
CMSC 471
Artificial Intelligence

Search

KMA Solaiman – ksolaima@umbc.edu

Some material adopted from notes
by Charles R. Dyer, University of

Wisconsin-Madison
Many slides courtesy Tim Finin and Frank Ferraro

mailto:ksolaima@umbc.edu

Today’s topics
• Goal-based agents
• Representing states and actions
• Example problems
• Generic state-space search algorithm
• Specific algorithms
– Breadth-first search
– Depth-first search
– Uniform cost search
– Depth-first iterative deepening

• Example problems revisited

Okay, but really? What is
AI?

“Artificial intelligence, or AI, is the field that studies
the synthesis and analysis of computational agents

that act intelligently.” --Poole & Mackworth

• Makes appropriate actions
for circumstances & goals

• Balances short & long-term
appropriately

• Flexible & reactive
• Learns/recognizes patterns

• Aware of
computational/task

budgets & limitations

something that acts in an
environment; it does

something.

Use “computation” to
explain and traceback the

actions

Recap

Characteristics of environments
Fully

observable? Deterministic? Episodic? Static? Discrete? Single
agent?

Solitaire No Yes Yes Yes Yes Yes

Backgammon Yes No No Yes Yes No

Taxi driving No No No No No No

Internet
shopping No No No No Yes No

Medical
diagnosis No No No No No Yes

→ Lots of real-world domains fall into the hardest case!

A Yes in a cell means that aspect is simpler; a No more complex
Courtesy Tim Finin

Agents

Fig. 2.1

“Sensors” “Actions”

Recap

(0) Table-driven agents
Use percept sequence/action table to find next
action. Implemented by a lookup table

(1) Simple reflex agents
Based on condition-action rules, stateless devices
with no memory of past world states

(2) Agents with memory
represent states and keep track of past world states

(3) Agents with goals
Have a state and goal information describing desirable
situations; can take future events into consideration

(4) Utility-based agents
base decisions on utility theory in order to act rationally

simple

complex
Courtesy Tim Finin

Recap

https://en.wikipedia.org/wiki/Utility

(3) Architecture for goal-based agent
state and goal information describe desirable
situations allowing agent to take future events into
consideration

Courtesy Tim Finin

Recap

Big Idea
Allen Newell and Herb Simon developed
the problem space principle as an AI
approach in the late 60s/early 70s

"The rational activity in which people engage to solve a
problem can be described in terms of (1) a set of states
of knowledge, (2) operators for changing one state into
another, (3) constraints on applying operators and (4)
control knowledge for deciding which operator to apply
next."

Newell A & Simon H A. Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall. 1972.

https://en.wikipedia.org/wiki/Allen_Newell
https://en.wikipedia.org/wiki/Herbert_A._Simon

Big Idea
Allen Newell and Herb Simon developed
the problem space principle as an AI
approach in the late 60s/early 70s

"The rational activity in which people engage to solve a
problem can be described in terms of (1) a set of states
of knowledge, (2) operators for changing one state into
another, (3) constraints on applying operators and (4)
control knowledge for deciding which operator to apply
next."

Newell A & Simon H A. Human problem solving.
Englewood Cliffs, NJ: Prentice-Hall. 1972.

We’ll achieve this by
formulating an appropriate

graph and then applying
graph search algorithms to it

https://en.wikipedia.org/wiki/Allen_Newell
https://en.wikipedia.org/wiki/Herbert_A._Simon

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes, (𝑥, 𝑦)

G can be:
• Undirected: order of (𝑥, 𝑦) doesn’t matter
– These are symmetric

• Directed: order of (𝑥, 𝑦) does matter
• Weighted: cost function 𝑔(𝑥, 𝑦)
• (among other qualities)

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c V= { ??? }

E = { ??? }

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c
V= { a, b, c }

E = { (a, c), (b, c) }

undirected

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c V= { ??? }

E = { ??? }

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

V= { a, b, c }

E = { (a, c), (b, c) }

a

b

c

directed

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

V= { a, b, c }

E = { (a, c), (c, b) }

a

b

c

directed

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c
V= { ??? }

E = { ??? }

g = ???

