CMSC 471

Constraint Satisfaction Problems III

Instructor: KMA Solaiman
These slides were modified from Dan Klein and Pieter Abbeel at UC Berkeley [ai.berkeley.edu] and Frank Ferraro [ferraro@umbc.edu].

Today

- Efficient Solution of CSPs
- Local Search

Reminder: CSPs

- CSPs:
- Variables
- Domains
- Constraints
- Implicit (provide code to compute)
- Explicit (provide a list of the legal tuples)
- Unary / Binary / N-ary
- Goals:
- Here: find any solution
- Also: find all, find best, etc.

Backtracking Example

Backtracking Example

Backtracking Example

Backtracking Example

Backtracking Example

Improving Backtracking

- General-purpose ideas give huge gains in speed
- ... but it's all still NP-hard
- Filtering: Can we detect inevitable failure early?

- Ordering:
- Which variable should be assigned next? (MRV)
- In what order should its values be tried? (LCV)
- Structure: Can we exploit the problem structure?

Arc Consistency and Beyond

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

Arc Consistency of an Entire CSP

- A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment

Remember: Delete from the tail!

- What's the downside of enforcing arc consistency?

Enforcing Arc Consistency in a CSP

```
function AC-3(csp) returns the CSP, possibly with reduced domains
    inputs:csp, a binary CSP with variables {\mp@subsup{X}{1}{},\mp@subsup{X}{2}{},\ldots,\mp@subsup{X}{n}{}}
    local variables: queue, a queue of arcs, initially all the arcs in csp
    while queue is not empty do
        ( }\mp@subsup{X}{i}{},\mp@subsup{X}{j}{})\leftarrow\mathrm{ Remove-First(queue)
        if Remove-Inconsistent-Values( }\mp@subsup{X}{i}{},\mp@subsup{X}{j}{})\mathrm{ then
            for each }\mp@subsup{X}{k}{}\mathrm{ in NEIgHBors[ }\mp@subsup{X}{i}{}]\mathrm{ do
                add ( }\mp@subsup{X}{k}{},\mp@subsup{X}{i}{})\mathrm{ to queue
```

function Remove-Inconsistent- $\operatorname{VaLuEs}\left(X_{i}, X_{j}\right)$ returns true iff succeeds
removed \leftarrow false
for each x in Domain $\left[X_{i}\right]$ do
if no value y in Domain $\left[X_{j}\right]$ allows (x, y) to satisfy the constraint $X_{i} \leftrightarrow X_{j}$
then delete x from Domain $\left[X_{i}\right]$; removed \leftarrow true
return removed

- Runtime: $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}^{3}\right)$, can be reduced to $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~d}^{2}\right)$
- ... but detecting all possible future problems is NP-hard - why?

Ordering

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain
- Aka most constrained variables

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain
- Aka most constrained variables

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain
- Aka most constrained variables

After assigning value to WA, both NT and SA have only two values in their domains

- choose one of them rather than Q, NSW, V or T

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain
- Aka most constrained variables

After assigning value to WA, both NT and SA have only two values in their domains

- choose one of them rather than Q, NSW, V or T

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain
- Aka most constrained variables

After assigning value to WA, both NT and SA have only two values in their domains

- choose one of them rather than Q, NSW, V or T

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain
- Aka most constrained variables

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain
- Aka most constrained variables

- Why min rather than max?

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain
- Aka most constrained variables

Ordering: Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
- Choose the variable with the fewest legal left values in its domain
- Aka most constrained variables

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

- Tie-breaker among Minimum remaining values
- Choose variable involved in largest \# of constraints on remaining variables

- After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
- But WA and V have only one constraint (WA has constraint with NT, and V with NSW) on remaining variables and T none, so choose one of NT, Q \& NSW (each of which has 2 cons. left)

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
- Given a choice of variable, choose the least constraining value
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
- Given a choice of variable, choose the least constraining value
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
- Given a choice of variable, choose the least constraining value
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?

