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Constraint Satisfaction Problems III

Instructor: KMA Solaiman
These slides were modified from Dan Klein and Pieter Abbeel at UC Berkeley [ai.berkeley.edu] and Frank Ferraro [ferraro@umbc.edu].



Today

§ Efficient Solution of CSPs

§ Local Search



Reminder: CSPs

§ CSPs:
§ Variables
§ Domains
§ Constraints

§ Implicit (provide code to compute)
§ Explicit (provide a list of the legal tuples)
§ Unary / Binary / N-ary

§ Goals:
§ Here: find any solution
§ Also: find all, find best, etc.
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Improving Backtracking

§ General-purpose ideas give huge gains in speed
§ … but it’s all still NP-hard

§ Filtering: Can we detect inevitable failure early?

§ Ordering:
§ Which variable should be assigned next?  (MRV)
§ In what order should its values be tried?  (LCV)

§ Structure: Can we exploit the problem structure?
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§ A simple form of propagation makes sure all arcs are consistent:
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Arc Consistency of an Entire CSP
§ A simple form of propagation makes sure all arcs are consistent:

§ Important: If X loses a value, neighbors of X need to be rechecked!
§ Arc consistency detects failure earlier than forward checking
§ Can be run as a preprocessor or after each assignment 
§ What’s the downside of enforcing arc consistency?

Remember: Delete 
from  the tail!

WA SA

NT Q

NSW

V



Enforcing Arc Consistency in a CSP

§ Runtime: O(n2d3), can be reduced to O(n2d2)
§ … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]
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Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain
§ Aka most constrained variables
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Ordering: Minimum Remaining Values

§ Variable Ordering: Minimum remaining values (MRV):
§ Choose the variable with the fewest legal left values in its domain
§ Aka most constrained variables

§ Why min rather than max?
§ Also called “most constrained variable”
§ “Fail-fast” ordering



§ Tie-breaker among Minimum remaining values 
§ Choose variable involved in largest # of constraints 

on remaining variables

• After assigning SA to be blue, WA, NT, Q, NSW and V all have 
just two values left.

• But WA and V have only one constraint (WA has constraint 
with NT, and V with NSW) on remaining variables and T none, 
so choose one of NT, Q & NSW (each of which has 2 cons. left)



Ordering: Least Constraining Value

§ Value Ordering: Least Constraining Value
§ Given a choice of variable, choose the least 

constraining value
§ I.e., the one that rules out the fewest values in 

the remaining variables
§ Note that it may take some computation to 

determine this!  (E.g., rerunning filtering)
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Ordering: Least Constraining Value

§ Value Ordering: Least Constraining Value
§ Given a choice of variable, choose the least 

constraining value
§ I.e., the one that rules out the fewest values in 

the remaining variables
§ Note that it may take some computation to 

determine this!  (E.g., rerunning filtering)

§ Why least rather than most?

§ Combining these ordering ideas makes
 1000 queens feasible



Demo: Coloring -- Backtracking + Forward Checking + Ordering
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Problem Structure

§ Extreme case: independent subproblems
§ Example: Tasmania and mainland do not interact

§ Independent subproblems are identifiable as 
connected components of constraint graph

§ Suppose a graph of n variables can be broken into 
subproblems of only c variables:
§ Worst-case solution cost is O((n/c)(dc)), linear in n
§ E.g., n = 80, d = 2, c =20
§ 280 = 4 billion years at 10 million nodes/sec
§ (4)(220) = 0.4 seconds at 10 million nodes/sec



Tree-Structured CSPs

§ Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
§ Compare to general CSPs, where worst-case time is O(dn)

§ This property also applies to probabilistic reasoning (later): an example of the relation 
between syntactic restrictions and the complexity of reasoning



Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children
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Tree-Structured CSPs
§ Algorithm for tree-structured CSPs:

§ Order: Choose a root variable, order variables so that parents precede children

§ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
§ Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

§ Runtime: O(n d2)  (why?)
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Tree-Structured CSPs

§ Claim 1: After backward pass, all root-to-leaf arcs are consistent
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§ Proof: Each X®Y was made consistent at one point and Y’s domain could not have 

been reduced thereafter (because Y’s children were processed before Y)
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Tree-Structured CSPs

§ Claim 1: After backward pass, all root-to-leaf arcs are consistent
§ Proof: Each X®Y was made consistent at one point and Y’s domain could not have 

been reduced thereafter (because Y’s children were processed before Y)

§ Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
§ Proof: Induction on position

§ Why doesn’t this algorithm work with cycles in the constraint graph?

§ Note: we’ll see this basic idea again with Bayes’ nets



Improving Structure



Nearly Tree-Structured CSPs

§ Conditioning: instantiate a variable, prune its neighbors' domains

§ Cutset conditioning: instantiate (in all ways) a set of variables such that 
the remaining constraint graph is a tree

§ Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c



Cutset Conditioning
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Cutset Conditioning

SA

SA SA SA

Instantiate the cutset 
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset



Cutset Quiz

§ Find the smallest cutset for the graph below.



Iterative Improvement



Iterative Algorithms for CSPs

§ Local search methods typically work with “complete” states, i.e., all variables assigned
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Iterative Algorithms for CSPs

§ Local search methods typically work with “complete” states, i.e., all variables assigned

§ To apply to CSPs:
§ Take an assignment with unsatisfied constraints
§ Operators reassign variable values
§ No fringe!  Live on the edge.
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Iterative Algorithms for CSPs

§ Local search methods typically work with “complete” states, i.e., all variables assigned

§ To apply to CSPs:
§ Take an assignment with unsatisfied constraints
§ Operators reassign variable values
§ No fringe!  Live on the edge.

