

e Wikidata’s knowledge graph (and Google’s)
has a richer schema

31

https://en.wikipedia.org/wiki/Semantic_Web
https://en.wikipedia.org/wiki/Web_Ontology_Language
http://schema.org/
https://www.wikidata.org/

FOL Summary

* First order logic (FOL) introduces predicates,
functions and quantifiers

* More expressive, but reasoning more complex

* Reasoning in propositional logic is NP hard, FOL is
semi-decidable

* Common Al knowledge representation language

e Other KR languages (e.g., OWL) are often defined by
mapping them to FOL

* FOL variables range over objects

 HOL variables range over functions, predicates or
sentences

http://en.wikipedia.org/wiki/Web_Ontology_Language

Examples of FOL in |II
use

WIKIDATA

schema.org
Many practical approaches embrace the
approach that “some data is better than none”

* The semantics of schema.org is only defined in
natural language text

* Wikidata’s knowledge graph has a rich schema

* Many constraint/logical violations are flagged with
warnings

* However, not all, see this Wikidata query that
finds people who are their own grandfather

33

http://schema.org/
https://www.wikidata.org/
https://w.wiki/4FdS

Virtual assistants and Infoboxes

* Web search engines and virtual assistants like
Alexa use custom knowledge graphs to

* help understand queries and content of web pages &
documents
Google what did marie curie discover x Q & m

* Answer questions

° ShOW info boxes Marie Curie/Disgred
R Radium (= Polonium

Wikidata sh t
https://iwww.nobelprize.org » prizes » physics » facts :
L . . .
Marie Curie - Facts - NobelPrize.org
W I e S e 1911 Prize: After Marie and Pierre Curie first discovered the radioactive elements polonium

and radium, Marie continued to investigate their properties

Date of death: July 4, 1934 Born: November 7, 1867, Warsaw # .
L] L[] Questions and answers - Nobel Prize in Chemistry - Biographical
e All draw on the similar oot s o
Women who changed science | Mane Curie - The Nobel Prize

Indefatigable despite a career of physically demanding and ultimately fatal work,

~300 Wikipedia & Marte Curie

What is Marie Curie most famous for? v
: . b ° What 3 things did Marie Curie discover? v Marie Salomea Skiodowska Curie, was a Polish and
IKimedila sites
Did Marie Curie discover penicillin? v conducted pioneering research on radioactivity.
Wikipedia
What did Marie Curie get the Nobel Prize for? ¥

Born: November 7, 1867, Warsaw, Poland
Died: July 4, 1934, Passy, France

Spouse: Pierre Curie (m. 1895-1906)

Virtual assistants & search engines
Google what did marie curie discover qu estion s = XD

Q Al @ News [Images [Books [3] Videos : More Tools

Marie Curie /Discovered

nswer
NS Radium @ Polonium a S e

Infobox

Feedback

https://www.nobelprize.org » prizes » physics » facts
Marie Curie - Facts - NobelPrize.org

1911 Prize: After Marie and Pierre Curie first discovered the radioactive elements polonium
and radium, Marie continued to investigate their properties.

Date of death: July 4, 1934 Born: November 7, 1867, Warsaw

Questions and answers - Nobel Prize in Chemistry - Biographical

https://www.nobelprize.org » stories » marie-curie
Women who changed science | Marie Curie - The Nobel Prize

Indefatigable despite a career of physically demanding and ultimately fatal work, she
discovered polonium and radium, championed the use of radiation in ...

