CMSC 471
 Artificial Intelligence

Search

KMA Solaiman - ksolaima@umbc.edu

Some material adopted from notes
by Charles R. Dyer, University of Wisconsin-Madison

Classic uninformed search methods

- The four classic uninformed search methods
- Breadth first search (BFS)
- Depth first search (DFS)
- Uniform cost search (generalization of BFS)
- Iterative deepening (blend of DFS and BFS)
- To which we can add another technique
-Bi-directional search (hack on BFS)

Informed (Heuristic) Search

- Heuristic search
- Best-first search
-Greedy search
-Beam search
-A* Search
- Memory-conserving variations of A^{*}
- Heuristic functions

Heuristics, More Formally

$h(n)$ is a heuristic function, that maps a state n to an estimated cost from n-to-goal
$h(n)$ is admissible iff $h(n) \leq$ the lowest actual cost from n-to-goal
$h(n)$ is consistent iff
$h(n) \leq$ lowestcost $\left(n, n^{\prime}\right)+h\left(n^{\prime}\right)$

Informed methods add domain-specific information

- Select best path along which to continue searching
- $\mathrm{h}(\mathrm{n})$: estimates goodness of node n
- $h(n)=$ estimated cost (or distance) of minimal cost path from n to a goal state.
- Based on domain-specific information and computable from current state description that estimates how close we are to a goal

Heuristics

- All domain knowledge used in search is encoded in the heuristic function, h (<node>)
- Examples:
-8-puzzle: number of tiles out of place
-8-puzzle: sum of distances each tile is from its goal
-Missionaries \& Cannibals: \# people on starting river bank
- In general
$-h(n) \geq 0$ for all nodes n
$-h(n)=0$ implies that n is a goal node
$-h(n)=\infty$ implies n is a dead-end that can't lead to goal

Best-first search

- Search algorithm that improves depthfirst search by expanding most promising node chosen according to heuristic rule
- Order nodes on nodes list by increasing value of an evaluation function, $f(n)$, incorporating domain-specific information

Best-first search

- Search algorithm that improves depthfirst search by expanding most promising node chosen according to heuristic rule
- Order nodes on nodes list by increasing value of an evaluation function, $\mathbf{f}(\mathbf{n})$, incorporating domain-specific information
- This is a generic way of referring to the class of informed methods

Greedy best first search

- A greedy algorithm makes locally optimal choices in hope of finding a global optimum
- Uses evaluation function $f(n)=h(n)$, sorting nodes by increasing values of f
- Selects node to expand appearing closest to goal (i.e., node with smallest f value)
- Not complete
- Not admissible, as in example
- Assume arc costs =1, greedy search finds goal g, with solution cost of 5
- Optimal solution is path to goal with cost 3

Greedy best first search example

- Proof of non-admissibility
- Assume arc costs = 1, greedy search finds goal g, with solution cost of 5
- Optimal solution is path to goal with cost 3

Beam search

- Use evaluation function $f(n)$, but maximum size of the nodes list is k, a fixed constant
- Only keep k best nodes as candidates for expansion, discard rest
- k is the beam width
- More space efficient than greedy search, but may discard nodes on a solution path
- As k increases, approaches best first search
- Complete?
- Admissible?

Beam search

- Use evaluation function $f(n)$, but maximum size of the nodes list is k, a fixed constant
- Only keep k best nodes as candidates for expansion, discard rest
- k is the beam width
- More space efficient than greedy search, but may discard nodes on a solution path
- As k increases, approaches best first search
- Not complete
- Not admissible

We've got to be able to do better, right?

Let's think about car trips...

