
CMSC 471
Artificial Intelligence

Search

KMA Solaiman – ksolaima@umbc.edu

Some material adopted from notes
by Charles R. Dyer, University of

Wisconsin-Madison
Many slides courtesy Tim Finin and Frank Ferraro

mailto:ksolaima@umbc.edu

Classic uninformed search methods

• The four classic uninformed search methods
–Breadth first search (BFS)
–Depth first search (DFS)
–Uniform cost search (generalization of BFS)
– Iterative deepening (blend of DFS and BFS)

• To which we can add another technique
–Bi-directional search (hack on BFS)

Informed (Heuristic) Search

• Heuristic search
• Best-first search
–Greedy search
–Beam search
–A* Search

• Memory-conserving variations of A*
• Heuristic functions

Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

ℎ(𝑛) is admissible iff ℎ 𝑛 ≤ the lowest actual
cost from 𝑛-to-goal

ℎ(𝑛) is consistent iff
ℎ 𝑛 ≤ lowestcost 𝑛, 𝑛′ + ℎ(𝑛!)

Informed methods add
domain-specific information

• Select best path along which to continue
searching

• h(n): estimates goodness of node n
• h(n) = estimated cost (or distance) of

minimal cost path from n to a goal state.
• Based on domain-specific information and

computable from current state description
that estimates how close we are to a goal

Heuristics
• All domain knowledge used in search is encoded

in the heuristic function, h(<node>)
• Examples:
–8-puzzle: number of tiles out of place
–8-puzzle: sum of distances each tile is from its goal
–Missionaries & Cannibals: # people on starting river

bank
• In general
– ℎ 𝑛 ≥ 0	for all nodes n
– ℎ(𝑛) = 0 implies that n is a goal node
– ℎ 𝑛 = ∞ implies n is a dead-end that can’t lead to

goal

Best-first search

• Search algorithm that improves depth-
first search by expanding most promising
node chosen according to heuristic rule

• Order nodes on nodes list by increasing
value of an evaluation function, f(n),
incorporating domain-specific information

http://en.wikipedia.org/wiki/Best_first_search

Best-first search

• Search algorithm that improves depth-
first search by expanding most promising
node chosen according to heuristic rule

• Order nodes on nodes list by increasing
value of an evaluation function, f(n),
incorporating domain-specific information

• This is a generic way of referring to the
class of informed methods

http://en.wikipedia.org/wiki/Best_first_search

Greedy best first search
• A greedy algorithm makes locally optimal choices in hope of

finding a global optimum
• Uses evaluation function f(n) = h(n), sorting nodes by

increasing values of f
• Selects node to expand appearing closest to goal (i.e., node

with smallest f value)
• Not complete
• Not admissible, as in example
– Assume arc costs = 1, greedy search finds goal g, with solution cost

of 5
–Optimal solution is path to goal with cost 3

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Admissible_decision_rule

Greedy best first search example

• Proof of non-admissibility
– Assume arc costs = 1, greedy

search finds goal g, with
solution cost of 5

– Optimal solution is path to
goal with cost 3

a

hb

c

d

e

g

i

g2

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0

Beam search
• Use evaluation function f(n), but maximum size

of the nodes list is k, a fixed constant
• Only keep k best nodes as candidates for

expansion, discard rest
• k is the beam width
• More space efficient than greedy search, but

may discard nodes on a solution path
• As k increases, approaches best first search
• Complete?
• Admissible?

http://en.wikipedia.org/wiki/Beam_search

Beam search
• Use evaluation function f(n), but maximum size

of the nodes list is k, a fixed constant
• Only keep k best nodes as candidates for

expansion, discard rest
• k is the beam width
• More space efficient than greedy search, but

may discard nodes on a solution path
• As k increases, approaches best first search
• Not complete
• Not admissible

http://en.wikipedia.org/wiki/Beam_search

We’ve got to be able to do
better, right?

