
CMSC 471
Artificial Intelligence

Search

KMA Solaiman – ksolaima@umbc.edu

Some material adopted from notes
by Charles R. Dyer, University of

Wisconsin-Madison
Many slides courtesy Tim Finin and Frank Ferraro

mailto:ksolaima@umbc.edu

A General Searching Algorithm
Core ideas:
1. Maintain a list of

frontier (fringe) nodes
1. Nodes coming

into the frontier
have been
explored

2. Nodes going out
of the frontier
have not been
explored

2. Iteratively select
nodes from the
frontier and explore
unexplored nodes
from the frontier

3. Stop when you reach
your goal

Figure 3.3

State-space search algorithm
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure

function general-search (problem, QUEUEING-FUNCTION)
 nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds
 then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
 problem.OPERATORS))
 end

 ;; Note: The goal test is NOT done when nodes are generated
 ;; Note: This algorithm does not detect loops

Search Algorithm Properties

• Complete: Guaranteed to find a solution if one exists?
• Optimal: Guaranteed to find the least cost path?
• Time complexity?
• Space complexity?

• Cartoon of search tree:
– b is the branching factor
– m is the maximum depth
– solutions at various depths

• Number of nodes in entire tree?
– 1 + b + b2 + …. bm = O(bm)

…
b

1 node
b nodes

b2 nodes

bm nodes

m tiers

Breadth-First Search (BFS) Properties

• What nodes does BFS expand?
– Processes all nodes above shallowest

solution
– Let depth of shallowest solution be s
– Search takes time O(bs)

• How much space does the frontier
take?
– Has roughly the last tier, so O(bs)

• Is it complete?
– s must be finite if a solution exists, so

yes!

• Is it optimal?
– If costs are equal for each operator

(e.g., 1)

…
b 1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Potential issues??

Depth-First Search (DFS) Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

• What nodes does DFS expand?
– Some left prefix of the tree down to depth m.
– Could process the whole tree!
– If m is finite, takes time O(bm)

• How much space does the frontier take?
– Only has siblings on path to root, so O(bm)

• Is it complete?
– m could be infinite
– preventing cycles may help
– May not terminate w/o depth bound, i.e.,

ending search below fixed depth D (depth-
limited search)

• Is it optimal?
– No, it finds the “leftmost” solution, regardless

of depth or cost

Can find long solutions quickly if lucky (and
short solutions slowly if unlucky!)

Depth-First Iterative Deepening (DFID)
• Do DFS to depth 0, then (if no solution) DFS to

depth 1, etc.
• Usually used with a tree search
• Complete
• Optimal/Admissible if all operators have unit

cost, else finds shortest solution (like BFS)
• Time complexity a bit worse than BFS or DFS

Nodes near top of search tree generated many times,
but since almost all nodes are near tree bottom,
worst case time complexity still exponential, O(bd)

How they perform
• Depth-First Search:

– 4 Expanded nodes: S A D E G
– Solution found: S A G (cost 18)

• Breadth-First Search:
– 7 Expanded nodes: S A B C D E G
– Solution found: S A G (cost 18)

• Uniform-Cost Search:
– 7 Expanded nodes: S A D B C E G
– Solution found: S C G (cost 13)
Only uninformed search that worries about costs

• Iterative-Deepening Search:
– 10 nodes expanded: S S A B C S A D E G
– Solution found: S A G (cost 18)

Searching Backward from Goal

• Usually a successor function is reversible
– i.e., can generate a node’s predecessors in graph

• If we know a single goal (rather than a goal’s
properties), we could search backward to the
initial state

• It might be more efficient
– Depends on whether the graph fans in or out

Bi-directional search

•Alternate searching from the start state toward the goal
and from the goal state toward the start
• Stop when the frontiers intersect
•Works well only when there are unique start & goal states
• Requires ability to generate “predecessor” states
• Can (sometimes) lead to finding a solution more quickly

Comparing Search Strategies

Informed (Heuristic) Search

• Heuristic search
• Best-first search
–Greedy search
–Beam search
–A* Search

• Memory-conserving variations of A*
• Heuristic functions

Big idea: heuristic
Merriam-Webster's Online Dictionary

Heuristic (pron. \hyu-’ris-tik\): adj. [from Greek heuriskein to discover]
involving or serving as an aid to learning, discovery, or problem-solving
by experimental and especially trial-and-error methods

The Free On-line Dictionary of Computing (15Feb98)
heuristic 1. <programming> A rule of thumb, simplification or educated
guess that reduces or limits the search for solutions in domains that are
difficult and poorly understood. Unlike algorithms, heuristics do not
guarantee feasible solutions and are often used with no theoretical
guarantee. 2. <algorithm> approximation algorithm.

From WordNet (r) 1.6
heuristic adj 1: (CS) relating to or using a heuristic rule 2: of or relating to
a general formulation that serves to guide investigation [ant: algorithmic]
n : a commonsense rule (or set of rules) intended to increase the
probability of solving some problem [syn: heuristic rule, heuristic
program]

https://en.wikipedia.org/wiki/Heuristic

Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

ℎ(𝑛) is admissible iff ℎ 𝑛 ≤ the lowest actual
cost from 𝑛-to-goal

Heuristics, More Formally

ℎ(𝑛) is a heuristic function, that maps a state 𝑛
to an estimated cost from 𝑛-to-goal

ℎ(𝑛) is admissible iff ℎ 𝑛 ≤ the lowest actual
cost from 𝑛-to-goal

ℎ(𝑛) is consistent iff
ℎ 𝑛 ≤ lowestcost 𝑛, 𝑛′ + ℎ(𝑛!)