People also ask : Marie Curie <

Polish-French physicist

What is Marie Curie most famous for? v

What 3 things did Marie Curie discover? v Marie Salomea Sktodowska Curie, was a Polish and
naturalized-French physicist and chemist who

Did Marie Curie discover penicillin? v conducted pioneering research on radioactivity.
Wikipedia

: 5 5 : ”
What did Marie Curie get the Nobel Prize for? v Born: November 7, 1867, Warsaw, Poland
Feedback

Died: July 4, 1934, Passy, France

s e g a9 1000

CNF (Conjunctive Normal Form)

All of the following formulas in the variables A, B, C', D, E, and F" are in conjunctive normal form:

+ (AVB) A (C)
V B) Each sentence is a disjunction of one or

. (4
. (A) more literals (positive or negative atoms)

The following formulas are not in conjunctive normal form:

« (B V C), since an OR is nested within a NOT
s (ANB)VC
o« An(BV (D n E)), since an AND is nested within an OR
Every formula can be equivalently written as a formula in conjunctive normal form. The three non-examples in CNF are:
« (~B) A (=C)
e (AVC)A(BVC(O)
« (A)AN(BV D)A(BVE).

36

Logical Inference: Overview

* Model checking for propositional logic

* Rule based reasoning in first-order logic
* Inference rules and generalized modes ponens
* Forward chaining
* Backward chaining

e Resolution-based reasoning in first-order logic
* Clausal form
* Unification
* Resolution as search

Satisfiability

% Definition: satisfiability

A knowledge base KB is satisfiable if M(KB) # 0.

Reduce Ask|[s] and Tell[S] to satisfiability:

{Is KB A —S satisfiable?J

no yes
entailment Is KBAS satisfiable?]
/\
no yes
/ \

"A knowledge base
KB is satisfiable if

there exists at least
one model for KB."

contradiction

contingent

38

* We can say that a sentence S by itself is satisfiable
if there is some model that satisfies S.

* Finally, a knowledge base (which is no more than
just the conjunction of its formulas) is satisfiable if

there is some model that satisfies all the formulas
S € KB.

* We can say that a sentence S by itself is satisfiable
if there is some model that satisfies S.

* Finally, a knowledge base (which is no more than
just the conjunction of its formulas) is satisfiable if

there is some model that satisfies all the formulas
S € KB.

The KB Models for the KB
PAQ | P | a | R |

RA—=P The KB has no models. There is no
assignment of True or False to

every variable that makes every
sentence in the KB true

39

* We can say that a sentence S by itself is satisfiable
if there is some model that satisfies S.

* Finally, a knowledge base (which is no more than
just the conjunction of its formulas) is satisfiable if

there is some model that satisfies all the formulas
S € KB.

The KB Models for the KB
PAQ P | a | R
RA—=P The KB has no models. There is no

assignment of True or False to

every variable that makes every
sentence in the KB true

39

From Satistiability to Proof

* To see if a satisfiable KB entails sentence S,
see if KB A =S is satisfiable
 If it is not, then the KB entails S
* Ifitis, then the KB does not entail S
* This is a refutation proof

* Consider the KB with (P, P=>Q, ~“P=>R)
* Does the KB it entail Q? R?

KB

Does the KB entail Q7 =0

~p=>R

P P=>Q ~P=>R ~Q

P ~“PvQ PvR ~Q

An empty clause represents a
contradiction

We assume that every sentence in the KB is true. Adding ~Q to the
KB yields a contradiction, so ~Q must be false, so

KB

Does the KB entail R? p->Q

~P=>R

P P=>Q ~P=>R ~R

P ~“PvQ PvR ~R

Q QVR P

Q

Adding ~R to KB does not produce a contradiction after drawing all
possible conclusions, so it could be False, so KB doesn’t entail R.
(but we also can’t say KB entails not R).

Model checking

Checking satisfiability (SAT) in propositional logic is special case of solv-
ing CSPs!

Mapping:

propositional symbol = variable
formula = constraint

model & assignment

43

Model checking

@

KB={AV B,B + —C}

Propositional symbols (CSP variables):
{A,B,C}

CSP:

o

Consistent assignment (satisfying model):

{A:1,B:0,C:1}

0 <

B B ¢ -
) iy
N

44

Model checking

—% Definition: model checking

Input: knowledge base KB
Output: exists satisfying model (M (KB) # 0)?