Let’s think about car trips…

A* Search
Use an evaluation function

f(n) = g(n) + h(n)

minimal-cost path from
the start state to state n

cost estimate from state n
to the goal

estimated total cost from
start to goal via state n

A* Search
•Use as an evaluation function

f(n) = g(n) + h(n)
•g(n) = minimal-cost path from

the start state to state n
•g(n) adds “breadth-first”term

to evaluation function
•Ranks nodes on search frontier by

estimated cost of solution from
start node via given node to goal

S

BA

D
G

1 5 8

3

0

1

5

C

1

9

4

5
8

9

g(d)=4
h(d)=9
f(d)=13

E

7

8

g(b)=5
h(b)=5
f(d)=10

g(c)=8
h(c)=1
f(c)=9

A* Search
•Use as an evaluation function

f(n) = g(n) + h(n)
•g(n) = minimal-cost path from

the start state to state n
•g(n) adds “breadth-first”term

to evaluation function
•Ranks nodes on search frontier by

estimated cost of solution from
start node via given node to goal

S

BA

D
G

1 5 8

3

0

1

5

C

1

9

4

5
8

9

g(d)=4
h(d)=9
f(d)=13

C is chosen next to expand

E

7

8

g(b)=5
h(b)=5
f(d)=10

g(c)=8
h(c)=1
f(c)=9

A* Search
•Use an evaluation function

f(n) = g(n) + h(n)

•g(n) term adds “breadth-first” component to evaluation
function
•Ranks nodes on search frontier by estimated cost of solution

from start node via given node to goal
•Not complete if h(n) can = ∞
• Is it admissible?

minimal-cost path from
the start state to state n

cost estimate from state n
to the goal

estimated total cost from
start to goal via state n

A*
• Pronounced “a star”
• h is admissible when h(n) <= h*(n) holds
–h*(n) = true cost of minimal cost path from n to a goal

• Using an admissible heuristic guarantees that 1st
solution found will be an optimal one
–With an admissible heuristic, A* is cost-optimal

• A* is complete whenever branching factor is finite
and every action has fixed, positive cost
• A* is admissible

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). "A Formal Basis for the Heuristic Determination of
Minimum Cost Paths". IEEE Transactions on Systems Science and Cybernetics SSC4 4 (2): 100–107.

http://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers

Implementing A*

Q: Can this be an
instance of our
general search

algorithm?

Figure
3.3

Implementing A*

Q: Can this be an
instance of our
general search

algorithm?

Figure
3.3

A: Yup! Just make the
fringe a priority

queue ordered by
𝑓(𝑛)

Alternative A* Pseudo-code
1 Put the start node S on the nodes list, called OPEN
2 If OPEN is empty, exit with failure
3 Select node in OPEN with minimal f(n) and place on CLOSED
4 If n is a goal node, collect path back to start and stop
5 Expand n, generating all its successors and attach to them

pointers back to n. For each successor n' of n
1 If n’ not already on OPEN or CLOSED
• put n' on OPEN
• compute h(n'), g(n')=g(n)+ c(n,n'), f(n')=g(n')+h(n')

2 If n’ already on OPEN or CLOSED and if g(n') is lower for new
version of n', then:
• Redirect pointers backward from n’ on path with lower g(n’)
• Put n' on OPEN

Example search space

S

CBA

D GE

Example search space

S

CBA

D GE

start state

goal state

Example search space

S

CBA

D GE

start state

1 5 8

9 4 5
3
7

arc cost

goal state

Example search space

S

CBA

D GE

start state

1 5 8

9 4 5
3
7

arc cost

goal state

0

1 85

4 8 9
g value (current)

Example search space

S

CBA

D GE

1 5 8

9 4 5
3
7

8

8 4 3

¥¥ 0

start state

goal state

arc cost

h value

0

1

4 8 9

85

g value (current)

Example search space

S

CBA

D GE

1 5 8

9 4 5
3
7

8

8 4 3

¥¥ 0

start state

goal state

arc cost

h value

parent pointer
(current) 0

1

4 8 9

85

g value (current)

Example

n g(n) h(n) f(n) h*(n)
S 0 8 8 9

• h*(n) is (hypothetical) perfect heuristic (an oracle)
• Since h(n) <= h*(n) for all n, h is admissible (optimal)
• Optimal path = S B G with cost 9

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

Example

n g(n) h(n) f(n) h*(n)
S 0 8 8 9
A 1 8 9 9
B 5 4 9 4
C 8 3 11 5
D 4 inf inf inf
E 8 inf inf inf
G 9 0 9 0

• h*(n) is (hypothetical) perfect heuristic (an oracle)
• Since h(n) <= h*(n) for all n, h is admissible (optimal)
• Optimal path = S B G with cost 9

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

The table and graph show
values for the entire space,
but we must discover or
compute them during the
search

Greedy search

f(n) = h(n)
node expanded nodes list
 { S(8) }

what’s next???

