

Constraint Satisfaction Problems III

Instructor: KMA Solaiman

These slides were modified from Dan Klein and Pieter Abbeel at UC Berkeley [ai.berkeley.edu] and Frank Ferraro [ferraro@umbc.edu].

Today

Efficient Solution of CSPs

Local Search

Reminder: CSPs

- CSPs:
 - Variables
 - Domains
 - Constraints
 - Implicit (provide code to compute)
 - Explicit (provide a list of the legal tuples)
 - Unary / Binary / N-ary
- Goals:
 - Here: find any solution
 - Also: find all, find best, etc.

Improving Backtracking

- General-purpose ideas give huge gains in speed
 - ... but it's all still NP-hard
- Filtering: Can we detect inevitable failure early?
- Ordering:
 - Which variable should be assigned next? (MRV)
 - In what order should its values be tried? (LCV)
- Structure: Can we exploit the problem structure?

Arc Consistency and Beyond

Arc Consistency and Beyond

• A simple form of propagation makes sure all arcs are consistent:

• A simple form of propagation makes sure all arcs are consistent:

• A simple form of propagation makes sure all arcs are consistent:

• A simple form of propagation makes sure all arcs are consistent:

• A simple form of propagation makes sure all arcs are consistent:

• A simple form of propagation makes sure all arcs are consistent:

• A simple form of propagation makes sure all arcs are consistent:

• A simple form of propagation makes sure all arcs are consistent:

• A simple form of propagation makes sure all arcs are consistent:

- Important: If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- Can be run as a preprocessor or after each assignment
- What's the downside of enforcing arc consistency?