Popular algorithms:
e DPLL (backtracking search + pruning)

e WalkSat (randomized local search)

45

Difference with Inference

Propositional logic

Syntax

Sentences

Inference

Semantics

rules A

models

Used sentences to
define sets of models.
Reasoning on
sentences has been
through these models
(e.g., reduction to
satisfiability).
Inference rules allow us
to do reasoning on the
sentences themselves
without ever
instantiating the
models.

49

Model Checking using the
AIMA Code

python> python

Python

>>> from logic import *

>>> expr('P & P==>0 & ~P==>R'")
((P & (P > Q)) & (~P >> R))

>>> dpll satisfiable (expr('P & P==>Q & ~P==>R'))

{R: True, P: True, Q: True}

>>> dpll satisfiable(expr('P & P==>Q & ~P==>R & ~R'))
{R: False, P: True, Q: True}

>>> dpll satisfiable (expr('P & P==>Q & ~P==>R & ~Q0'))

False

>>>

Model Checking using the expr parses a string, and
AIMA Code returns a logical expression

python> python

Python

>>> from logic import *

>>> expr('P & P==>0 & ~P==>R'")
((P & (P > Q)) & (~P >> R))

>>> dpll satisfiable (expr('P & P==>Q & ~P==>R'))

{R: True, P: True, Q: True}

>>> dpll satisfiable(expr('P & P==>Q & ~P==>R & ~R'))
{R: False, P: True, Q: True}

>>> dpll satisfiable (expr('P & P==>Q & ~P==>R & ~Q0'))

False

>>>

Model Checking using the expr parses a string, and
AIMA Code returns a logical expression

python> python

Python dpll_satisfiable returns a
>>> from logic import * model if satisfiable else False
>>> expr('P & P==>Q & ~P==>R'")

((P & (P >> Q)) & (~P >> R))

>>> dpll satisfiable(expr('P & P==>0Q & ~P==>R'"))

{R: True, P: True, Q: True}

>>> dpll satisfiable(expr('P & P==>Q & ~P==>R & ~R'))

{R: False, P: True, Q: True}

>>> dpll satisfiable (expr('P & P==>Q & ~P==>R & ~Q0'))
False

>>>

Model Checking using the expr parses a string, and

AIMA Code returns a logical expression
python> python

Python dpll_satisfiable returns a
>>> from logic import * model if satisfiable else False
>>> expr('P & P==>0 & ~P==>R'")

((P & (P > Q)) & (~P >> R))

>>> dpll satisfiable (expr('P & P==>Q & ~P==>R'))

{R: True, P: True, Q: True}

>>> dpll satisfiable(expr('P & P==>Q & ~P==>R & ~R'))
{R: False, P: True, Q: True}

>>> dpll satisfiable (expr('P & P==>Q & ~P==>R & ~Q0'))

False

>>> The KB entails Q but does not
entail R

Checking Validity

* Use the functions 1n aima's logic.py to see which of the
following are valid, 1.e., true 1n every model.

* convert these sentences to the appropriate string form
that the python code uses

* use the expr () function in logic.py to turn each into
an Expr object

* use the tt true () function to check for validity.

tt true () checks an expression object to see if it is
valid, 1.e., true 1n all possible models.

A valid sentence 1s true for all possible assignments of
true and false to its variables, 1.e., pv-p

https://github.com/aimacode/aima-python/blob/master/logic.py

>>> kbl = PropKB()

>>> kbl.clauses AlI\/IA KB ClaSS
>>> kbl.tell (expr ('P==>Q & ~P==>R"'"))
>>> kbl.clauses

(@ | ~P), (R | P)]

>>> kbl.ask(expr('Q'))

False

>>> kbl.tell (expr('P'))

>>> kbl.clauses

(@ | ~P), (R [P), P]

>>> kbl.ask(expr ('Q'))

{}
>>> kbl.retract (expr('P"))

>>> kbl.clauses
((Q | ~P), (R | P)]
>>> kbl.ask(expr('Q'))