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

Greedy search

f(n) = h(n)
node expanded nodes list
 { S(8) }
 S { C(3) B(4) A(8) }
 C { G(0) B(4) A(8) }
 G { B(4) A(8) }

• Solution path found is S C G, 3 nodes expanded.
• See how fast the search is!! But it is NOT optimal.

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

A* search
f(n) = g(n) + h(n)

node exp. nodes list
 { S(8) }

What’s next?

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

A* search
f(n) = g(n) + h(n)

node exp. nodes list
 { S(8) }

 S { A(9) B(9) C(11) }
 What’s next?

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

h(S)=8
h(A)=8
h(B)=4
h(C)=3
h(D)=inf
h(E)=inf
h(G)=0

h(n)

A* search
f(n) = g(n) + h(n)

node exp. nodes list
 { S(8) }

 S { A(9) B(9) C(11) }
 A { B(9) G(10) C(11) D(inf) E(inf) }

 What’s next?

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

A* search
f(n) = g(n) + h(n)

node exp. nodes list
 { S(8) }

 S { A(9) B(9) C(11) }
 A { B(9) G(10) C(11) D(inf) E(inf) }

 B { G(9) G(10) C(11) D(inf) E(inf) }

 What’s next?

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

A* search
f(n) = g(n) + h(n)

node exp. nodes list
 { S(8) }
 S { A(9) B(9) C(11) }
 A { B(9) G(10) C(11) D(inf) E(inf) }
 B { G(9) G(10) C(11) D(inf) E(inf) }
 G { C(11) D(inf) E(inf) }

• Solution path found is S B G, 4 nodes expanded..
• Still pretty fast. And optimal, too.

S

CBA

D GE

1 5 8

9
4 5

3
7

8

8 4 3

¥¥ 0

0

1

4 8 9

85

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done
• Null heuristic: If h(n) = 0 for all n, then it is an admissible

heuristic and A* acts like uniform-cost search

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done
• Null heuristic: If h(n) = 0 for all n, then it is an admissible

heuristic and A* acts like uniform-cost search
• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal

nodes, then h2 is a better heuristic than h1

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done
• Null heuristic: If h(n) = 0 for all n, then it is an admissible

heuristic and A* acts like uniform-cost search
• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal

nodes, then h2 is a better heuristic than h1
– If A1* uses h1, and A2* uses h2, then every node

expanded by A2* is also expanded by A1*
 i.e., A1 expands at least as many nodes as A2*
–We say that A2* is better informed than A1*

Observations on A*
• Perfect heuristic: If h(n) = h*(n) for all n, only nodes on an

optimal solution path expanded; no extra work is done
• Null heuristic: If h(n) = 0 for all n, then it is an admissible

heuristic and A* acts like uniform-cost search
• Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal

nodes, then h2 is a better heuristic than h1
– If A1* uses h1, and A2* uses h2, then every node

expanded by A2* is also expanded by A1*
 i.e., A1 expands at least as many nodes as A2*
–We say that A2* is better informed than A1*
• The closer h to h*, the fewer extra nodes expanded

Proof of the optimality of A*
• Assume that A* has selected G2, a goal state

with a suboptimal solution, i.e., g(G2) > f*
• Proof by contradiction shows it’s impossible

Proof of the optimality of A*
• Assume that A* has selected G2, a goal state

with a suboptimal solution, i.e., g(G2) > f*
• Proof by contradiction shows it’s impossible
–Choose a node n on an optimal path to G
–Because h(n) is admissible, f* >= f(n)
– If we choose G2 instead of n for expansion, then

f(n) >= f(G2)
–This implies f* >= f(G2)
–G2 is a goal state: h(G2) = 0, f(G2) = g(G2).
–Therefore f* >= g(G2) => g(G2) <= f*
–Contradiction

Dealing with hard problems
• For large problems, A* may require too much

space
• Variations conserve memory: IDA* and SMA*
• IDA*, iterative deepening A*, uses successive

iteration with growing limits on f, e.g.
– A* but don’t consider a node n where f(n) >10
– A* but don’t consider a node n where f(n) >20
– A* but don’t consider a node n where f(n) >30, ...