Informed methods add
domain-specific information

• Select best path along which to continue
searching

• h(n): estimates goodness of node n
• h(n) = estimated cost (or distance) of

minimal cost path from n to a goal state.
• Based on domain-specific information and

computable from current state description
that estimates how close we are to a goal

Heuristics
• All domain knowledge used in search is encoded

in the heuristic function, h(<node>)
• Examples:
–8-puzzle: number of tiles out of place
–8-puzzle: sum of distances each tile is from its goal
–Missionaries & Cannibals: # people on starting river

bank
• In general
– ℎ 𝑛 ≥ 0	for all nodes n
– ℎ(𝑛) = 0 implies that n is a goal node
– ℎ 𝑛 = ∞ implies n is a dead-end that can’t lead to

goal

Example 3.13

(Partial) Heuristic ℎ(𝑛)
for goal r123

Example 3.13

Heuristic ℎ(𝑛) for goal
r123

Example 3.13

Heuristic ℎ(𝑛) for goal
r123

Q: Is this an admissible
heuristic?

Heuristics for 8-puzzle

Misplaced
Tiles
Heuristic

• Three tiles are misplaced (the 3, 8, and 1)
so heuristic function evaluates to 3

• Heuristic says that it thinks a solution may
be available in 3 or more moves

• Very rough estimate, but easy to calculate

3 2 8
4 5 6
7 1

1 2 3
4 5 6
7 8

Goal
State

Current
State

h = 3

(not including
the blank)

3 2 8
4 5 6
7 1

3 tiles are not
where they need
to be

Heuristics for 8-puzzle

Manhattan
Distance (not
including the
blank)

• The 3, 8 and 1 tiles are misplaced (by 2, 3,
and 3 steps) so the heuristic function
evaluates to 8

• Heuristic says that it thinks a solution may
be available in just 8 more moves.

• The misplaced heuristic’s value is 3

3 2 8
4 5 6
7 1

1 2 3
4 5 6
7 8

Goal
State

Current
State

3 3

8

8

1

1

2 spaces

3 spaces

3 spaces

Total 8

5

6 4

3

4 2

1 3 3

0 2

We can use heuristics
to guide search

Manhattan Distance
heuristic helps us
quickly find a
solution to the 8-
puzzle

h(n)

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

Best-first search

• Search algorithm that improves depth-
first search by expanding most promising
node chosen according to heuristic rule

• Order nodes on nodes list by increasing
value of an evaluation function, f(n),
incorporating domain-specific information

http://en.wikipedia.org/wiki/Best_first_search

Best-first search

• Search algorithm that improves depth-
first search by expanding most promising
node chosen according to heuristic rule

• Order nodes on nodes list by increasing
value of an evaluation function, f(n),
incorporating domain-specific information

• This is a generic way of referring to the
class of informed methods

http://en.wikipedia.org/wiki/Best_first_search

Greedy best first search
• A greedy algorithm makes locally optimal choices in hope of

finding a global optimum
• Uses evaluation function f(n) = h(n), sorting nodes by

increasing values of f
• Selects node to expand appearing closest to goal (i.e., node

with smallest f value)
• Not complete
• Not admissible, as in example
– Assume arc costs = 1, greedy search finds goal g, with solution cost

of 5
–Optimal solution is path to goal with cost 3

https://en.wikipedia.org/wiki/Greedy_algorithm
https://en.wikipedia.org/wiki/Admissible_decision_rule

Greedy best first search example

• Proof of non-admissibility
– Assume arc costs = 1, greedy

search finds goal g, with
solution cost of 5

– Optimal solution is path to
goal with cost 3

a

hb

c

d

e

g

i

g2

h=2

h=1

h=1

h=1

h=0

h=4

h=1

h=0

Beam search
• Use evaluation function f(n), but maximum size

of the nodes list is k, a fixed constant
• Only keep k best nodes as candidates for

expansion, discard rest
• k is the beam width
• More space efficient than greedy search, but

may discard nodes on a solution path
• As k increases, approaches best first search
• Complete?
• Admissible?

http://en.wikipedia.org/wiki/Beam_search

Beam search
• Use evaluation function f(n), but maximum size

of the nodes list is k, a fixed constant
• Only keep k best nodes as candidates for

expansion, discard rest
• k is the beam width
• More space efficient than greedy search, but

may discard nodes on a solution path
• As k increases, approaches best first search
• Not complete
• Not admissible

http://en.wikipedia.org/wiki/Beam_search

We’ve got to be able to do
better, right?

Let’s think about car trips…

A* Search
Use an evaluation function

f(n) = g(n) + h(n)

minimal-cost path from
the start state to state n

cost estimate from state n
to the goal

estimated total cost from
start to goal via state n