A* Search

Use an evaluation function

$f(n)=g(n)+h(n)$

estimated total cost from start to goal via state n

minimal-cost path from the start state to state n
cost estimate from state n to the goal

A* Search

- Use as an evaluation function

$$
f(n)=g(n)+h(n)
$$

- $\mathrm{g}(\mathrm{n})=$ minimal-cost path from the start state to state n
- $\mathrm{g}(\mathrm{n})$ adds "breadth-first"term to evaluation function
- Ranks nodes on search frontier by estimated cost of solution from start node via given node to goal

A* Search

- Use as an evaluation function

$$
f(n)=g(n)+h(n)
$$

- $\mathrm{g}(\mathrm{n})=$ minimal-cost path from the start state to state n
- $\mathrm{g}(\mathrm{n})$ adds "breadth-first"term to evaluation function
- Ranks nodes on search frontier by estimated cost of solution from start node via given node to goal

A* Search

- Use an evaluation function

$$
f(n)=g(n)+h(n)
$$

estimated total cost from

start to goal via state n | minimal-cost path from |
| :---: |
| the start state to state n |\quad cost estimate from state n

- $\mathrm{g}(\mathrm{n})$ term adds "breadth-first" component to evaluation function
- Ranks nodes on search frontier by estimated cost of solution from start node via given node to goal
- Not complete if $\mathrm{h}(\mathrm{n})$ can $=\infty$
-Is it admissible?

A^{*}

- Pronounced "a star"
- h is admissible when $h(n)<=h *(n)$ holds
$-\mathbf{h}^{*}(\mathrm{n})=$ true cost of minimal cost path from n to a goal
- Using an admissible heuristic guarantees that 1st solution found will be an optimal one
-With an admissible heuristic, A^{*} is cost-optimal
- A^{*} is complete whenever branching factor is finite and every action has fixed, positive cost
- A^{*} is admissible

Implementing A*

Q: Can this be an instance of our general search algorithm?

Implementing A*

Q: Can this be an instance of our general search algorithm?

A: Yup! Just make the fringe a priority queue ordered by $f(n)$

Alternative A* Pseudo-code

1 Put the start node S on the nodes list, called OPEN
2 If OPEN is empty, exit with failure
3 Select node in OPEN with minimal $f(n)$ and place on CLOSED
4 If n is a goal node, collect path back to start and stop
5 Expand n, generating all its successors and attach to them pointers back to n. For each successor n ' of n
1 If n^{\prime} not already on OPEN or CLOSED

- put n ' on OPEN
- compute $h\left(n^{\prime}\right), g\left(n^{\prime}\right)=g(n)+c\left(n, n^{\prime}\right), f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)$

2 If n^{\prime} already on OPEN or CLOSED and if $g\left(n^{\prime}\right)$ is lower for new version of n^{\prime}, then:

- Redirect pointers backward from n^{\prime} on path with lower $g\left(\mathrm{n}^{\prime}\right)$
- Put n' on OPEN

Example search space

Example search space

Example search space

Example search space

Example search space

Example search space

Example

- $h^{*}(n)$ is (hypothetical) perfect heuristic (an oracle)
- Since $h(n)<=h^{*}(n)$ for all n, h is admissible (optimal)
- Optimal path $=$ S B G with cost 9

The table and graph show values for the entire space, but we must discover or compute them during the search

Example

- $h^{*}(\mathrm{n})$ is (hypothetical) perfect heuristic (an oracle)
- Since $h(n)<=h *(n)$ for all n, h is admissible (optimal)
- Optimal path $=$ S B G with cost 9

Greedy search

$f(n)=h(n)$

node expanded nodes list \{ S(8) \}
what's next???

Greedy search

$$
f(n)=h(n)
$$

node expanded

	\{ S (8) \}	
S	$\{\mathrm{C}(3) \mathrm{B}(4)$	A (8)
C	\{ G(0) B (4)	A (8)
G	\{ B(4) A (8)	\}

- Solution path found is S C G, 3 nodes expanded.
- See how fast the search is!! But it is NOT optimal.

A* search

$f(n)=g(n)+h(n)$

node exp. nodes list
\{ S (8) \}
What's next?

A* search

$f(n)=g(n)+h(n)$

node exp.	nodes list	
S	$\{S(8)\}$	
	$\{A(9)$	
	$B(9) C(11)\}$	
	What's next?	

\[

\]

A* search

$f(n)=g(n)+h(n)$

node exp. nodes list
\{ $S(8)$ \}
\{ A (9) B(9) C(11) \}
A
\{ $B(9) G(10) C(11) D(i n f) E(i n f)\}$ What's next?

A* search

$\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n})$

node exp. nodes list
\{ $S(8)$ \}
S
\{ A (9) B(9) C(11) \}
A
\{ B(9) G(10) C(11) D(inf) E(inf) \}
B
\{ G(9) G(10) C(11) D(inf) E(inf) \}
What's next?