• SMA* -- Simplified Memory-Bounded A*
– Uses queue of restricted size to limit memory use

IDA*: iterative deepening A*

Use successive iteration with growing limits on f, e.g.
– A* but don’t consider a node n where f(n) >10
– A* but don’t consider a node n where f(n) >20
– A* but don’t consider a node n where f(n) >30, ...

SMA*: Simplified Memory-Bounded A*

Uses queue of restricted size to limit memory use

How to find good heuristics
Some options (mix-and-match):
• If h1(n) < h2(n) <= h*(n) for all n, h2 is better than h1

– h2 dominates h1
• Relaxing problem: remove constraints for easier

problem; use its solution cost as heuristic function
• Max of two admissible heuristics is a Combining

heuristics: admissible heuristic, and it’s better!
• Use statistical estimates to compute h; may lose

admissibility
• Identify good features, then use machine learning to

find heuristic function; also may lose admissibility

Pruning:
Dealing with Large Search Spaces

Cycle pruning

Don’t add a node to the fringe
if you’ve already expanded it
(it’s already on a path you’ve
considered/are considering)

Q: What type of search-space
would this be approach be

applicable for?

Multiple-path pruning

Pruning:
Dealing with Large Search Spaces

Cycle pruning

Don’t add a node to the fringe
if you’ve already expanded it
(it’s already on a path you’ve
considered/are considering)

Q: What type of search-space
would this be approach be

applicable for?

Multiple-path pruning

Core idea: there may be
multiple possible solutions,

but you only need one

Maintain an “explored”
(sometimes called “closed”)
set of nodes at the ends of

paths; discard a path if a path
node appears in this set

Q: Does this return an optimal
solution?

Optimality with Multiple-Path Pruning

Some options to find the optimal solution
(pulled from Ch 3.7.2)
• Make sure that the first path found to any

node is a lowest-cost path to that node, then
prune all subsequent paths found to that
node. OR

Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled
from Ch 3.7.2)
• Make sure that the first path found to any node is

a lowest-cost path to that node, then prune all
subsequent paths found to that node. OR

• If the search algorithm finds a lower-cost path to
a node than one already found, it could remove
all paths that used the higher-cost path to the
node. OR

Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled from Ch
3.7.2)
• Make sure that the first path found to any node is a lowest-

cost path to that node, then prune all subsequent paths
found to that node. OR

• If the search algorithm finds a lower-cost path to a node
than one already found, it could remove all paths that used
the higher-cost path to the node. OR

• Whenever the search finds a lower-cost path to a node
than a path to that node already found, it could incorporate
a new initial section on the paths that have extended the
initial path.

A* and Multiple-Path Pruning

If ℎ 𝑛 is consistent, A* with multiple-path
pruning will find an optimal solution

Core Idea: Why?

A* and Multiple-Path Pruning

If ℎ 𝑛 is consistent, A* with multiple-path
pruning will find an optimal solution

Core Idea: Why? (proof by contradiction: see
Proposition 3.2 in Ch 3.7.2)

Summary: Informed search
•Best-first search is general search where minimum-cost

nodes (w.r.t. some measure) are expanded first
•Greedy search uses minimal estimated cost h(n) to goal

state as measure; reduces search time, but is neither
complete nor optimal
•A* search combines uniform-cost search & greedy

search: f(n) = g(n) + h(n). Handles state repetitions &
h(n) never overestimates
–A* is complete & optimal, but space complexity high
–Time complexity depends on quality of heuristic function
–IDA* and SMA* reduce the memory requirements of A*

Summary (Fig 3.11)