4

5

1

Remember: Graphs

• A graph G = (E, V)
• V = set of vertices (nodes)
• E = set of edges between pairs of nodes

a

b

c

V= { a, b, c }

E = { (a,c), (b, c), (c, b) }

g = {(a, c): 4, (b, c): 5, (c, b): 1}

4

5

1

weighted, directed

Some Key Terms: States, Goal, and
Solution

State: a representation of the current world/environment (as
needed for the agent)

Initial State: The state the agent/problem starts in

Goal State: The desired state

Actions, Transition Model: what is allowed, with what cost;
(state, action) = next state

Solution: a sequence of actions that operate sequentially on
states and allow the agent to achieve its goal

Example: 8-Puzzle
Given an initial configuration of 8 numbered
tiles on a 3x3 board, move the tiles to
produce a desired goal configuration

Simpler: 3-Puzzle

3

2 1

1 2

3

start goal

3

2 1

start

goal

3

2 1

2 3

1

2 3

1

2

1 3

2

1 3

1 2

3

Building goal-based agents
We must answer the following questions
–How do we represent the state of the “world”?
–What is the goal and how can we recognize it?
–What are the possible actions?
–What relevant information do we encoded to

describe states, actions and their effects and thereby
solve the problem?

initial state goal state

Characteristics of 8-puzzle ?
Fully

observable? Deterministic? Episodic? Static? Discrete? Single
agent?

8-puzzle

Characteristics of 8-puzzle
Fully

observable? Deterministic? Episodic? Static? Discrete? Single
agent?

8-puzzle Yes Yes Yes Yes Yes Yes

• All the Yes’s mean it may be relatively easy!
• This is typical of the problems worked on in

the 60s and 70s
• And the algorithms for solving them a state-

space search approach

Representing states

• State of an 8-puzzle?

Representing states

• State of an 8-puzzle?
• A 3x3 array of integer in {0..8}
• No integer appears twice
• 0 represents the empty space

• In Python, we might implement this using a nine-
character string: “540681732”

• And write functions to map the 2D coordinates to
an index

What’s the goal to be achieved?
• Describe situation we want to achieve, a set

of properties that we want to hold, etc.
• Defining a goal test function that when

applied to a state returns True or False
• For our problem:

def isGoal(state):
 return state == “123405678”

What are the actions?
• Primitive actions for changing the state

In a deterministic world: no uncertainty in an
action’s effects (simple model)

• Given action and description of current
world state, action completely specifies
– Whether action can be applied to the current

world (i.e., is it applicable and legal?) and
– What state results after action is performed in

the current world (i.e., no need for history
information to compute the next state)

Representing actions

• Actions ideally considered as discrete events
that occur at an instant of time

• Example, in a planning context
– If state:inClass and perform action:goHome, then

next state is state:atHome
– There’s no time where you’re neither in class nor at

home (i.e., in the state of “going home”)

Representing actions

• Actions for 8-puzzle?

Representing actions

• Actions for 8-puzzle?

• Number of actions/operators depends on the
representation used in describing a state
– Specify 4 possible moves for each of the 8 tiles,

resulting in a total of 4*8=32 operators
– Or: Specify four moves for “blank” square and we

only need 4 operators

• Representational shift can simplify a problem!

Representing states
• Size of a problem usually described in

terms of possible number of states

– Tic-Tac-Toe has about 39 states (19,683≈2*104)
– Checkers has about 1040 states
– Rubik’s Cube has about 1019 states
– Chess has about 10120 states in a typical game
– Go has 2*10170
– Theorem provers may deal with an infinite space

• State space size ≈ solution difficulty

Representing states
• Our estimates were loose upper bounds
• How many possible, legal states does tic-

tac-toe really have?
• Simple upper bound: nine board cells, each

of which can be empty, O or X, so 39

• Only 593 states after eliminating
– impossible states

– Rotations and reflections X

X

X X

Can Problem spaces be infinite?

Yes! examples include theorem proving and this
simple example from Knuth (1964)
• Starting with the number 4, a sequence of

square root, floor, and factorial operations can
reach any desired positive integer

• To get to 5 from 4, do

• floor(sqrt (sqrt (sqrt (sqrt (sqrt (fact (fact 4)))))))

https://en.wikipedia.org/wiki/Donald_Knuth

Infinitely hard to solve?

