
CMSC 471
Constraint Satisfaction Problems III

Instructor: KMA Solaiman
These slides were modified from Dan Klein and Pieter Abbeel at UC Berkeley [ai.berkeley.edu] and Frank Ferraro [ferraro@umbc.edu].

Today

§ Efficient Solution of CSPs

§ Local Search

Reminder: CSPs

§ CSPs:
§ Variables
§ Domains
§ Constraints

§ Implicit (provide code to compute)
§ Explicit (provide a list of the legal tuples)
§ Unary / Binary / N-ary

§ Goals:
§ Here: find any solution
§ Also: find all, find best, etc.

Backtracking Example

Backtracking Example

Backtracking Example

Backtracking Example

Backtracking Example

Improving Backtracking

§ General-purpose ideas give huge gains in speed
§ … but it’s all still NP-hard

§ Filtering: Can we detect inevitable failure early?

§ Ordering:
§ Which variable should be assigned next? (MRV)
§ In what order should its values be tried? (LCV)

§ Structure: Can we exploit the problem structure?

Arc Consistency and Beyond

Arc Consistency and Beyond

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

§ Important: If X loses a value, neighbors of X need to be rechecked!
§ Arc consistency detects failure earlier than forward checking
§ Can be run as a preprocessor or after each assignment
§ What’s the downside of enforcing arc consistency?

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

§ Runtime: O(n2d3), can be reduced to O(n2d2)
§ … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Ordering

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain
§ Aka most constrained variables

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain
§ Aka most constrained variables

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain
§ Aka most constrained variables

After assigning value to WA, both NT and SA have only
two values in their domains

– choose one of them rather than Q, NSW, V or T

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain
§ Aka most constrained variables

After assigning value to WA, both NT and SA have only
two values in their domains

– choose one of them rather than Q, NSW, V or T

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain
§ Aka most constrained variables

After assigning value to WA, both NT and SA have only
two values in their domains

– choose one of them rather than Q, NSW, V or T

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain
§ Aka most constrained variables

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain
§ Aka most constrained variables

§ Why min rather than max?

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain
§ Aka most constrained variables

§ Why min rather than max?

Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain
§ Aka most constrained variables

§ Why min rather than max?
§ Also called “most constrained variable”
§ “Fail-fast” ordering

§ Tie-breaker among Minimum remaining values
§ Choose variable involved in largest # of constraints

on remaining variables

• After assigning SA to be blue, WA, NT, Q, NSW and V all have
just two values left.

• But WA and V have only one constraint (WA has constraint
with NT, and V with NSW) on remaining variables and T none,
so choose one of NT, Q & NSW (each of which has 2 cons. left)

Ordering: Least Constraining Value

§ Value Ordering: Least Constraining Value
§ Given a choice of variable, choose the least

constraining value
§ I.e., the one that rules out the fewest values in

the remaining variables
§ Note that it may take some computation to

determine this! (E.g., rerunning filtering)

Ordering: Least Constraining Value

§ Value Ordering: Least Constraining Value
§ Given a choice of variable, choose the least

constraining value
§ I.e., the one that rules out the fewest values in

the remaining variables
§ Note that it may take some computation to

determine this! (E.g., rerunning filtering)

§ Why least rather than most?

Ordering: Least Constraining Value

§ Value Ordering: Least Constraining Value
§ Given a choice of variable, choose the least

constraining value
§ I.e., the one that rules out the fewest values in

the remaining variables
§ Note that it may take some computation to

determine this! (E.g., rerunning filtering)

§ Why least rather than most?

Ordering: Least Constraining Value

§ Value Ordering: Least Constraining Value
§ Given a choice of variable, choose the least

constraining value
§ I.e., the one that rules out the fewest values in

the remaining variables
§ Note that it may take some computation to

determine this! (E.g., rerunning filtering)

§ Why least rather than most?

§ Combining these ordering ideas makes
 1000 queens feasible

Demo: Coloring -- Backtracking + Forward Checking + Ordering

Structure

Problem Structure

§ Extreme case: independent subproblems
§ Example: Tasmania and mainland do not interact

§ Independent subproblems are identifiable as
connected components of constraint graph

§ Suppose a graph of n variables can be broken into
subproblems of only c variables:
§ Worst-case solution cost is O((n/c)(dc)), linear in n
§ E.g., n = 80, d = 2, c =20
§ 280 = 4 billion years at 10 million nodes/sec
§ (4)(220) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

§ Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
§ Compare to general CSPs, where worst-case time is O(dn)

§ This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

§ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)

Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

§ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)

Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

§ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
§ Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

§ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
§ Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

§ Runtime: O(n d2) (why?)