Enforcing Arc Consistency in a CSP

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)
      if REMOVE-INCONSISTENT-VALUES (X_i, X_j) then
         for each X_k in NEIGHBORS [X_i] do
             add (X_k, X_i) to queue
function REMOVE-INCONSISTENT-VALUES (X_i, X_j) returns true iff succeeds
   removed \leftarrow false
   for each x in DOMAIN[X_i] do
      if no value y in DOMAIN[X<sub>j</sub>] allows (x, y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from DOMAIN[X<sub>i</sub>]; removed \leftarrow true
   return removed
```

- Runtime: O(n²d³), can be reduced to O(n²d²)
- ... but detecting all possible future problems is NP-hard why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Ordering

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain
 - Aka most constrained variables

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain
 - Aka most constrained variables

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain
 - Aka most constrained variables

After assigning value to WA, both NT and SA have only two values in their domains

- choose one of them rather than Q, NSW, V or T

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain
 - Aka most constrained variables

After assigning value to WA, both NT and SA have only two values in their domains

- choose one of them rather than Q, NSW, V or T

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain
 - Aka most constrained variables

After assigning value to WA, both NT and SA have only two values in their domains

- choose one of them rather than Q, NSW, V or T

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain
 - Aka most constrained variables

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain
 - Aka most constrained variables

• Why min rather than max?

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain
 - Aka most constrained variables

• Why min rather than max?

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain
 - Aka most constrained variables

- Why min rather than max?
- Also called "most constrained variable"
- "Fail-fast" ordering

- Tie-breaker among Minimum remaining values
- Choose variable involved in largest # of constraints on remaining variables

Northern Territory

> South Australia

Queensland

Victoria

Tasmani

New South Wales

Western Australia

- After assigning SA to be blue, WA, NT, Q, NSW and V all have just two values left.
- But WA and V have only one constraint (WA has constraint with NT, and V with NSW) on remaining variables and T none, so choose one of NT, Q & NSW (each of which has 2 cons. left)

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the *least* constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the *least* constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the *least* constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?

- Value Ordering: Least Constraining Value
 - Given a choice of variable, choose the *least* constraining value
 - I.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., rerunning filtering)
- Why least rather than most?
- Combining these ordering ideas makes 1000 queens feasible

Demo: Coloring -- Backtracking + Forward Checking + Ordering

Structure

Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - Worst-case solution cost is O((n/c)(d^c)), linear in n
 - E.g., n = 80, d = 2, c = 20
 - 2⁸⁰ = 4 billion years at 10 million nodes/sec
 - (4)(2²⁰) = 0.4 seconds at 10 million nodes/sec

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - Compare to general CSPs, where worst-case time is O(dⁿ)
- This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children

- Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i),X_i)
- Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- Runtime: O(n d²) (why?)

Claim 1: After backward pass, all root-to-leaf arcs are consistent

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

Improving Structure

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((d^c) (n-c) d²), very fast for small c

Choose a cutset

Choose a cutset	

WA SA V

Instantiate the cutset (all possible ways)

Cutset Quiz

Find the smallest cutset for the graph below.

Iterative Improvement

Iterative Algorithms for CSPs

Local search methods typically work with "complete" states, i.e., all variables assigned

Iterative Algorithms for CSPs

Local search methods typically work with "complete" states, i.e., all variables assigned

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators *reassign* variable values
 - No fringe! Live on the edge.

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators *reassign* variable values
 - No fringe! Live on the edge.

Iterative Algorithms for CSPs

- Local search methods typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs:
 - Take an assignment with unsatisfied constraints
 - Operators *reassign* variable values
 - No fringe! Live on the edge.
- Algorithm: While not solved,
 - Variable selection: randomly select any conflicted variable
 - Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)] [Demo: coloring – iterative improvement]

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)] [Demo: coloring – iterative improvement]

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)] [Demo: coloring – iterative improvement]

Basic Local Search Algorithm Assign one domain value d_i to each variable v_i while no solution & not stuck & not timed out: bestCost $\leftarrow \infty$; bestList $\leftarrow [];$ for each variable v_i where Cost(Value(v_i)) > 0 for each domain value d_i of v_i if Cost(d_i) < bestCost $bestCost \leftarrow Cost(d_i)$ bestList $\leftarrow [d_i]$ else if $Cost(d_i) = bestCost$ bestList \leftarrow bestList \cup d_i Take a randomly selected move from bestList

Slide

Take least cost move then try another Queen

...and so on, until....

Slide

Slide

Video of Demo Iterative Improvement – Coloring

Backtracking Performance

Local Search Performance

 Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP *except* in a narrow range of the ratio

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP *except* in a narrow range of the ratio

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomly-generated CSP *except* in a narrow range of the ratio

Summary: CSPs

- CSPs are a special kind of search problem:
 - States are partial assignments
 - Goal test defined by constrai
- Basic solution: backtracking sea
- Speed-ups:
 - Ordering
 - Filtering
 - Structure

Iterative min-conflicts is often effective in practice

More Examples

X2=3 eliminates { X3=2, X3=3, X3=4 } \Rightarrow inconsistent!

X2=4 \Rightarrow X3=2, which eliminates { X4=2, X4=3} \Rightarrow inconsistent!

X1 can't be 1, let's try 2

Can we eliminate any other values?

Arc constancy eliminates x3=3 because it's not consistent with X2's remaining values⁴⁹

There is only one solution with X1=2

<u>Sudoku</u>

- Digit placement puzzle on 9x9 grid with unique answer
- Given an initial partially filled grid, fill remaining squares with a digit between 1 and 9
- Each column, row, and nine 3 × 3 sub-grids must contain all nine digits

 Some initial configurations are easy to solve and others very difficult
 Slide

Sudoku Example

	1	2	3	4	5	6	7	8	9
А			3		2		6		
В	9			3		5			1
С			1	8		6	4		
D			8	1		2	9		
Е	7								8
F			6	7		8	2		
G			2	6		9	5		
Н	8			2		3			9
Т			5		1		3		

initial problem

	1	2	3	4	5	6	7	8	9
A	4	8	3	9	2	1	6	5	7
В	9	6	7	3	4	5	8	2	1
С	2	5	1	8	7	6	4	9	3
D	5	4	8	1	3	2	9	7	6
Е	7	2	9	5	6	4	1	3	8
F	1	3	6	7	9	8	2	4	5
G	3	7	2	6	8	9	5	1	4
н	8	1	4	2	5	3	7	6	9
I	6	9	5	4	1	7	3	8	2

a solution

How can we set this up as a CSP?

def sudoku(initValue):

p = Problem()

Define a variable for each cell: 11,12,13...21,22,23...98,99 for i in range(1, 10) :

p.addVariables(range(i*10+1, i*10+10), range(1, 10))

Each row has different values

for i in range(1, 10) :

p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
Each column has different values

for i in range(1, 10) :

p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
Each 3x3 box has different values

p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])

p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])

p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])

add unary constraints for cells with initial non-zero values
for i in range(1, 10) :
 for j in range(1, 10):
 value = initValue[i-1][j-1]
 if value:
 p.addConstraint(lambda var, val=value: var == val, (i*10+j,))
return p.getSolution()

Sample problems easy = [[0,9,0,7,0,0,8,6,0], [0,3,1,0,0,5,0,2,0], [8,0,6,0,0,0,0,0,0], [0,0,7,0,5,0,0,0,6],[0,0,0,3,0,7,0,0,0], [5,0,0,0,1,0,7,0,0], [0,0,0,0,0,0,1,0,9],[0,2,0,6,0,0,0,5,0], [0,5,4,0,0,8,0,7,0]] hard = [[0,0,3,0,0,0,4,0,0], [0,0,0,0,7,0,0,0,0], [5,0,0,4,0,6,0,0,2], [0,0,4,0,0,0,8,0,0], [0,9,0,0,3,0,0,2,0], [0,0,7,0,0,0,5,0,0], [6,0,0,5,0,2,0,0,1],[0,0,0,0,9,0,0,0,0], [0,0,9,0,0,0,3,0,0]] very hard = [[0,0,0,0,0,0,0,0,0], [0,0,9,0,6,0,3,0,0], [0,7,0,3,0,4,0,9,0], [0,0,7,2,0,8,6,0,0], [0,4,0,0,0,0,0,7,0], [0,0,2,1,0,6,5,0,0],[0,1,0,9,0,5,0,4,0],[0,0,8,0,2,0,7,0,0], [0,0,0,0,0,0,0,0,0,0,0,0,0]