Ordering: Least Constraining Value

- Value Ordering: Least Constraining Value
- Given a choice of variable, choose the least constraining value
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Demo: Coloring -- Backtracking + Forward Checking + Ordering

Structure

Problem Structure

- Extreme case: independent subproblems
- Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
- Worst-case solution cost is $\mathrm{O}\left((\mathrm{n} / \mathrm{c})\left(\mathrm{d}^{c}\right)\right)$, linear in n

- E.g., $n=80, d=2, c=20$
- $2^{80}=4$ billion years at 10 million nodes $/ \mathrm{sec}$
- $(4)\left(2^{20}\right)=0.4$ seconds at 10 million nodes $/ \mathrm{sec}$

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d$\left.{ }^{2}\right)$ time
- Compare to general CSPs, where worst-case time is $\mathrm{O}\left(\mathrm{d}^{\mathrm{n}}\right)$
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$
- Assign forward: For $\mathrm{i}=1: \mathrm{n}$, assign X_{i} consistently with Parent $\left(\mathrm{X}_{\mathrm{i}}\right)$

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
- Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For $\mathrm{i}=\mathrm{n}: 2$, apply RemoveInconsistent $\left(\operatorname{Parent}\left(\mathrm{X}_{\mathrm{i}}\right), \mathrm{X}_{\mathrm{i}}\right)$
- Assign forward: For $\mathrm{i}=1: \mathrm{n}$, assign X_{i} consistently with Parent $\left(\mathrm{X}_{\mathrm{i}}\right)$
- Runtime: O(n d²) (why?)

Tree-Structured CSPs

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each $X \rightarrow Y$ was made consistent at one point and Y 's domain could not have been reduced thereafter (because Y's children were processed before Y)

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each $X \rightarrow Y$ was made consistent at one point and Y 's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each $X \rightarrow Y$ was made consistent at one point and Y 's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each $X \rightarrow Y$ was made consistent at one point and Y 's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each $X \rightarrow Y$ was made consistent at one point and Y 's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

Improving Structure

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $\left.O\left(d^{c}\right)(n-c) d^{2}\right)$, very fast for small c

Cutset Conditioning

Cutset Conditioning

Cutset Conditioning

Cutset Conditioning

Choose a cutset

Instantiate the cutset
(all possible ways)

Cutset Conditioning

Instantiate the cutset
(all possible ways)

Cutset Conditioning

Instantiate the cutset (all possible ways)

Compute residual CSP

 for each assignment
Cutset Conditioning

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Cutset Conditioning

Instantiate the cutset
(all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)

Cutset Quiz

- Find the smallest cutset for the graph below.

Iterative Improvement

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
- Take an assignment with unsatisfied constraints
- Operators reassign variable values
- No fringe! Live on the edge.

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
- Take an assignment with unsatisfied constraints
- Operators reassign variable values

- No fringe! Live on the edge.

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
- Take an assignment with unsatisfied constraints
- Operators reassign variable values

- No fringe! Live on the edge.
- Algorithm: While not solved,
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic:
- Choose a value that violates the fewest constraints
- I.e., hill climb with $h(n)=$ total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns ($4^{4}=256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $c(n)=$ number of attacks

Example: 4-Queens

- States: 4 queens in 4 columns ($4^{4}=256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $c(n)=$ number of attacks

Example: 4-Queens

- States: 4 queens in 4 columns ($4^{4}=256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $c(n)=$ number of attacks

Basic Local Search Algorithm

Assign one domain value d_{i} to each variable v_{i} while no solution \& not stuck \& not timed out:
bestCost $\leftarrow \infty$; bestList $\leftarrow[$];
for each variable $v_{i} w h e r e \operatorname{Cost}\left(\right.$ Value $\left.\left(v_{i}\right)\right)>0$ for each domain value d_{i} of v_{i}
if Cost $\left(\mathrm{d}_{\mathrm{i}}\right)$ < bestCost
bestCost $\leftarrow \operatorname{Cost}\left(\mathrm{d}_{\mathrm{i}}\right)$
bestList $\leftarrow\left[\mathrm{d}_{\mathrm{i}}\right]$
else if $\operatorname{Cost}\left(\mathrm{d}_{\mathrm{i}}\right)=$ bestCost
bestList \leftarrow bestList $\cup d_{i}$
Take a randomly selected move fromabestList

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Slide

Eight Queens using Local Search

Eight Queens using Local Search

Slide

Video of Demo Iterative Improvement - Coloring

Backtracking Performance

Slide

Local Search Performance

Slide

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $\mathrm{n}=10,000,000$)

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $\mathrm{n}=10,000,000$)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $\mathrm{n}=10,000,000$)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $\mathrm{n}=10,000,000$)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $\mathrm{n}=10,000,000$)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$
R=\frac{\text { number of constraints }}{\text { number of variables }}
$$

Summary: CSPs

- CSPs are a special kind of search problem:
- States are partial assignments
- Goal test defined by constrai
- Basic solution: backtracking sea
- Speed-ups:
- Ordering
- Filtering
- Structure

- Iterative min-conflicts is often effective in practice

More Examples

4-Queens Problem

4-Queens Problem

4-Queens Problem

4-Queens Problem

4-Queens Problem

4-Queens Problem

$X 2=3$ eliminates $\{X 3=2, X 3=3, X 3=4\}$
 \Rightarrow inconsistent!