§ Algorithm: While not solved,
§ Variable selection: randomly select any conflicted variable
§ Value selection: min-conflicts heuristic:

§ Choose a value that violates the fewest constraints
§ I.e., hill climb with h(n) = total number of violated constraints



Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]
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Example: 4-Queens

§ States: 4 queens in 4 columns (44 = 256 states)
§ Operators: move queen in column
§ Goal test: no attacks
§ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]



Basic Local Search Algorithm
Assign one domain value di to each variable vi

while no solution & not stuck & not timed out:
bestCost ¬¥; bestList ¬ [ ];
for each variable vi where Cost(Value(vi)) > 0

for each domain value di of vi 
if Cost(di) < bestCost

bestCost ¬ Cost(di)
bestList ¬ [di]

else if Cost(di) = bestCost
bestList ¬ bestList È di

Take a randomly selected move from bestListSlide



Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Slide



Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Slide



Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Slide

Take least cost
move then try
another 
Queen



Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Slide

Take least cost
move then try
another 
Queen

0 4 4 41 1 1 1



Place 8 Queens
randomly on
the board

Eight Queens using Local Search

Pick a Queen:
Calculate cost
of each move 3 1 054 111

Slide

Take least cost
move then try
another 
Queen

3 3 3 21 1 1 12

…and so on, until….
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Calculate cost
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Video of Demo Iterative Improvement – Coloring
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Performance of Min-Conflicts

§ Given random initial state, can solve n-queens in almost constant time for arbitrary 
n with high probability (e.g., n = 10,000,000)

§ The same appears to be true for any randomly-generated CSP except in a narrow 
range of the ratio



Summary: CSPs

§ CSPs are a special kind of search problem:
§ States are partial assignments
§ Goal test defined by constraints

§ Basic solution: backtracking search

§ Speed-ups:
§ Ordering
§ Filtering
§ Structure

§ Iterative min-conflicts is often effective in practice



More Examples
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X1
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{1,2,3,4}

X1 can’t be 1, let’s try 2
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Can we eliminate any other values?
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Arc constancy eliminates x3=3 because it’s not
consistent with X2’s remaining values

X
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4-Queens Problem
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There is only one solution with X1=2
50



Sudoku
§ Digit placement puzzle on 9x9 grid with unique answer
§ Given an initial partially filled grid, fill remaining squares 

with a digit between 1 and 9
§ Each column, row, and nine 3×3 sub-grids must contain 

all nine digits

• Some initial configurations are easy to solve and 
others very difficult Slide

http://en.wikipedia.org/wiki/Sudoku


Sudoku Example

How can we set this up as a CSP?

initial problem a solution

52



# Sample problems
easy = [
  [0,9,0,7,0,0,8,6,0],
  [0,3,1,0,0,5,0,2,0],
  [8,0,6,0,0,0,0,0,0],
  [0,0,7,0,5,0,0,0,6],
  [0,0,0,3,0,7,0,0,0],
  [5,0,0,0,1,0,7,0,0],
  [0,0,0,0,0,0,1,0,9],
  [0,2,0,6,0,0,0,5,0],
  [0,5,4,0,0,8,0,7,0]]

hard = [
  [0,0,3,0,0,0,4,0,0],
  [0,0,0,0,7,0,0,0,0],
  [5,0,0,4,0,6,0,0,2],
  [0,0,4,0,0,0,8,0,0],
  [0,9,0,0,3,0,0,2,0],
  [0,0,7,0,0,0,5,0,0],
  [6,0,0,5,0,2,0,0,1],
  [0,0,0,0,9,0,0,0,0],
  [0,0,9,0,0,0,3,0,0]]

very_hard = [
  [0,0,0,0,0,0,0,0,0],
  [0,0,9,0,6,0,3,0,0],
  [0,7,0,3,0,4,0,9,0],
  [0,0,7,2,0,8,6,0,0],
  [0,4,0,0,0,0,0,7,0],
  [0,0,2,1,0,6,5,0,0],
  [0,1,0,9,0,5,0,4,0],
  [0,0,8,0,2,0,7,0,0],
  [0,0,0,0,0,0,0,0,0]]Slide

def sudoku(initValue):
    p = Problem()
    # Define a variable for each cell: 11,12,13...21,22,23...98,99
    for i in range(1, 10) :
        p.addVariables(range(i*10+1, i*10+10), range(1, 10))
    # Each row has different values
    for i in range(1, 10) :
        p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10))
    # Each column has different values
    for i in range(1, 10) :
        p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10))
    # Each 3x3 box has different values
    p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33])
    p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63])
    p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93])

    p.addConstraint(AllDifferentConstraint(), [14,15,16,24,25,26,34,35,36])
    p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66])
    p.addConstraint(AllDifferentConstraint(), [74,75,76,84,85,86,94,95,96])

    p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39])
    p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69])
    p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99])

    # add unary constraints for cells with initial non-zero values
    for i in range(1, 10) :
        for j in range(1, 10):
            value = initValue[i-1][j-1]
            if value:
                p.addConstraint(lambda var, val=value: var == val, (i*10+j,))
    return p.getSolution()