Tree-Structured CSPs

Tree-Structured CSPs

§ Claim 1: After backward pass, all root-to-leaf arcs are consistent

Tree-Structured CSPs

§ Claim 1: After backward pass, all root-to-leaf arcs are consistent
§ Proof: Each X®Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

Tree-Structured CSPs

§ Claim 1: After backward pass, all root-to-leaf arcs are consistent
§ Proof: Each X®Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

§ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack

Tree-Structured CSPs

§ Claim 1: After backward pass, all root-to-leaf arcs are consistent
§ Proof: Each X®Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

§ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
§ Proof: Induction on position

Tree-Structured CSPs

§ Claim 1: After backward pass, all root-to-leaf arcs are consistent
§ Proof: Each X®Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

§ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
§ Proof: Induction on position

§ Why doesn’t this algorithm work with cycles in the constraint graph?

Tree-Structured CSPs

§ Claim 1: After backward pass, all root-to-leaf arcs are consistent
§ Proof: Each X®Y was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

§ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
§ Proof: Induction on position

§ Why doesn’t this algorithm work with cycles in the constraint graph?

§ Note: we’ll see this basic idea again with Bayes’ nets

Improving Structure

Nearly Tree-Structured CSPs

§ Conditioning: instantiate a variable, prune its neighbors' domains

§ Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

§ Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

Cutset Conditioning

SA

Cutset Conditioning

SA

Choose a cutset

Cutset Conditioning

SA

Instantiate the cutset
(all possible ways)

Choose a cutset

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Choose a cutset

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Choose a cutset

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Choose a cutset

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

§ Find the smallest cutset for the graph below.

Iterative Improvement

Iterative Algorithms for CSPs

§ Local search methods typically work with “complete” states, i.e., all variables assigned

Iterative Algorithms for CSPs

§ Local search methods typically work with “complete” states, i.e., all variables assigned

Iterative Algorithms for CSPs

§ Local search methods typically work with “complete” states, i.e., all variables assigned

§ To apply to CSPs:
§ Take an assignment with unsatisfied constraints
§ Operators reassign variable values
§ No fringe! Live on the edge.

Iterative Algorithms for CSPs

§ Local search methods typically work with “complete” states, i.e., all variables assigned

§ To apply to CSPs:
§ Take an assignment with unsatisfied constraints
§ Operators reassign variable values
§ No fringe! Live on the edge.

Iterative Algorithms for CSPs

§ Local search methods typically work with “complete” states, i.e., all variables assigned

§ To apply to CSPs:
§ Take an assignment with unsatisfied constraints
§ Operators reassign variable values
§ No fringe! Live on the edge.

§ Algorithm: While not solved,
§ Variable selection: randomly select any conflicted variable
§ Value selection: min-conflicts heuristic:

§ Choose a value that violates the fewest constraints
§ I.e., hill climb with h(n) = total number of violated constraints

Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Basic Local Search Algorithm
Assign one domain value di to each variable vi

while no solution & not stuck & not timed out:
bestCost ¬¥; bestList ¬ [];
for each variable vi where Cost(Value(vi)) > 0

for each domain value di of vi
if Cost(di) < bestCost

bestCost ¬ Cost(di)
bestList ¬ [di]

else if Cost(di) = bestCost
bestList ¬ bestList È di

Take a randomly selected move from bestListSlide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Slide

Take least cost
move then try
another
Queen

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Slide

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Slide

Take least cost
move then try
another
Queen

3 3 3 21 1 1 12

…and so on, until….

Eight Queens using Local Search

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32
2 2 3 42 2 2 12

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32
2 2 3 42 2 2 12

3 2 32 1 1 2 31

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32
2 2 3 42 2 2 12

3 2 32 1 1 2 31
2 0 4 21 2 2 31

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32
2 2 3 42 2 2 12

3 2 32 1 1 2 31
2 0 4 21 2 2 31

2 3 22 1 3 2 31

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32
2 2 3 42 2 2 12

3 2 32 1 1 2 31
2 0 4 21 2 2 31

2 3 22 1 3 2 31

2 3 3 21 2 2 21

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32
2 2 3 42 2 2 12

3 2 32 1 1 2 31
2 0 4 21 2 2 31

2 3 22 1 3 2 31

2 3 3 21 2 2 21

2 3 2 32 2 1 31

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32
2 2 3 42 2 2 12

3 2 32 1 1 2 31
2 0 4 21 2 2 31

2 3 22 1 3 2 31

2 3 3 21 2 2 21

2 3 2 32 2 1 31
2 2 32 1 3 2 11

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32
2 2 3 42 2 2 12

3 2 32 1 1 2 31
2 0 4 21 2 2 31

2 3 22 1 3 2 31

2 3 3 21 2 2 21

2 3 2 32 2 1 31
2 2 32 1 3 2 11

3 2 23 3 3 3 01

Slide

Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Take least cost
move then try
another
Queen