4-Queens Problem

4-Queens Problem

[^0]
4-Queens Problem

4-Queens Problem

4-Queens Problem

X1 can't be 1, let's try 2

4-Queens Problem

Can we eliminate any other values?

4-Queens Problem

4-Queens Problem

4-Queens Problem

Arc constancy eliminates x3=3 because it's not consistent with X2's remaining values ${ }^{49}$

4-Queens Problem

4-Queens Problem

There is only one solution with $\mathbf{X 1 = 2}$

Sudoku

- Digit placement puzzle on 9x9 grid with unique answer
- Given an initial partially filled grid, fill remaining squares with a digit between 1 and 9
- Each column, row, and nine 3×3 sub-grids must contain all nine digits

	1	2	3	4	5	6	7	8	
A	4	8	3	9	2	1	6	5	7
B	9	6	7	3	4	5	8	2	1
c	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
E	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
H	8	1	4	2	5	3	7	6	9
	6	9	5	4	1	7	3	8	2

- Some initial configurations are easy to solve and others very difficult

Sudoku Example

	2	,	4	5	6	7	8	9
		3		2		6		
9			3		5			1
		1	8		6	4		
		8	1		2	9		
7								8
		6	7		8	2		
		2	6		9	5		
8			2		3			9
-		5		1		3		

initial problem

a solution

How can we set this up as a C§P?
def sudoku(initValue)
p = Problem()
\# Define a variable for each cell: 11,12,13...21,22,23...98,99 for i in range(1, 10):
p.addVariables(range(i*10+1, i*10+10), range(1, 10))
\# Each row has different values
for i in range $(1,10)$:
p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
\# Each column has different values
for i in range $(1,10)$:
p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
\# Each 3×3 box has different values
p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
p.addConstraint(AllDifferentConstraint(), $[41,42,43,51,52,53,61,62,63])$
p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])
p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
p.addConstraint(AlIDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])
p.addConstraint(AllDifferentConstraint(), $[17,18,19,27,28,29,37,38,39])$ p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])
\# add unary constraints for cells with initial non-zero values
for i in range(1, 10) :
for j in range(1, 10):
value $=$ initValue[$[-1][j-1]$
if value:
p.addConstraint(lambda var, val=value: var == val, (i*10+j,))
return p.getSolution()
\# Sample problems easy $=$ [
[0,9,0,7,0,0,8,6,0],
[0,3,1,0,0,5,0,2,0],
[8,0,6,0,0,0,0,0,0],
[$0,0,7,0,5,0,0,0,6]$,
[0,0,0,3,0,7,0,0,0],
[5,0,0,0,1,0,7,0,0],
[0,0,0,0,0,0,1,0,9],
[0,2,0,6,0,0,0,5,0],
[0,5,4,0,0,8,0,7,0].
hard $=$ [
[0,0,3,0,0,0,4,0,0],
[$0,0,0,0,7,0,0,0,0$],
[5,0,0,4, $, 6,0,0,2]$,
[0,0,4,0,0,0,8,0,0],
[0,9,0,0,3,0,0,2,0],
[0,0,7,0,0,0,5,0,0],
[$6,0,0,5,0,2,0,0,1]$,
[0,0,0,0,9,0,0,0,0],
[0,0,9,0,0,0,3,0,0]]
very_hard = [
[0,0,0,0,0,0,0,0,0],
[0,0,9,0,6,0,3,0,0],
[0,7,0,3,0,4,0,9,0],
[0,0,7,2,0,8,6,0,0],
[0,4,0,0,0,0,0,7,0],
[0,0,2,1,0,6,5,0,0],
[0,1,0,9,0,5,0,4,0],
[0,0,8,0,2,0,7,0,0]
[0,0,0,0,0, $0,0,6,8]$]

[^0]: $\mathbf{X 2}=\mathbf{4} \Rightarrow \mathbf{X 3}=2$, which eliminates $\{\mathbf{X 4 = 2 , X 4 = 3 \}}$ \Rightarrow inconsistent!