• No
• But you must be more careful in searching a

problem space that may be infinite
• Some approaches (e.g., breadth first search)

may be better than others (e.g., depth first
search)
– Depth first search can get lost exploring an infinite

subspace

Some example problems

• Toy problems and micro-worlds
–8-Puzzle
–Missionaries and Cannibals
–Cryptarithmetic
–8-Queens Puzzle
–Remove 5 Sticks
–Water Jug Problem

• Real-world problems

Example: The 8-Queens Puzzle

Place eight queens
on a chessboard
such that no queen
attacks any other

We can generalize
the problem to a
NxN chessboard

What are the states, goal test, actions?

http://en.wikipedia.org/wiki/Eight_queens_puzzle

Some more real-world problems

• Route finding
• Touring (traveling salesman)
• Logistics
• VLSI layout
• Robot navigation
• Theorem proving
• Learning

Route Planning
Find a route from Arad to Bucharest

A simplified map of major roads in Romania used in our text

Water Jug Problem
• Two jugs J1 & J2 with capacity C1 & C2
• Initially J1 has W1 water and J2 has W2 water
– e.g.: full 5 gallon jug and empty 2 gallon jug

• Possible actions:
– Pour from jug X to jug Y until X empty or Y full
– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G2 can be -1 to represent any amount

• E.g.: initially full jugs with capacities 3 and 1
liters, goal is to have 1 liter in each

https://en.wikipedia.org/wiki/Water_pouring_puzzle

Example: Water Jug Problem

• Two jugs J1 and J2 with capacity C1 and C2
• Initially J1 has W1 water and J2 has W2 water
– e.g.: a full 5-gallon jug and an empty 2-gallon jug

• Possible actions:
– Pour from jug X to jug Y until X empty or Y full
– Empty jug X onto the floor

• Goal: J1 has G1 water and J2 G2
– G1 or G0 can be -1 to represent any amount

5 2

Example: Water Jug Problem

Given full 5-gal. jug and
empty 2-gal. jug, fill 2-
gal jug with one gallon
• State representation?
–General state?
–Initial state?
–Goal state?
• Possible actions?
–Condition?
–Resulting state?

Name Cond. Transition Effect

Empty5 (x,y)→(0,y) Empty 5G
jug

Empty2 (x,y)→(x,0)
Empty 2G
jug

2to5 x ≤ 3 (x,2)→(x+2,0) Pour 2G into
5G

5to2 x ≥ 2 (x,0)→(x-2,2) Pour 5G into
2G

5to2part y < 2 (1,y)→(0,y+1) Pour partial
5G into 2G

Action table

5 2

Example: Water Jug Problem

Given full 5-gal. jug and
empty 2-gal. jug, fill 2-
gal jug with one gallon
• State representation?
–General state?
–Initial state?
–Goal state?
• Possible actions?
–Condition?
–Resulting state?

Name Cond. Transition Effect

dump1 x>0 ((x,y)→(0,y) Empty Jug 1

dump2 y>0 (x,y)→(x,0) Empty Jug 2

pour_1_2
x>0 &
y<C2

(x,2)→(x+2,0) Pour from Jug
1 to Jug 2

pour_2_1
y>0 &
X<C1

(x,0)→(x-2,2) Pour from Jug
2 to Jug 1

5to2part y < 2 (1,y)→(0,y+1) Pour partial
5G into 2G

Action table

5 2

Example: Water Jug Problem

Given full 5-gal. jug
and empty 2-gal. jug,
fill 2-gal jug with one
gallon
•State = (x,y), where x is
water in jug 1; y is water
in jug 2
• Initial State = (5,0)
•Goal State = (-1,1), where
-1 means any amount

Name Cond. Transition Effect

dump1 x>0 (x,y)→(0,y) Empty Jug 1

dump2 y>0 (x,y)→(x,0) Empty Jug 2

pour_1_2
x>0 &
y<C2

(x,y)→(x-D,y+D)
D = min(x,C2-y)

Pour from Jug
1 to Jug 2

pour_2_1
y>0 &
X<C1

(x,y)→(x+D,y-D)
D = min(y,C1-x)

Pour from Jug
2 to Jug 1

Action table

5 2

So…

• How can we represent the states?
• What’s an initial state
• How do we recognize a goal state
• What are the actions; how can we tell which ones

can be performed in a given state; what is the
resulting state

• How do we search for a solution from an initial
state given a goal state

• What is a solution? The goal state achieved or a
path to it?