False

52

>>> kbl = PropKB()

>>> kbl.clauses

>>> kbl.tell (expr ('P==>Q & ~P==>R"'"))
>>> kbl.clauses

[(Q [~P), (R | P)]

>>> kbl.ask(expr('Q'))

False

>>> kbl.tell (expr('P'))

>>> kbl.clauses

[(Q [~P), (R | P), P]

>>> kbl.ask(expr ('Q'))

{}
>>> kbl.retract (expr('P"))

>>> kbl.clauses
((Q | ~P), (R | P)]
>>> kbl.ask(expr('Q'))

False

AIMA KB Class

PropKB is a subclass

>>> kbl = PropKB()

>>> kbl.clauses

>>> kbl.tell (expr ('P==>Q & ~P==>R"'"))
>>> kbl.clauses

[(Q [~P), (R | P)]

>>> kbl.ask(expr('Q'))

False

>>> kbl.tell (expr('P'))

>>> kbl.clauses

[(Q [~P), (R | P), P]

>>> kbl.ask(expr ('Q'))

{}
>>> kbl.retract (expr('P"))

>>> kbl.clauses
((Q | ~P), (R | P)]
>>> kbl.ask(expr('Q'))

False

AIMA KB Class

PropKB is a subclass

A sentence is converted to
CNF and the clauses added

>>> kbl = PropKB()

>>> kbl.clauses AlI\/IA KB ClaSS
>>> kbl.tell (expr ('P==>Q & ~P==>R')) PropKB is a subclass

>>> kbl.clauses

[(Q [~P), (R | P)]

>>> kbl.ask(expr('Q'))
False

>>> kbl.tell (expr('P'))
>>> kbl.clauses

[(Q [~P), (R | P), P]
>>> kbl.ask(expr ('Q'))

{}
>>> kbl.retract (expr('P"))

A sentence is converted to
CNF and the clauses added

The KB does not entail Q

>>> kbl.clauses
((Q | ~P), (R | P)]
>>> kbl.ask(expr('Q'))

False

>>> kbl = PropKB ()
>>> kbl.clauses AlI\/IA KB ClaSS
[]

>>> kbl.tell (expr ('P==>Q & ~P==>R')) PropKB is a subclass

>>> kbl.clauses

[(Q [~P), (R | P)]

>>> kbl.ask(expr('Q'))
False

>>> kbl.tell (expr('P'))
>>> kbl.clauses

[(Q [~P), (R | P), P]
>>> kbl.ask(expr ('Q'))

{}
>>> kbl.retract (expr('P"))

A sentence is converted to
CNF and the clauses added

The KB does not entail Q

>>> kbl.clauses

((Q | ~P), (R | P)]

>>> kbl.ask (expr('Q')) After adding P the KB does
False entail Q

>>> kbl = PropKB /()
>>> kbl.clauses AlI\/IA KB ClaSS
[]

>>> kbl.tell (expr ('P==>Q & ~P==>R')) PropKB is a subclass

>>> kbl.clauses

[(Q [~P), (R | P)]

>>> kbl.ask(expr('Q'))

False .
A sentence is converted to

>>> kbl.tell (expr ('P'))
CNF and the clauses added

>>> kbl.clauses
((| ~P), (R | P), P]
>>> kbl.ask(expr('Q'))

{}
>>> kbl.retract (expr('P"))

The KB does not entail Q

>>> kbl.clauses

((Q | ~P), (R | P)]
>>> kbl.ask (expr('Q')) After adding P the KB does
False entail Q

Retracting P removes it and
the KB no longer entails Q

Logic Summary

* Propositional logic
* Problems with propositional logic

* First-order logic
* Properties, relations, functions, quantifiers, ...
* Terms, sentences, wffs, axioms, theories, proofs, ...
* Variations and extensions to first-order logic

* Logical agents
* Reflex agents
* Representing change: situation calculus, frame problem
* Preferences on actions
* Goal-based agents