0 4 4 41 1 1 1

4 3 41 1 1 1 31

3 3 3 21 1 1 12

3 4 41 1 1 1 32
2 2 3 42 2 2 12

3 2 32 1 1 2 31
2 0 4 21 2 2 31

2 3 22 1 3 2 31

2 3 3 21 2 2 21

2 3 2 32 2 1 31
2 2 32 1 3 2 11

3 2 23 3 3 3 01

Answer Found

Slide

Video of Demo Iterative Improvement – Coloring

Backtracking Performance

0

1000

2000

3000

4000

5000

0 4 8 12 16 20 24 28 32

Number of Queens

Ti
m

e
in

 s
ec

on
ds

Slide

Local Search Performance

0

500

1000

1500

2000

2500

0 5000 10000 15000 20000

Number of Queens

Ti
m

e
in

 s
ec

on
ds

Slide

Performance of Min-Conflicts

§ Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)

Performance of Min-Conflicts

§ Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)

§ The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Performance of Min-Conflicts

§ Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)

§ The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Performance of Min-Conflicts

§ Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)

§ The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Performance of Min-Conflicts

§ Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)

§ The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

Summary: CSPs

§ CSPs are a special kind of search problem:
§ States are partial assignments
§ Goal test defined by constraints

§ Basic solution: backtracking search

§ Speed-ups:
§ Ordering
§ Filtering
§ Structure

§ Iterative min-conflicts is often effective in practice

More Examples

41

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

42

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

42

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

43

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

44

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

44

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X2=3 eliminates { X3=2, X3=3, X3=4 }
Þ inconsistent! 44

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

45

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X2=4 Þ X3=2, which eliminates { X4=2, X4=3}
Þ inconsistent! 45

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

46

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

46

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X1 can’t be 1, let’s try 2
46

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Can we eliminate any other values?
47

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X

48

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

X

49

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

Arc constancy eliminates x3=3 because it’s not
consistent with X2’s remaining values

X

49

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

50

4-Queens Problem

1

3
2

4

32 41

X1
{1,2,3,4}

X3
{1,2,3,4}

X4
{1,2,3,4}

X2
{1,2,3,4}

There is only one solution with X1=2
50

Sudoku
§ Digit placement puzzle on 9x9 grid with unique answer
§ Given an initial partially filled grid, fill remaining squares

with a digit between 1 and 9
§ Each column, row, and nine 3×3 sub-grids must contain

all nine digits

• Some initial configurations are easy to solve and
others very difficult Slide

http://en.wikipedia.org/wiki/Sudoku

Sudoku Example

How can we set this up as a CSP?

initial problem a solution

52

Sample problems
easy = [
 [0,9,0,7,0,0,8,6,0],
 [0,3,1,0,0,5,0,2,0],
 [8,0,6,0,0,0,0,0,0],
 [0,0,7,0,5,0,0,0,6],
 [0,0,0,3,0,7,0,0,0],
 [5,0,0,0,1,0,7,0,0],
 [0,0,0,0,0,0,1,0,9],
 [0,2,0,6,0,0,0,5,0],
 [0,5,4,0,0,8,0,7,0]]

hard = [
 [0,0,3,0,0,0,4,0,0],
 [0,0,0,0,7,0,0,0,0],
 [5,0,0,4,0,6,0,0,2],
 [0,0,4,0,0,0,8,0,0],
 [0,9,0,0,3,0,0,2,0],
 [0,0,7,0,0,0,5,0,0],
 [6,0,0,5,0,2,0,0,1],
 [0,0,0,0,9,0,0,0,0],
 [0,0,9,0,0,0,3,0,0]]

very_hard = [
 [0,0,0,0,0,0,0,0,0],
 [0,0,9,0,6,0,3,0,0],
 [0,7,0,3,0,4,0,9,0],
 [0,0,7,2,0,8,6,0,0],
 [0,4,0,0,0,0,0,7,0],
 [0,0,2,1,0,6,5,0,0],
 [0,1,0,9,0,5,0,4,0],
 [0,0,8,0,2,0,7,0,0],
 [0,0,0,0,0,0,0,0,0]]Slide

def sudoku(initValue):
 p = Problem()
 # Define a variable for each cell: 11,12,13...21,22,23...98,99
 for i in range(1, 10) :
 p.addVariables(range(i*10+1, i*10+10), range(1, 10))
 # Each row has different values
 for i in range(1, 10) :
 p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
 # Each column has different values
 for i in range(1, 10) :
 p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
 # Each 3x3 box has different values
 p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
 p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
 p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])

 p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
 p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
 p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])

 p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
 p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
 p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])

 # add unary constraints for cells with initial non-zero values
 for i in range(1, 10) :
 for j in range(1, 10):
 value = initValue[i-1][j-1]
 if value:
 p.addConstraint(lambda var, val=value: var == val, (i*10+j,))
 return p.getSolution()