A* search

```
f(n)=g(n)+h(n)
node exp.
    S { A(9) B(9) C(11) }
    A { B(9) G(10) C(11) D(inf) E(inf) }
    B
    G
S
A
B
G
```

```
                nodes list
```

 nodes list
 \{ $S(8)$ \}
\{ $S(8)$ \}

```
\{ G(9) G(10) C(11) D(inf) E(inf) \}
```

\{ G(9) G(10) C(11) D(inf) E(inf) \}
\{ C(11) D(inf) E(inf) \}

```
\{ C(11) D(inf) E(inf) \}
```


- Solution path found is S B G, 4 nodes expanded..
- Still pretty fast. And optimal, too.

Observations on A^{*}

- Perfect heuristic: If $h(n)=h^{*}(n)$ for all n, only nodes on an optimal solution path expanded; no extra work is done

Observations on A^{*}

- Perfect heuristic: If $h(n)=h^{*}(n)$ for all n, only nodes on an optimal solution path expanded; no extra work is done
- Null heuristic: If $h(n)=0$ for all n, then it is an admissible heuristic and A^{*} acts like uniform-cost search

Observations on A*

- Perfect heuristic: If $h(n)=h^{*}(n)$ for all n, only nodes on an optimal solution path expanded; no extra work is done
- Null heuristic: If $h(n)=0$ for all n, then it is an admissible heuristic and A^{*} acts like uniform-cost search
- Better heuristic: If h1(n) < h2(n) <= $h^{*}(n)$ for all non-goal nodes, then h 2 is a better heuristic than h 1

Observations on A^{*}

- Perfect heuristic: If $h(n)=h^{*}(n)$ for all n, only nodes on an optimal solution path expanded; no extra work is done
- Null heuristic: If $h(n)=0$ for all n, then it is an admissible heuristic and A^{*} acts like uniform-cost search
- Better heuristic: If h1(n) < h2(n) <= $h^{*}(n)$ for all non-goal nodes, then h 2 is a better heuristic than h 1
-If A1* uses h1, and A2* uses h2, then every node expanded by $\mathrm{A} 2^{*}$ is also expanded by $\mathrm{A} 1^{*}$
i.e., A1 expands at least as many nodes as A2* -We say that A2* is better informed than A1*

Observations on A*

- Perfect heuristic: If $h(n)=h^{*}(n)$ for all n, only nodes on an optimal solution path expanded; no extra work is done
- Null heuristic: If $h(n)=0$ for all n, then it is an admissible heuristic and A^{*} acts like uniform-cost search
- Better heuristic: If h1(n) < h2(n) <= h*(n) for all non-goal nodes, then h 2 is a better heuristic than h 1
-If A1* uses h1, and A2* uses h2, then every node expanded by $\mathrm{A} 2^{*}$ is also expanded by $\mathrm{A} 1^{*}$
i.e., A1 expands at least as many nodes as A2* -We say that A2* is better informed than A1*
- The closer h to h^{*}, the fewer extra nodes expanded

Proof of the optimality of A*

- Assume that A* has selected G2, a goal state with a suboptimal solution, i.e., $g(G 2)>f^{*}$
- Proof by contradiction shows it's impossible

Proof of the optimality of A*

- Assume that A* has selected G2, a goal state with a suboptimal solution, i.e., $g(G 2)>f^{*}$
- Proof by contradiction shows it's impossible
-Choose a node n on an optimal path to G
-Because $h(n)$ is admissible, $f^{*}>=f(n)$
-If we choose G 2 instead of n for expansion, then $f(n)>=f(G 2)$
-This implies $f^{*}>=f(G 2)$
$-G 2$ is a goal state: $h(G 2)=0, f(G 2)=g(G 2)$.
-Therefore $\mathrm{f}^{*}>=\mathrm{g}(\mathrm{G} 2) \quad=>\mathrm{g}(\mathrm{G} 2)<=\mathrm{f}^{*}$
-Contradiction

Dealing with hard problems

- For large problems, A* may require too much space
- Variations conserve memory: IDA* and SMA*
- IDA*, iterative deepening A* *, uses successive iteration with growing limits on f, e.g.
- A* but don't consider a node n where $f(n)>10$
- A* but don't consider a node n where $f(n)>20$
- A* but don't consider a node n where $f(n)>30, \ldots$
- SMA* -- Simplified Memory-Bounded A*
- Uses queue of restricted size to limit memory use

IDA*: iterative deepening A*

Use successive iteration with growing limits on f, e.g.