Search in a state space
• Basic idea:
–Create representation of initial state
–Try all possible actions & connect states that result
–Recursively apply process to the new states until we

find a solution or dead ends

•We need to keep track of the connections
between states and might use a
–Tree data structure or
–Graph data structure

• A graph structure is best in general…

Formalizing state space search

• A state space is a graph (V, E) where V is a set
of nodes and E is a set of arcs, and each arc is
directed from a node to another node
• Nodes: data structures with state description

and other info, e.g., node’s parent, name of
action that generated it from parent, etc.
• Arcs: instances of actions, head is a state, tail

is the state that results from action

Formalizing search in a state space
• Each arc has fixed, positive cost associated

with it corresponding to the action cost
– Simple case: all costs are 1

• Each node has a set of successor nodes
corresponding to all legal actions that can be
applied at node’s state
– Expanding a node = generating its successor nodes and

adding them and their associated arcs to the graph

• One or more nodes are marked as start nodes
• A goal test predicate is applied to a state to

determine if its associated node is a goal node

Formalizing search

• Solution: sequence of actions associated with
a path from a start node to a goal node

• Solution cost: sum of the arc costs on the
solution path
– If all arcs have same (unit) cost, then

solution cost is length of solution (number
of steps)
–Algorithms generally require that arc costs

cannot be negative (why?)

Formalizing search
• State-space search: searching through state space for

solution by making explicit a portion of an implicit
state-space graph to find a goal node
– Can’t materialize whole space for large problems
– Initially V={S}, where S is the start node, E={}
– On expanding S, its successor nodes are generated and

added to V and associated arcs added to E
– Process continues until a goal node is found
• Nodes represent a partial solution path (+ cost of

partial solution path) from S to the node
– From a node there may be many possible paths (and thus

solutions) with this partial path as a prefix

A General Searching Algorithm
Core ideas:
1. Maintain a list of

frontier (fringe) nodes
1. Nodes coming

into the frontier
have been
explored

2. Nodes going out
of the frontier
have not been
explored

2. Iteratively select
nodes from the
frontier and explore
unexplored nodes
from the frontier

3. Stop when you reach
your goal

Figure 3.3

State-space search algorithm
;; problem describes the start state, operators, goal test, and operator costs
;; queueing-function is a comparator function that ranks two states
;; general-search returns either a goal node or failure

function general-search (problem, QUEUEING-FUNCTION)
 nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))
 loop
 if EMPTY(nodes) then return "failure"
 node = REMOVE-FRONT(nodes)
 if problem.GOAL-TEST(node.STATE) succeeds
 then return node
 nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,
 problem.OPERATORS))
 end

 ;; Note: The goal test is NOT done when nodes are generated
 ;; Note: This algorithm does not detect loops

Key procedures to be defined

• EXPAND
– Generate a node’s successor nodes, adding them to the

graph if not already there

• GOAL-TEST
– Test if state satisfies all goal conditions

•QUEUEING-FUNCTION
– Maintain ranked list of nodes that are candidates for

expansion
– Changing definition of the QUEUEING-FUNCTION leads to

different search strategies

What does “search”
look like for a

particular problem?

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start

Expanding a node on the fringe
(taking a certain action)

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start

Expanding a node on the fringe
(taking a certain action). Not all

actions shown.

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start

Expanding a node on the fringe
(taking a certain action). Not all

actions shown.

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start

Expanding a node on the fringe
(taking a certain action). Not all

actions shown.

1 2 3
4 5
7 8 6

1 2 3
4 5

7 8 6

1 3
4 2 5
7 8 6

1 2
4 5 3
7 8 6

1 2 3
4 5 6
7 8

1 2 3
4 5
7 8 6

1 2 3
4 8 5

7 6

1 2 3
4 8 5
7 6

1 2 3
4 8 5
7 6

1 2
4 8 3
7 6 5

1 2 3
4 8
7 6 5

goal

start

State Space Graphs and Search Trees

State Space Graphs

• State space graph: A mathematical
representation of a search problem
– Nodes are (abstracted) world configurations
– Arcs represent transitions/ successors (action

results)
– The goal test is a set of goal nodes (maybe only

one)

• In a state space graph, each state occurs only
once!

• We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We construct the
tree on demand –

and we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph: How big is its search tree (from S)?

Quiz: State Space Graphs vs. Search
Trees

S G

b

a

Consider this 4-state graph:

Important: Those who don’t know history are doomed to repeat it!

How big is its search tree (from S)?

s
b

b G a

a

G

a G b G

… …

