CMSC 471

Constraint Satisfaction Problems Il|

Instructor: KMA Solaiman

These slides were modified from Dan Klein and Pieter Abbeel at UC Berkeley [ai.berkeley.edu] and Frank Ferraro [ferraro@umbc.edu].



Today

= Efficient Solution of CSPs

® | ocal Search




Reminder: CSPs

o CSPS: @
= \/ariables
= Domains
= Constraints

-

i
H

= Implicit (provide code to compute)
= Explicit (provide a list of the legal tuples)
= Unary/ Binary / N-ary

" Goals:

= Here: find any solution
= Also: find all, find best, etc.




Backtracking Example

D



Backtracking Example

NS

— ] —

o &



Backtracking Example

D

— |

o ¢ 5

/\

e &




Backtracking Example

D

— |

- ¢ ¢




Backtracking Example

e

A

- ¢ &
—
"o

&S

oo




Improving Backtracking

General-purpose ideas give huge gains in speed
= .. butit’sall still NP-hard

Filtering: Can we detect inevitable failure early?

Ordering:
= Which variable should be assigned next? (MRV)
= |n what order should its values be tried? (LCV)

Structure: Can we exploit the problem structure?
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Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:
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Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

NT i WA NT Q NSW Y, SA
A Tw I | 1 [m _ [T H] —|
Vv \ /

= |mportant: If X loses a value, neighbors of X need to be rechecked!

" Arc consistency detects failure earlier than forward checking
. Remember: Delete
®= Can be run as a preprocessor or after each assignment from the taill

= What's the downside of enforcing arc consistency?



Enforcing Arc Consistency in a CSP

function AC-3( csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xy, ..., X}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;, X;) then
for each X} in NEIGHBORS[.X] do
add (X, X)) to queue

function REMOVE-INCONSISTENT-VALUES( X, X;) returns true iff succeeds
removed < false
for each z in DoMAIN[X;] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete 2 from DOMAIN[X;]; removed — true
return removed

=  Runtime: O(n%d3), can be reduced to O(n?%d?)
= ... but detecting all possible future problems is NP-hard — why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]
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Ordering: Minimum Remaining Values

» Variable Ordering: Minimum remaining values (MRV):

= Choose the variable with the fewest legal left values in its domain
= Aka most constrained variables
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Ordering: Minimum Remaining Values

» Variable Ordering: Minimum remaining values (MRV):

" Choose the variable with the fewest legal left values in its domain
= Aka most constrained variables

SSI SSE SSEA oS

= Why min rather than max?

= Also called “most constrained variable”
= “Fail-fast” ordering




= Tie-breaker among Minimum remaining values

Tasmania

" Choose variable involved in largest # of constraints
on remaining variables

O

e After assigning SA to be blue, WA, NT, Q, NSW and V all have
just two values left.
e But WA and V have only one constraint (WA has constraint

with NT, and V with NSW) on remaining variables and T none,
so choose one of NT, Q & NSW (each of which has 2 cons. left)




Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value *
= Given a choice of variable, choose the least ‘\_L,;«
constraining value
= |.e., the one that rules out the fewest values in ‘\_Lt <
the remaining variables ‘\_L%
= Note that it may take some computation to

determine this! (E.g., rerunning filtering)
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Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value *
= Given a choice of variable, choose the least ‘\_L,;«
constraining value
= |.e., the one that rules out the fewest values in ‘\_Lb <
the remaining variables ‘\_L%
= Note that it may take some computation to

determine this! (E.g., rerunning filtering)

= Why least rather than most?

= Combining these ordering ideas makes
1000 queens feasible




Demo: Coloring -- Backtracking + Forward Checking + Ordering
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Problem Structure

Extreme case: independent subproblems
= Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as
connected components of constraint graph

Suppose a graph of n variables can be broken into
subproblems of only c variables:

= Worst-case solution cost is O((n/c)(d®)), linear in n

= Eg,n=80,d=2,c=20

= 280 =4 billion years at 10 million nodes/sec

= (4)(2%°) = 0.4 seconds at 10 million nodes/sec




Tree-Structured CSPs

= Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
= Compare to general CSPs, where worst-case time is O(d")

*= This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning
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= Order: Choose a root variable, order variables so that parents precede children
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Tree-Structured CSPs

