
CMSC 471: Games

Slides courtesy Tim Finin and Frank Ferarro. Some material adopted from notes by Andreas Geyer-Schulz and Chuck Dyer,
Some materials adopted from slides by Dan Klein and Pieter Abbeel at UC Berkeley [http://ai.berkeley.edu]

1

KMA Solaiman
ksolaima@purdue.edu

mailto:ksolaima@purdue.edu

Zero-Sum Games

• Zero-Sum Games
– Agents have opposite utilities

(values on outcomes)
– Lets us think of a single value

that one maximizes and the
other minimizes

– Adversarial, pure competition

• General Games
– Agents have independent

utilities (values on outcomes)
– Cooperation, indifference,

competition, and more are all
possible

– More later on non-zero-sum
games

Game trees
• Problem spaces for typical games are trees
• Root node is current board configuration; player

must decide best single move to make next
• Static evaluator function rates board position

f(board):real, > 0 for me; < 0 for opponent
• Arcs represent possible legal moves for a player
• If my turn to move, then root is labeled a "MAX"

node; otherwise it’s a "MIN" node
• Each tree level’s nodes are all MAX or all MIN;

nodes at level i are of opposite kind from those at
level i+1

19

Game Tree for Tic-Tac-Toe

MAX’s play ®

MIN’s play ®

Terminal state
(win for MAX) ®

Here, symmetries are used to
reduce branching factor

MIN nodes

MAX nodes

20

Minimax Algorithm
1. Create MAX node with current board configuration
2. Expand nodes to some depth (a.k.a. plys) of

lookahead in game
3. Apply evaluation function at each leaf node
4. Back up values for each non-leaf node until value is

computed for the root node
– At MIN nodes: value is minimum of children’s values
– At MAX nodes: value is maximum of children’s values

5. Choose move to child node whose backed-up value
determined value at root

25

Stochastic Games
• In real life, unpredictable external events can

put us into unforeseen situations
• Many games introduce unpredictability

through a random element, such as the
throwing of dice

• These offer simple scenarios for problem
solving with adversaries and uncertainty

53

Example: Backgammon
•Popular two-player game
with uncertainty

•Players roll dice to determine
what moves can be made

•White has just rolled 5 & 6,
giving four legal moves:
•5-10, 5-11
•5-11, 19-24
•5-10, 10-16
•5-11, 11-16

•Good for exploring decision
making in adversarial prob-
lems involving skill and luck 54

https://en.wikipedia.org/wiki/Backgammon

Why can’t we use MiniMax?

• Before a player chooses a move, she rolls dice
and only then knows exactly what moves are
possible

• The immediate outcome of each move is also
known

• But she does not know what moves she or
her opponent will have available in the future

• Need to adapt MiniMax to handle this
55

MiniMax trees with Chance Nodes

56

Understanding the notation

Max’s move 1 Max’s move 2

Board state includes chance outcome determining available moves

Min flips coin

Min knows two
possible moves

Apply static
evaluator here

Outcome probability

57

Game trees with chance nodes
•Chance nodes (circles) represent random events
•For random event with N outcomes, chance node has N children,

each with a probability
•2 dice: 21 distinct outcomes
•Use minimax to compute values

for MAX and MIN nodes
•Use expected values for

chance nodes

•Chance nodes over max node:
expectimax(C) = ∑i(P(di)*maxval(i))

•Chance nodes over min node:
expectimin(C) = ∑i(P(di)*minval(i))

Max
Rolls

Min
Rolls

58

Impact on lookahead
• Dice rolls increase branching factor
– There are 21 possible rolls with two dice

• Backgammon: ~20 legal moves for given roll
~6K with 1-1 roll (get to roll again!)

• At depth 4: 20 * (21 * 20)**3 ≈ 1.2B boards
• As depth increases, probability of reaching a

given node shrinks
– lookahead’s value diminished and alpha-beta

pruning is much less effective
• TDGammon used depth-2 search + good static

evaluator to achieve world-champion level
59

http://www.cs.ualberta.ca/~sutton/book/11/node2.html

Meaning of the evaluation function

• With probabilities & expected values we must be careful
about meaning of values returned by static evaluator

• Relative-order preserving change of static evaluation
values doesn’t change minimax decision, but could here

• Linear transformations are OK

A1 is best
move

A2 is best
move

2 outcomes:
probabilities {.9, .1}

60

Games of imperfect information
• E.g. card games where opponent's initial hand

unknown
– Can calculate probability for each possible deal
– Like having one big dice roll at beginning of game

• Possible approach: minimax over each action in each
deal; choose action with highest expected value over
all deals

• Special case: if action optimal for all deals, it's optimal
• GIB bridge program, approximates this idea by

1. Generating 100 deals consistent with bidding
2. Picking action that wins most tricks on average

61

http://cirl.uoregon.edu/ginsberg/gibresearch.html

High-Performance Game Programs
• Many programs based on alpha-beta + iterative

deepening + extended/singular search +
transposition tables + huge databases + …

• Chinook searched all checkers configurations
with ≤ 8 pieces to create endgame database of
444 billion board configurations

• Methods general, but implementations
improved via many specifically tuned-up
enhancements (e.g., the evaluation functions)

62

http://webdocs.cs.ualberta.ca/~chinook/

Other Issues
• Multi-player games, no alliances
– E.g., many card games, like Hearts

• Multi-player games with alliances
–E.g., Risk
–More on this when we discuss game theory
–Good model for a social animal like humans,

where we must balance cooperation and
competition

63

AI and video Games
• Many games include agents run by

the game program as
–Adversaries, in first person shooter games
–Collaborators, in a virtual reality game
–E.g.: AI bots in Fortnite Chapter 2

• Some games used as AI/ML challenges or
learning environments
–MineRL: train bots to play Minecraft
–MarioAI: train bots for Super
Mario Bros

64

http://minerl.io/
http://marioai.org/

AlphaGO
• Developed by Google’s DeepMind
• Beat top-ranked human grandmasters in 2016
• Used Monte Carlo tree search over game tree

expands search tree via random sampling of search
space

• Science Breakthrough of the year runner-up
Mastering the game of Go with deep neural networks
and tree search, Silver et al., Nature, 529:484–489, 2016

• Match with grandmaster Lee Sedol in 2016 was
subject of award-winning 2017 AlphaGo

68

https://en.wikipedia.org/wiki/AlphaGo
https://deepmind.com/
https://en.wikipedia.org/wiki/Monte_Carlo_tree_search
http://www.academia.edu/download/45520717/deepmind-mastering-go.pdf
http://www.academia.edu/download/45520717/deepmind-mastering-go.pdf
https://www.alphagomovie.com/

Go - the game

captureliberties

• Played on 19x19 board; black vs. white stones
• Huge state space O(bd): chess:~3580, go:

~250150

• Rule: Stones on board must have an adjacent
open point ("liberty") or be part of connected
group with a liberty. Groups of stones losing
their last liberty are removed from the board.

69

AlphaGo implementation
• Trained deep neural networks (13 layers) to

learn value function and policy function
• Performs Monte Carlo game search
–explore state space like minimax
–random "rollouts"
–simulate probable plays by opponent according

to policy function

70

AlphaGo implementation

• Hardware: 1920 CPUs, 28O GPUs
• Neural networks trained in two phases over 4-6

weeks
• Phase 1: supervised learning from database of

30 million moves in games between two good
human players
• Phase 2: play against versions of self using

reinforcement learning to improve performance

71

https://en.wikipedia.org/wiki/Reinforcement_learning

