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Zero-Sum Games

• Zero-Sum Games
– Agents have opposite utilities 

(values on outcomes)
– Lets us think of a single value 

that one maximizes and the 
other minimizes

– Adversarial, pure competition

• General Games
– Agents have independent 

utilities (values on outcomes)
– Cooperation, indifference, 

competition, and more are all 
possible

– More later on non-zero-sum 
games



Game trees
• Problem spaces for typical games are trees
• Root node is current board configuration; player 

must decide best single move to make next
• Static evaluator function rates board position 

f(board):real,  > 0 for me; < 0 for opponent
• Arcs represent possible legal moves for a player 
• If my turn to move, then root is labeled a "MAX" 

node; otherwise it’s a "MIN" node 
• Each tree level’s nodes are all MAX or all MIN; 

nodes at level i are of opposite kind from those at 
level i+1 
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Game Tree for Tic-Tac-Toe

MAX’s play ®

MIN’s play ®

Terminal state
(win for MAX) ®

Here, symmetries are used to 
reduce branching factor

MIN nodes

MAX nodes
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Minimax Algorithm
1. Create MAX node with current board configuration 
2. Expand nodes to some depth (a.k.a. plys) of 

lookahead in game
3. Apply evaluation function at each leaf node 
4. Back up values for each non-leaf node until value is 

computed for the root node
– At MIN nodes: value is minimum of children’s values
– At MAX nodes: value is maximum of children’s values

5. Choose move to child node whose backed-up value 
determined value at root 
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Stochastic Games
• In real life, unpredictable external events can 

put us into unforeseen situations
• Many games introduce unpredictability 

through a random element, such as the 
throwing of dice

• These offer simple scenarios for problem 
solving with adversaries and uncertainty
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Example: Backgammon
•Popular two-player game 
with uncertainty

•Players roll dice to determine 
what moves can be made

•White has just rolled 5 & 6, 
giving four legal moves:
•5-10, 5-11
•5-11, 19-24
•5-10, 10-16
•5-11, 11-16

•Good for exploring decision 
making in adversarial prob-
lems involving skill and luck 54

https://en.wikipedia.org/wiki/Backgammon


Why can’t we use MiniMax?

• Before a player chooses a move, she rolls dice 
and only then knows exactly what moves are 
possible

• The immediate outcome of each move is also 
known

• But she does not know what moves she or  
her opponent will have available in the future

• Need to adapt MiniMax to handle this
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MiniMax trees with Chance Nodes
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Understanding the notation

Max’s move 1 Max’s move 2

Board state includes chance outcome determining available moves 

Min flips coin

Min knows two 
possible moves 

Apply static 
evaluator here 

Outcome probability
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Game trees with chance nodes
•Chance nodes (circles) represent random events
•For random event with N outcomes, chance node has N children, 

each with a probability
•2 dice: 21 distinct outcomes
•Use minimax to compute values

for MAX and MIN nodes
•Use expected values for

chance nodes

•Chance nodes over max node:
expectimax(C) = ∑i(P(di)*maxval(i))

•Chance nodes over min node:
expectimin(C) = ∑i(P(di)*minval(i))

Max
Rolls

Min
Rolls
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Impact on lookahead
• Dice rolls increase branching factor
– There are 21 possible rolls with two dice

• Backgammon: ~20 legal moves for given roll 
~6K with 1-1 roll (get to roll again!)

• At depth 4: 20 * (21 * 20)**3 ≈ 1.2B boards
• As depth increases, probability of reaching a 

given node shrinks
– lookahead’s value diminished and alpha-beta 

pruning is much less effective
• TDGammon used depth-2 search + good static 

evaluator to achieve world-champion level
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http://www.cs.ualberta.ca/~sutton/book/11/node2.html


Meaning of the evaluation function

• With probabilities & expected values we must be careful 
about meaning of values returned by static evaluator

• Relative-order preserving change of static evaluation 
values doesn’t change minimax decision, but could here

• Linear transformations are OK

A1 is best 
move

A2 is best 
move

2 outcomes: 
probabilities {.9, .1}
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Games of imperfect information
• E.g. card games where opponent's initial hand 

unknown
– Can calculate probability for each possible deal
– Like having one big dice roll at beginning of game

• Possible approach: minimax over each action in each 
deal; choose action with highest expected value over 
all deals

• Special case: if action optimal for all deals, it's optimal
• GIB  bridge program, approximates this idea by

1. Generating 100 deals consistent with bidding
2. Picking action that wins most tricks on average
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http://cirl.uoregon.edu/ginsberg/gibresearch.html


High-Performance Game Programs
• Many programs based on alpha-beta + iterative 

deepening + extended/singular search + 
transposition tables + huge databases + …

• Chinook searched all checkers configurations 
with ≤ 8 pieces to create endgame database of 
444 billion board configurations

• Methods general, but implementations 
improved via many specifically tuned-up 
enhancements (e.g., the evaluation functions)

62

http://webdocs.cs.ualberta.ca/~chinook/


Other Issues
• Multi-player games, no alliances
– E.g., many card games, like Hearts

• Multi-player games with alliances
–E.g., Risk
–More on this when we discuss game theory
–Good model for a social animal like humans, 

where we must balance cooperation and 
competition
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AI and video Games
• Many games include agents run by

the game program as
–Adversaries, in first person shooter games
–Collaborators, in a virtual reality game
–E.g.: AI bots in Fortnite Chapter 2

• Some games used as AI/ML challenges or 
learning environments
–MineRL: train bots to play Minecraft
–MarioAI: train bots for Super
Mario Bros
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http://minerl.io/
http://marioai.org/


AlphaGO
• Developed by Google’s DeepMind
• Beat top-ranked human grandmasters in 2016
• Used Monte Carlo tree search over game tree

expands search tree via random sampling of search 
space

• Science Breakthrough of the year runner-up
Mastering the game of Go with deep neural networks 
and tree search, Silver et al., Nature, 529:484–489, 2016

• Match with grandmaster Lee Sedol in 2016 was 
subject of award-winning 2017 AlphaGo
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https://en.wikipedia.org/wiki/AlphaGo
https://deepmind.com/
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
http://www.academia.edu/download/45520717/deepmind-mastering-go.pdf
http://www.academia.edu/download/45520717/deepmind-mastering-go.pdf
https://www.alphagomovie.com/


Go - the game

captureliberties

• Played on 19x19 board; black vs. white stones
• Huge state space O(bd): chess:~3580, go: 

~250150

• Rule: Stones on board must have an adjacent 
open point ("liberty") or be part of connected 
group with a liberty. Groups of stones losing 
their last liberty are removed from the board.
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AlphaGo implementation
• Trained deep neural networks (13 layers) to 

learn value function and policy function
• Performs Monte Carlo game search
–explore state space like minimax
–random "rollouts"
–simulate probable plays by opponent according 

to policy function
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AlphaGo implementation

• Hardware: 1920 CPUs, 28O GPUs
• Neural networks trained in two phases over 4-6 

weeks
• Phase 1: supervised learning from database of 

30 million moves in games between two good 
human players
• Phase 2: play against versions of self using 

reinforcement learning to improve performance
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https://en.wikipedia.org/wiki/Reinforcement_learning