= Algorithm for tree-structured CSPs:
= Order: Choose a root variable, order variables so that parents precede children

2

= Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X;),X;)
= Assign forward: Fori=1:n, assign X; consistently with Parent(X)

= Runtime: O(n d?) (why?)
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Tree-Structured CSPs

Claim 1: After backward pass, all root-to-leaf arcs are consistent

Proof: Each X—Y was made consistent at one point and Y’s domain could not have
been reduced thereafter (because Y’s children were processed before Y)

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
Proof: Induction on position

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets



Improving Structure




Nearly Tree-Structured CSPs
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= Conditioning: instantiate a variable, prune its neighbors' domains

= Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

= Cutset size c gives runtime O( (d¢) (n-c) d?), very fast for small c
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Cutset Conditioning
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Solve the residual CSPs
(tree structured)




Cutset Quiz

" Find the smallest cutset for the graph below.




Iterative Improvement




Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned



Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

@




Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

= To apply to CSPs:
= Take an assignment with unsatisfied constraints
= Qperators reassign variable values
= No fringe! Live on the edge.

@




Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

= To apply to CSPs:
= Take an assignment with unsatisfied constraints
= Qperators reassign variable values
= No fringe! Live on the edge.

0 00




Iterative Algorithms for CSPs

" Local search methods typically work with “complete” states, i.e., all variables assigned

= To apply to CSPs:

= Take an assignment with unsatisfied constraints
= Qperators reassign variable values

= No fringe! Live on the edge.

0 00

= Algorithm: While not solved,

= Variable selection: randomly select any conflicted variable
= Value selection: min-conflicts heuristic:

= Choose a value that violates the fewest constraints

= |.e., hill climb with h(n) = total number of violated constraints



Example: 4-Queens

= States: 4 queens in 4 columns (4% = 256 states)
= QOperators: move queen in column

= Goal test: no attacks

= Evaluation: c(n) = number of attacks

[Demo: n-queens — iterative improvement (L5D1)]
[Demo: coloring — iterative improvement]
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Example: 4-Queens

= States: 4 queens in 4 columns (4% = 256 states)
= QOperators: move queen in column

= Goal test: no attacks

= Evaluation: c(n) = number of attacks

[Demo: n-queens — iterative improvement (L5D1)]
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Basic Local Search Algorithm

Assign one domain value d. to each variable v.
while no solution & not stuck & not timed out:
bestCost <— oo; bestList < [];

for each variable v, where Cost(Value(v,)) >0
for each domain value d. of v,
if Cost(d.) < bestCost
bestCost <— Cost(d))
bestList «— [d/]
else if Cost(d,) = bestCost
bestList < bestList U d.
Take a randomly selected move fromebestList



Eight Queens using Local Search

Place 8 Queens
randomly on
the board
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Pick a Queen:
Calculate cost
of each move
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...and so on, until....
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Eight Queens using Local Search

Answer Found




Video of Demo lterative Improvement — Coloring
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Performance of Min-Conflicts

" Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n =10,000,000)
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Performance of Min-Conflicts

= Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n =10,000,000)

= The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

R number of constraints i
number of variables
CPU
time

|
critical
ratio



Summary: CSPs

" CSPs are a special kind of search problem:
= States are partial assignments
" Goal test defined by constrai

w [ ™V F
S
= Basic solution: backtracking sea
= Speed-ups:
= Ordering —
= Filtering

= Structure

" |terative min-conflicts is often effective in practice



More Examples
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4-Queens Problem

X2
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X2=4 = X3=2, which ellmlnates{X4 2, X4=3}

= inconsistent!
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4-Queens Problem

3

X1
{ 121314}

X2

+
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DWW NN =
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X1 can‘tbe 1, let's try 2
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4-Queens Problem
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Can we eliminate any other values?
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4-Queens Problem

X2
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Arc constancy eliminates x3=3 because it’'s not

consistent with X2’'s remaining values®
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4-Queens Problem

3 4

X1
{ 121314}

X2

+

L
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O

DWW NN =

+0 00

{,, 4

X3
{ll 4 I}

X4

{1131}

There is only one solution with X1=2
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Sudoku

= Digit placement puzzle on 9x9 grid with unique answer

= Given an initial partially filled grid, fill remaining squares
with a digit between 1 and 9