- A* but don't consider a node n where $f(n)>10$
- A* but don't consider a node n where $f(n)>20$
- A* but don't consider a node n where $f(n)>30, \ldots$

SMA*: Simplified Memory-Bounded A*

Uses queue of restricted size to limit memory use

How to find good heuristics

Some options (mix-and-match):

- If $h 1(n)<h 2(n)<=h^{*}(n)$ for all $n, h 2$ is better than $h 1$ - h2 dominates h1
- Relaxing problem: remove constraints for easier problem; use its solution cost as heuristic function
- Max of two admissible heuristics is a Combining heuristics: admissible heuristic, and it's better!
- Use statistical estimates to compute h; may lose admissibility
- Identify good features, then use machine learning to find heuristic function; also may lose admissibility

Pruning:

Dealing with Large Search Spaces

Cycle pruning
Multiple-path pruning

Don't add a node to the fringe if you've already expanded it (it's already on a path you've considered/are considering)

Q: What type of search-space would this be approach be applicable for?

Pruning:

Dealing with Large Search Spaces

Cycle pruning

Don't add a node to the fringe if you've already expanded it (it's already on a path you've considered/are considering)

Q: What type of search-space would this be approach be applicable for?

Multiple-path pruning
Core idea: there may be multiple possible solutions, but you only need one

Maintain an "explored" (sometimes called "closed") set of nodes at the ends of paths; discard a path if a path node appears in this set

Q: Does this return an optimal solution?

Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled from Ch 3.7.2)

- Make sure that the first path found to any node is a lowest-cost path to that node, then prune all subsequent paths found to that node. OR

Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled from Ch 3.7.2)

- Make sure that the first path found to any node is a lowest-cost path to that node, then prune all subsequent paths found to that node. OR
- If the search algorithm finds a lower-cost path to a node than one already found, it could remove all paths that used the higher-cost path to the node. OR

Optimality with Multiple-Path Pruning

Some options to find the optimal solution (pulled from Ch 3.7.2)

- Make sure that the first path found to any node is a lowestcost path to that node, then prune all subsequent paths found to that node. OR
- If the search algorithm finds a lower-cost path to a node than one already found, it could remove all paths that used the higher-cost path to the node. OR
- Whenever the search finds a lower-cost path to a node than a path to that node already found, it could incorporate a new initial section on the paths that have extended the initial path.

A* and Multiple-Path Pruning

If $h(n)$ is consistent, A^{*} with multiple-path pruning will find an optimal solution

Core Idea: Why?

A* and Multiple-Path Pruning

If $h(n)$ is consistent, A^{*} with multiple-path pruning will find an optimal solution

Core Idea: Why? (proof by contradiction: see Proposition 3.2 in Ch 3.7.2)

Summary: Informed search

- Best-first search is general search where minimum-cost nodes (w.r.t. some measure) are expanded first
- Greedy search uses minimal estimated cost h(n) to goal state as measure; reduces search time, but is neither complete nor optimal
- A* search combines uniform-cost search \& greedy search: $f(n)=g(n)+h(n)$. Handles state repetitions \& $h(n)$ never overestimates
$-A^{*}$ is complete \& optimal, but space complexity high
-Time complexity depends on quality of heuristic function
-IDA* and SMA* reduce the memory requirements of A^{*}

Summary (Fig 3.11)

Strategy	Selection from Frontier	Path found	Space
Breadth-first	First node added	Fewest arcs	Exponential
Depth-first	Last node added	No	Linear
Iterative deepening	-	Fewest arcs	Linear
Greedy best-first	Minimal $h(p)$	No	Exponential
Lowest-cost-first	Minimal $\operatorname{cost}(p)$	Least cost	Exponential
A^{*}	Minimal $\operatorname{cost}(p)+h(p)$	Least cost	Exponential
IDA *	-	Least cost	Linear