= Each column, row, and nine 3 X 3 sub-grids must contain
all nine digits

1 2 3 4 5 6 7 8 9 1 2 38 4 5 6 7 8 9
A 3 2 6 AL418319]2|1)6]5]7
Bl9 3 5 | BlIO|6| 7314|5821
c 118 614 cl2|5]118]7]161419](3
D 811 219 oI514(8)113|219]7]|6
El7 8 EN712(9]5]16[4)1]3](8
F 617 812 FIT13[6)7]198)2]14](5
G 216 915 GI317]1216|8|915]1]|4
H S 2 3 9 HE8| 1141251317169
I 5 1 3 116191514111 713]8](2

e Some initial configurations are easy to solve and

others very difficult Slide


http://en.wikipedia.org/wiki/Sudoku

Sudoku Example

6517
1
41913

p—

91716
11318

1[4
71619

7131812

312

819]5

81716

1

3161719182145

1
2(915]16]4

1141215]3

916173145182

418131912
cl215]1

A
B

51418
7
1

D
E
F

619|5]4
a solution

31712
8

G
H
I

initial problem

How can we set this up as a C&P?



def sudoku(initValue):

o = Problem() # Sample problems

# Define a variable for each cell: 11,12,13...21,22,23...98,99 eag»;=o[7 00860
for i in range(1, 10) : {0:3:1:0:0:5:0:2:0%:
p.addVariables(range(i*10+1, i*10+10), range(1, 10)) 8,0,6,0,0,0,0,0,0],
# Each row has different values [0,0,7,0,5,0,0,0,6],
foriinrange(1, 10) : [0,0,0,3,0,7,0,0,0],
p.addConstraint(AllDifferentConstraint(), range(i*10+1, i*10+10)) [5,0,0,0,1,0,7,0,0],
# Each column has different values [0,0,0,0,0,0,1,0,9],
for i in range(1, 10) : [0,2,0,6,0,0,0,5,0],
p.addConstraint(AllDifferentConstraint(), range(10+i, 100+i, 10)) [0,5,4,0,0,8,0,7,0]]
# Each 3x3 box has different values hard = [
p.addConstraint(AllDifferentConstraint(), [11,12,13,21,22,23,31,32,33]) [0,0,3,0,0,0,4,0,0],
p.addConstraint(AllDifferentConstraint(), [41,42,43,51,52,53,61,62,63]) [0,0,0,0,7,0,0,0,0],
p.addConstraint(AllDifferentConstraint(), [71,72,73,81,82,83,91,92,93]) [5,0,0,4,0,6,0,0,2],
[0,0,4,0,0,0,8,0,0],
p.addConstraint(AlIDifferentConstraint(), [14,15,16,24,25,26,34,35,36]) [0,9,0,0,3,0,0,2,0],
p.addConstraint(AllDifferentConstraint(), [44,45,46,54,55,56,64,65,66]) [0,0,7,0,0,0,5,0,0],
p.addConstraint(AlIDifferentConstraint(), [74,75,76,84,85,86,94,95,96]) [6,0,0,5,0,2,0,0,1],
[0,0,0,0,9,0,0,0,0],
p.addConstraint(AllDifferentConstraint(), [17,18,19,27,28,29,37,38,39]) [0,0,9,0,0,0,3,0,0]]
p.addConstraint(AllDifferentConstraint(), [47,48,49,57,58,59,67,68,69]) very_hard =I[
p.addConstraint(AllDifferentConstraint(), [77,78,79,87,88,89,97,98,99]) [0’0_’0’0’0'0’0’0’0]’
# add unary constraints for cells with initial non-zero values {8’3'3'?'8'2'3’8’8%'
foriinrange(1, 10) : [0:0:7:2:0:8:6:0:0]:
forjin range(1, 10): [0,4,0,0,0,0,0,7,01,
value = initValue[i-1][j-1] [0,0,2,1,0,6,5,0,0],
if value: [0,1,0,9,0,5,0,4,0],
p.addConstraint(lambda var, val=value: var == val, (i*10+j,)) [0,0,8,0,2,0,7,0,0],

return p.getSolution() [0,0,0,0,0,0; I,G,%]]




